Chem. Pharm. Bull. 35(6)2394—2411(1987)

Synthesis of 2-Phenylthiazolidine Derivatives as Cardiotonic Agents. II.¹⁾ 2-(Phenylpiperazinoalkoxyphenyl)thiazolidine-3-thiocarboxamides and the Corresponding Carboxamides

Hiroyuki Nate,^a Kenji Matsuki,^a Akira Tsunashima,^a Hisao Ohtsuka,^a Yasuo Sekine,^a Kuniyuki Oda,^a Yasushi Honma,^a Akihiko Ishida,^a Hideo Nakai,^{*, a} Hiroshi Wada,^a Mikio Takeda,^a Hideo Yabana,^b Yutaka Hino,^b and Taku Nagao^b

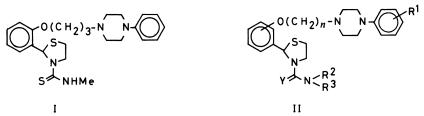
Organic Chemistry Research Laboratory^a and Biological Research Laboratory,^b Tanabe Seiyaku Co., Ltd., 2–2–50, Kawagishi, Toda-shi, Saitama 335, Japan

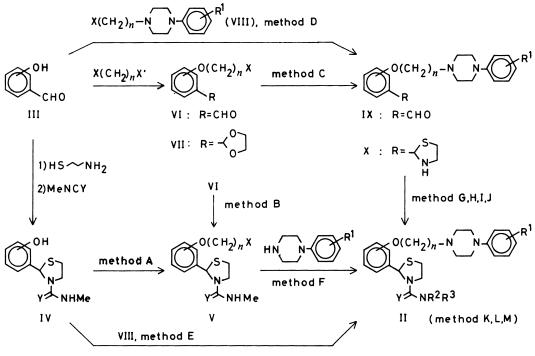
(Received October 27, 1986)

A large number of 2-(phenylpiperazinoalkoxyphenyl)thiazolidine-3-thiocarboxamides and the corresponding carboxamides (II) were synthesized and tested for inotropic activity in anesthetized dogs. Compounds II were prepared from a hydroxybenzaldehyde (III) through the intermediates (IV, V, and X). Structure-activity relationships (SAR) were investigated by varying the structural parameters. Transposition of the piperazinoalkoxyl group to the *meta* or *para* position from the *ortho* position caused a marked fall in activity. Conversion of the thiocarboxamido to a carboxamido group caused a marked increase in activity. This tendency was generally observed in this series of compounds and constitutes a major deviation from the SAR in the simple 2-phenylthiazolidine series. With regard to effects of the length of the aminoalkoxy chain, the ethoxy derivatives were generally more potent than higher analogues. Lengthening of the *N*-alkyl group in the (thio)carboxamido group generally caused a decrease in activity. Among the various derivatives synthesized, II₁₅ was found to be approximately one hundred times more potent than amrinone with a long duration of action.

Keywords—2-phenylthiazolidine-3-carboxamide; 2-(phenylpiperazinoalkoxyphenyl)thiazolidine-3-thiocarboxamide; 2-(phenylpiperazinoalkoxyphenyl)thiazolidine-3-carboxamide; positive inotropic activity; structure-activity relationship; cardiotonic agent

The preceding paper¹⁾ of this series described the synthesis and cardiotonic activity of a series of new 2-phenylthiazolidine-3-thiocarboxamides. After examination of the structure-activity relationships (SAR) of numerous derivatives, *N*-methyl-2-(2-(3-(4-phenylpiperazino)-propoxy)phenyl)thiazolidine-3-thiocarboxamide (I) was found to exhibit potent and long-lasting positive inotropic activity in anesthetized dogs. Further exploration of this new lead compound (I) as a cardiotonic agent led to the synthesis of a large number of derivatives represented by general formula (II). This paper describes the synthesis and positive inotropic




Chart 1

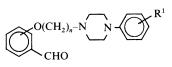
activity of II, and the SAR are discussed in terms of the effect of varying the substituents (\mathbb{R}^1 , \mathbb{R}^2 , \mathbb{R}^3 , and Y), the position of the aminoalkoxyl group, and the length of the alkylene chain (*n*).

Chemistry

The thiazolidine-3-(thio)carboxamides (II) were synthesized through the sequence of reactions shown in Chart 2. Reaction of hydroxybenzaldehydes (III) with cysteamine followed by treatment with methyl isocyanate (MeNCO) or methyl isothiocyanate (MeNCS) readily gave the phenolic N-methylthiazolidine-3-carboxamides or thiocarboxamides (IV). Alkylation of IV with alkylene dihalides or tosyloxyalkyl halides in the presence of potassium carbonate (K_2CO_3) in dimethylformamide (DMF) gave the haloalkoxy derivatives (V) (method A). The reverse procedure (alkylation first followed by thiazolidine formation) also effected the conversion of III to V via the aldehydes (VI) (method B). The physical properties of V are summarized in Table I. Treatment of the aldehydes (VI) with ethylene glycol gave the acetals (VII), which in turn were heated with substituted phenylpiperazines²⁾ and K_2CO_3 in DMF to give, after acidic hydrolysis, the piperazinoalkoxybenzaldehydes (IX) (method C). Alternatively, IX could also be obtained by the condensation of a hydroxybenzaldehyde (III) with the haloalkylpiperazines (VIII) (method D). The physical properties of IX are listed in Table II. Condensation of the halides (V) with various phenylpiperazines (method F) or the reaction of the aldehydes (IX) with cysteamine followed by treatment with MeNCO or MeNCS (method G) gave II (Y=O, S, $R^2 = H$, $R^3 = Me$). Condensation of the phenols (IV, Y = S) with the haloalkylpiperazines (VIII) also gave II ($Y = S, R^2 = H, R^3 = Me$) (method E). The physical properties of the N-methylthiazolidine-3-carboxamides or thiocarboxamides (II, $Y = O, S, R^2 = H, R^3 = Me$) thus obtained are summarized in Table III.

The N-alkyl, N-phenyl, or N-acetylthiazolidine-3-carboxamides or thiocarboxamides (II, $Y=O, S, R^2=H, R^3=alkyl$, phenyl, or acetyl) were similarly prepared (method G) by the

reaction of the intermediate thiazolidines (X) with appropriate isocyanates or isothiocyanates. Alkaline hydrolysis of the N-acetylthiocarboxamides (II, Y = S, $R^2 = H$, $R^3 = Ac$) gave the unsubstituted thiocarboxamides (II, Y=S, $R^2=R^3=H$) (method L). The corresponding carboxamides (II, Y = O, $R^2 = R^3 = H$) were obtained by the reaction of X with sodium cyanate (NaOCN) and acetic acid in ethanol (method H). Carbamovlation of X with dimethylcarbamoyl chloride in the presence of K_2CO_3 in DMF gave the N,Ndimethylcarboxamides (II, Y=O, $R^2=R^3=Me$) (method I). The reaction of X with thiophosgene followed by treatment with dimethylamine gave the N.N-dimethylthiocarboxamides (II, Y=S, $R^2 = R^3 = Me$) (method J). Acetylation of the N-methylthiocarboxamides (II, Y = S, $R^2 = H$, $R^3 = Me$) with acetyl chloride in the presence of sodium hydride in DMF gave the N-acetyl³⁾ derivatives (II, Y = S, $R^2 = Ac$, $R^3 = Me$) (method K). The N-acetyl-N-methylcarboxamides (II, Y=O, $R^2=Ac$, $R^3=Me$) were prepared similarly. Acetylation of the carboxamides (II, Y=O, $R^2=R^3=H$) with acetyl chloride and triethylamine gave diacetyl compounds,⁴⁾ which were hydrolyzed with aqueous sodium hydroxide to give the N-acetyl derivatives (II, Y=O, $R^2=H$, $R^3=Ac$) (method M). The physical properties of these N-substituted thiazolidine-3-carboxamides or thiocarboxamides are listed in Table IV.


Pharmacology and Structure-Activity Relationships

The positive inotropic activity of a series of 2-(phenylpiperazinoalkoxyphenyl)thiazolidine-3-(thio)carboxamides (II) was determined by measuring the increase in the maximum derivative of left ventricular pressure $(LVdP/dt_{max})$ after i.v. administration to anesthetized dogs by the method reported previously.⁵⁾ The results are included in Tables III

TABLE I.	2-(Haloalkoxyphenyl)-N-methylthiazolidine-3-(thio)carboxamides (V)
----------	--

						Q	$<^{s}_{N}$							
	Y NHMe													
Compd. No.	Position ^{a)}	n	x	Y	Method	Yield (%)	mp (°C) Recrystn.	Formula		nalysis (%) llcd (Found)				
140.						(/0)	solvent ^{b)}		С	Н				
а	2	2	Cl	S	В	71	153—154.5	$C_{13}H_{17}CIN_2OS_2$	49.28	5.41				
							(A)		(49.37	5.36				
b	2	2	Cl	0	В	70	166—167	$C_{13}H_{17}ClN_2O_2S$	51.91	5.70				
							(A)		(52.12	5.65				
с	2	3	Cl	S	В	53	118-120	$C_{14}H_{19}ClN_2OS_2$	50.82	5.79				
							(B –C)		(50.92	5.71				
d	2	3	Cl	0	В	63	128-130	$C_{14}H_{19}ClN_2O_2S$	53.41	6.08				
							(D-E)		(53.58	6.05				
e	2	4	Cl	S	В	47	137—143	$C_{15}H_{21}CIN_2OS_2$	52.23	6.14				
							(A)		(52.32	6.12				
f	4	2	Cl	S	Α	67	114—116	$C_{13}H_{17}ClN_2OS_2$	49.28	5.41				
							(A)		(49.33	5.36				
g	4	2	Br	0	В	72	96—98.5	$C_{13}H_{17}BrN_2O_2S$	45.23	4.96				
							(B–C)		(45.49	4.93				
h	4	3	Cl	0	В	87	75—78	$C_{14}H_{19}ClN_2O_2S$	53.41	6.08				
							(B C)		(53.63	6.12				

a) The position of the haloalkoxy group. b) A = EtOH, B = AcOEt, C = hexane, D = MeOH, $E = Et_2O$.

Compd. No.	Posi- tion ^{a)}	n	R^1	Method	Yield (%)	mp (°C) (Recrystn. solvent ^{b)})	¹ H-NMR δ (CDCl ₃ , $J = Hz$)
1	2	2	Н	С	63	79—82	2.96—2.84 (6H, m), 3.16—3.30 (4H, m), 4.24 (2H, t,
2	2	2	2-Cl	С	35	(F) Oil	J = 5.5, 6.84—7.93 (9H, m), 10.52 (1H, s) 2.5—3.4 (10H, m), 4.27 (2H, t, $J = 6$), 6.7—8.1 (8H, m), 10.53 (1H, s)
3	2	2	3-Cl	С	44	Oil	2.6-3.4 (10H, m), 4.25 (2H, t, $J=6$), 6.60-7.95 (8H, m), 10.49 (1H, s)
4	2	2	4-Cl	С	65	95—105 (E)	2.65–3.26 (10H, m), 4.25 (2H, t, $J=6$), 6.73–7.92 (8H, m), 10.48 (1H, s)
5	2	2	2-F	С	62	Oil	2.6—3.2 (10H, m), 4.27 (2H, t, <i>J</i> =6), 6.8—7.9 (8H, m), 10.58 (1H, s)
6	2	2	3-F	D	57	76—78 (E-C)	2.6–3.5 (10H, m), 4.30 (2H, t, $J=6$), 6.35–8.00 (8H, m), 10.52 (1H, s)
7	2	2	4-F	С	67	68—74 (E-C)	2.65—3.30 (10H, m), 4.25 (2H, t, <i>J</i> =6), 6.80—7.95 (8H, m), 10.47 (1H, s)
8	2	2	3-Me	С	38	Oil	2.32 (3H, s), 2.71–3.26 (10H, m), 4.26 (2H, t, <i>J</i> =5.5). 6.66–7.90 (8H, m), 10.52 (1H, s)
9	2	2	4-Me	С	44	Oil	2.26 (3H, s), 2.71–3.21 (10H, m), 4.27 (2H, t, <i>J</i> =5.5). 6.79–7.89 (8H, m), 10.52 (1H, s)
10	2		2-OMe		57	7880 (EC)	2.7–3.2 (10H, m), 3.80 (3H, s), 4.22 (2H, t, $J=6$), 6.85–7.95 (8H, m), 10.46 (1H, s)
11	2		3-OMe		51	Oil	2.68—3.26 (10H, m), 3.77 (3H, s), 4.25 (2H, t, <i>J</i> =5.5) 6.34—7.89 (8H, m), 10.51 (1H, s)
12	2		4-OMe		34	Oil	2.85–3.35 (10H, m), 3.75 (3H, s), 4.39 (2H, t, $J=5$), 6.88–7.92 (8H, m), 10.46 (1H, s)
13	2		4-NO ₂	C	45	139—142 (B–C)	2.67–3.03 (6H, m), 3.36–3.52 (4H, m), 4.27 (2H, t, $J = 5.5$), 6.71–8.19 (8H, m), 10.49 (1H, s)
14	2		2-Cl	C	54	Oil	1.8-2.4 (2H, m), $2.5-2.9$ (6H, m), $3.0-3.3$ (4H, m), 4.19 (2H, t, $J=6$), $6.8-8.0$ (8H, m), 10.52 (1H, s)
15	2	3	3-Cl	D	61	8690 (E-C)	1.85-2.40 (2H, m), 2.5-2.9 (6H, m), 3.1-3.4 (4H, m), 4.15 (2H, t, $J=6$), 6.65-8.00 (8H, m), 10.46 (1H, s)
16	2	3	4-Cl	C	25	Oil	2.01–2.26 (2H, m), 2.50–2.67 (6H, m), 2.97–3.22 (4H, m), 4.15 (2H, t, $J=6$), 6.78, 7.13 (2H, each, ABq, $J=9$), 6.8–7.9 (4H, m), 10.44 (1H, s)
17	2	3	2-F	C	68	81—84 (F)	1.95-2.40 (2H, m), 2.55-2.90 (6H, m), 3.05-3.35 (4H, m), 4.18 (2H, t, $J=6$), 6.90-8.00 (8H, m), 10.50 (1H, s)
18	2	3	3-F	D	63	65—79 (E-C)	1.8—2.4 (2H, m), 2.5—2.8 (6H, m), 3.1—3.35 (4H, m) 4.17 (2H, t, <i>J</i> =6), 6.8—7.95 (8H, m), 10.52 (1H, s)
19	2	3	4-F	C	80	54—57 (E-C)	1.9–2.3 (2H, m), 2.52–2.79 (6H, m), 3.00–3.24 (4H, m), 4.16 (2H, t, $J=6$), 6.84–7.93 (8H, m), 10.49 (1H, s)
20	2	3	3-Me	D	59	53—54 (E-C)	1.8-2.3 (2H, m), 2.31 (3H, s), 2.45-2.90 (6H, m), 3.15-3.40 (4H, m), 4.16 (2H, t, $J=6$), 6.55-7.95 (8H, m), 10.47 (1H, s)

						TABLE II. (continued)
Compd. No.	Posi- tion ^{a)}	n	\mathbf{R}^1	Method	Yield (%)	mp (°C) (Recrystn. solvent ^{b)})	¹ H-NMR δ (CDCl ₃ , $J = Hz$)
21	2	3	4-Me	С	89	46—51 (E-C)	2.00–2.25 (2H, m), 2.25 (3H, s), 2.52–2.68 (6H, m), 3.06–3.22 (4H, m), 4.15 (2H, t, $J=6$), 6.70–7.90 (8H, m), 10.45 (1H, s)
22	2	3	2-OMe	С	67	104—108 (B-C)	1.9-2.3 (2H, m), $2.45-2.90$ (6H, m), $2.95-3.30$ (4H, m), 3.85 (3H, s), 4.18 (2H, t, $J=6$), $6.80-7.95$ (8H, m), 10.49 (1H, s)
23	2	3	3-OMe	С	46	Oil	1.90–2.20 (2H, m), 2.52–3.26 (10H, m), 3.78 (3H, s), 4.16 (2H, t, <i>J</i> =6), 6.34–7.88 (8H, m), 10.51 (1H, s)
24	2	3	4-OMe	С	52	58—62 (E–C)	1.97-2.28 (2H, m), $2.55-2.71$ (6H, m), $2.99-3.19(4H, m), 3.76 (3H, s), 4.18 (2H, t, J=6), 6.87-7.95(8H, m), 10.53 (1H, s)$
25	2	3	4-NO ₂	С	62	121—123.5 (B-C)	
26	3	3	Н	D	30	Oil	1.94-2.25 (2H, m), 2:63-2.85 (6H, m), 3.27-3.43 (4H, m), 4.24 (2H, t, $J=6$), 6.85-7.50 (9H, m), 10.10 (1H, s)
27	4	3	Н	D	30	Oil	1.90-2.27 (2H, m), $2.50-2.94$ (6H, m), $3.14-3.30$ (4H, m), 4.14 (2H, t, $J=6$), $6.85-7.92$ (9H, m), 9.87 (1H, s)
28	2	5	Н	С	61	Oil	1.48—1.97 (6H, m), 2.37—2.67 (6H, m), 3.17—3.27 (4H, m), 4.10 (2H, t, <i>J</i> =6), 6.84—7.88 (9H, m), 10.52 (1H, s)

TABLE II. (continued)

a) The position of the phenylpiperazinoalkoxy group. b) F = isopropyl ether and see also footnote b) in Table I.

and IV together with comparative data for amrinone.

The effects of varying the position of the piperazinoalkoxyl group in the benzene ring of I were examined first. Transposition of this group to the *meta* position (II₄₁) from the *ortho* position (I) caused a marked fall in activity. On the other hand, the *para* thiocarboxamides (II_{42,44}) retained a considerable degree of activity. In the carboxamide series, the *ortho* isomers (II_{15,36}) exhibited highly potent activity, whereas the corresponding *para* isomers (II_{43,45}) rather decreased the contractile force. The favorable effect of the *ortho* substitution is consistent with our earlier finding in the simple 2-phenyl derivatives.¹⁾

Conversion of the thiocarboxamido group of I to a carboxamide group caused a marked increase in activity. The carboxamide (II₃₆) was approximately ten times as potent as I. An about thirtyfold increase in activity was also occasioned by the conversion of the thiocarboxamide (II₁) to the corresponding carboxamide (II₁₅). This tendency was generally observed in this series of compounds and constitutes a major deviation from the SAR in the 2-methoxyphenyl series, where the conversion of the thiocarboxamido group to the carboxamido group caused a marked decrease in activity.¹

With regard to the effect of the length of the aminoalkoxy chain on activity, the ethoxy derivatives were generally more potent than the propoxy analogues. This tendency was more pronounced in the carboxamide series (*e.g.* II_{15} *vs.* II_{36} and II_{17} *vs.* II_{37}) than in the thiocarboxamide series (*e.g.* II_1 *vs.* II_{26}). Further lengthening of the alkylene chain caused a decrease in activity as shown by the pentyloxythiocarboxamide (II_{40}).

The effects of substitution on the benzene ring of the piperazine moiety were extensively examined in the thiocarboxamide series (II₁₋₁₄ and II₂₃₋₃₅). Although no clear SAR can be

2399

deduced, introduction of a fluoro group $(II_{5-7} \text{ and } II_{26-28})$ tends to have a favorable effect. In the carboxamide series, the unsubstituted phenyl (II_{15}) and 2-fluorophenyl (II_{17}) derivatives exhibited the most potent activity. This was followed by the 3-fluoro (II_{18}) , 4-fluoro (II_{19}) , and 2-methyl (II_{20}) derivatives.

The effect of modifying the *N*-substituent in the (thio)carboxamido group was examined in a series of the *ortho* piperazinoethoxy derivatives listed in Table IV. The unsubstituted (II_{46,49,57}) and *N*-acetyl (II_{47,52,55,61}) derivatives exhibited potent activity, comparable to the corresponding *N*-methyl derivatives. This also constitutes a deviation from the SAR in the 2methoxyphenyl series.¹⁾ The extraordinarily long-lasting positive inotropic action with a slow onset induced by the *N*-acetate (II₆₁) may arise, at least in part, from its metabolic transformation. Lengthening of the *N*-alkyl group generally caused a decrease in activity (II_{50-51,58,59}). *N*-Dimethyl substitution in the carboxamido group caused a decrease in activity (II_{48,54}), while the corresponding thiocarboxamides (II_{56,63}) exhibited activity comparable to the corresponding monomethyl derivatives. Thus, there are some discrepancies in the SAR between the carboxamide and thiocarboxamide series and also between the 2methoxyphenyl¹ and the piperazinoalkoxyphenyl series.

As a consequence of the above SAR, *N*-methyl-2-(2-(2-(4-phenylpiperazino)ethoxy)phenyl)thiazolidine-3-carboxamide (II₁₅), which was approximately one hundred times more potent than amrinone, was selected for further study. In the isolated guinea pig heart, its minimum effective dose (MED) to cause an increase in contractile force⁶) was $3 \mu g/$ heart (MED for amrinone = $10 \mu g/heart$). After intraduodenal administration of 0.1 mg/kg to anesthetized dogs, II₁₅ produced a 45% increase in LVd*P*/d*t*_{max} with a 20% increase in heart rate; the positive inotropic action persisted for more than 2 h without affecting mean blood pressure. Oral administration of 0.3 mg/kg of II₁₅⁷) to conscious instrumented dogs also produced potent positive inotropic action (a 26% increase in LVd*P*/d*t*_{max}) lasting for 5 h. Compound (II₁₅) had low toxicity in mice (LD₅₀ > 1000 mg/kg *p.o.*).

Further studies on the synthesis and SAR of 2-phenylthiazolidine-3-(thio)carboxamides as new cardiotonic agents are in progress.

Experimental

All melting points are uncorrected. Infrared (IR) spectra were recorded on a Hitachi IR-215 spectrometer. Proton nuclear magnetic resonance (¹H-NMR) spectra were taken at 60 MHz on a JEOL PMX-60 spectrometer with tetramethylsilane (TMS) as an internal reference. The following abbreviations are used: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, and br = broad. Mass spectra (MS) were measured with a Hitachi RMU-6M instrument.

2-(2-Hydroxyphenyl)-*N***-methylthiazolidine-3-carboxamide (IVa**, *o*-Isomer, **Y** = **O**)——This compound was prepared according to the reported procedure¹¹ from salicylaldehyde, cysteamine, and methyl isocyanate in 75% yield. mp 186—188 °C (dec.) (EtOH). IR $v_{\text{Mai}}^{\text{Nai}ol}$ cm⁻¹: 3430, 3350, 3280, 1620. ¹H-NMR (CDCl₃) δ : 2.70 (3H, d, *J*=4.5 Hz), 2.90—3.25 (2H, m), 3.45—4.40 (2H, m), 5.60 (1H, br), 6.32 (1H, s), 6.62—7.35 (4H, m), 9.59 (1H, s). MS *m/z*: 238 (M⁺). *Anal.* Calcd for C₁₁H₁₄N₂O₂S: C, 55.44; H, 5.92; N, 11.76; S, 13.45. Found: C, 55.43; H, 5.90; N, 11.80; S, 13.32. The following compounds were prepared in a similar manner.

2-(4-Hydroxyphenyl)-*N*-methylthiazolidine-3-carboxamide (IVb, *p*-Isomer, Y = O) — 68% yeild. mp 218—220 °C (EtOH). IR ν_{max}^{Nuscl} cm⁻¹: 3410, 3310, 1620. ¹H-NMR (CDCl₃) δ : 2.68 (3H, d, J = 4.5 Hz), 2.90—3.13 (2H, m), 3.55—4.35 (2H, m), 5.30 (1H, br), 6.08 (1H, s), 6.76, 7.11 (2H each, ABq, J = 9 Hz), 8.94 (1H, s). MS *m/z*: 238 (M⁺). *Anal.* Calcd for C₁₁H₁₄N₂O₂S: C, 55.44; H, 5.92; N, 11.76; S, 13.45. Found: C, 55.28; H, 5.84; N, 11.69; S, 13.41.

2-(4-Hydroxyphenyl)-*N*-methylthiazolidine-3-thiocarboxamide (IVc, *p*-Isomer, Y=S)—58% yield. mp 152—153 °C (EtOH). IR v_{max}^{Nujol} cm⁻¹: 3280, 1610. MS *m/z*: 254 (M⁺). Anal. Calcd for C₁₁H₁₄N₂OS₂: C, 51.94; H, 5.55; N, 11.01. Found: C, 52.09; H, 5.52; N, 11.19.

2-(4-(2-Chloroethoxy)phenyl)-N-methylthiazolidine-3-thiocarboxamide (Vf, p-Isomer, n=2, X=CI, Y=S)— Method A: A mixture of IVc (p-isomer, Y=S, 5.0 g, 19.6 mmol), 1-chloro-2-tosyloxyethane (4.6 g, 19.6 mmol), and K₂CO₃ (4.0 g, 29.0 mmol) in DMF (20 ml) was stirred at 50 °C overnight. The mixture was diluted with water and

₿ ^{R1}	
$\left(\begin{array}{c} z \\ z \\ z \end{array} \right)$	× × ×
0(CH ₂),	

	\$	Duration (min)	20		14		> 30		30		> 30	
	ractility log ^{/)}	Dur (n					Λ				Λ	
	Myocardial contractility Anesthetized dog ¹⁾	LVdP/dr _{max} ($\Delta^{0_{0}}$)	27		22		17		21		37	
	Myo Ai	Dose (mg/kg) i.v.	0.1		0.3		0.1		0.3		0.1	
	(a)			9.92 9.92)		9.45 9.49)		9.45 9.50)		9.45 9.55)		9.72 9.72)
	Analysis (%) ^{e)}	H H	OS_2	6.03 6.03	N4O ₅ S ₂	5.61 5.66		5.61 5.67	N4O5S2	5.61 5.61	$C_{27}H_{33}FN_4O_5S_2$	5.77 5.72
	Anal	C	$C_{27}H_{34}N_4OS_2$	58.04 6.03 (58.02 6.03	$C_{27}H_{33}CIN_4O_5S_2$	54.67 5.61 (54.76 5.66		54.67 5.61 (54.47 5.67	$C_{27}H_{33}CIN_4O_5S_2$	54.67 5.61 (54.40 5.61		56.23 (56.06
· · · R ³	mp (°C) (Recrystn. solvent ^{el})		124—126 (B–C)	(A-G)	145—151 (E-C)	(D-G-C) (D-G-C)	147—148 (D-F)	$151-153^{d}$ (D-E)	130—133 (E)	$155-160^{d}$ (G-E)	143—145 (B-C)	$178-179^{d}$ (D-E)
		Salt ^{b)}	1	fum	-	fum		fum		fum		fum
	V.S.L	(%)	72		79		58		52		70	
		Method	U		IJ		IJ		IJ		IJ	
		R	Н		2-CI		3-CI		4-CI		2-F	
		¥	s		S		S		s		S	
		и	5		2		7		7		2	
		Position ^{a)}	5		2		2		7		2	
	Comp	No.	_		2		3		4		5	

> 30		22	60	27	42	8.5	40	65	13
38		20	41	23	27	20	27	30	14
0.1		0.1	0.1	0.1	0.3	0.3	0.1	0.3	-
$_{5}S_{2}$	7 9.72 5 9.63)	2	S ₂ 4 9.78	$S_2 \cdot 1/2 H_2 O$ $S_2 \cdot 1/2 H_2 O$ 1 9.63 0 9.63	S ₂ ·1/2H ₂ O 4 10.70 1 10.55)	S ₂ ·H ₂ O 1 9.23 3 9.27)	S ₂ 6 9.52 4 9.61)		
$C_{27}H_{33}FN_4O_5S_2$	56.23 5.77 (55.98 5.75	C ₂₇ H ₃₃ FN ₄ O ₅ S ₅ 56.23 5.77 (56.11 5.72	C ₂₈ H ₃₆ N ₄ O ₅ S ₂ 58.72 6.34	(Jac. 50 0.26 7.01) C ₂₈ H ₃₆ N ₄ O ₅ S ₂ · 1/2H ₂ O 57.81 6.41 9.63 (57.64 6.20 9.63)	C ₂₆ H ₃₄ N ₄ O ₅ S ₂ ·1/2H ₂ O 59.63 6.74 10.70 (60.01 6.71 10.55)	C ₂₈ O ₃₆ N ₄ O ₆ S 55.43 6.3 (55.38 6.1	C ₂₈ H ₃₆ N ₄ O ₆ S ₂ 57.12 6.16 (57.24 6.24	C ₂₈ H ₃₆ N ₄ O ₆ S ₂ 57.12 6.16 (57.37 6.36	C ₂₃ H ₃₀ ClN ₅ O ₃ S, 52.71 5.77 (52.54 5.91
132—134 (P. C)	(D-G)	132—133 (B-C) 163—164 ^{d)} (D-G-C)	$\begin{array}{c} (1-1) \\ (17) \\ (17) \\ (18) \\ (18) \\ (18) \\ (18) \\ (17) \\ ($					135—137 (B-C) 155—160 ^{d)} (A)	116—119 (H-B-C) 218—220 ^{d)} (1 -B)
	unj	fum	— fum		1/2 fum	l mn	lum –	l mi	HCI
92		65	68	41	71	86	50	55	80
IJ		U	U	Û	C	U	Ċ	U	U
3-F		4-F	2-CH ₃	3-CH ₃	4-CH ₃	2-OCH ₃	3-OCH ₃	4-0CH ₃	4-NO ₂
S		S	S	S	S	S	S	S	S
7		7	7	7	7	7	7	7	0
7		7	7	2	7	7	7	7	7
9		L	×	6	10	=	12	13	14

II	1		I												
	actility og ^{/)}	Duration (min)	30		10		30	35		20		> 30		10	
	Myocardial contractility Anesthetized dog ^{/)}	LVdP/df _{max} (1%)	30		20		20	40		25		30		30	
	Myo A	Dose (mg/kg) i.v.	0.003		0.03		0.003	0.01		0.01		0.01		0.1	
	(a)		/2 H ₂ O	6.33 10.66 6.12 10.76)		10.17 10.20)	10.48 10.60)		10.48 10.40)		10.48 10.52)		10.56 10.68)		10.56 10.73)
	Analysis (%) ^{e)}		O ₆ S·1/	6.33 6.12	N406S	5.67 5.67	4₄O ₆ S 5.84 5.80	V_4O_6S	5.84 5.81	V₄O ₆ S	5.81 5.78	O ₆ S	6.46 6.47	O ₆ S	6.46 6.56
(continueu)	Anal	C	$C_{25}H_{32}N_4O_6S\cdot 1/2H_2O$	57.13 (57.08	$C_{25}H_{31}CIN_4O_6S$	54.49 5.67 (54.46 5.67	C ₂₅ H ₃₁ FN ₄ O ₆ S 56.17 5.84 (55.95 5.80	$C_{25}H_{31}FN_4O_6S$	56.17 5.84 (56.11 5.81	$C_{25}H_{31}FN_4O_6S$	56.17 5.81 (56.04 5.78	$C_{26}H_{34}N_4O_6S$	58.85 (59.09	$\mathrm{C}_{26}\mathrm{H}_{34}\mathrm{N}_{4}\mathrm{O}_{6}\mathrm{S}$	58.85 (58.98
	mp (°C) (Recrystn. solvent ^{el})		127—129 (B-C)	152—153.5 ^{d)} (G)	119—121 (B-E)	$138-139^{d}$ (A-E)	Oil 175—176 ⁴⁾ (G)	156—157 (G-C)	(G) (G)	134—136 (B–C)	$120-123^{d}$ (G)	162—163 (H-E)	$183-184^{d}$ (A)	112—114 (B-E)	(A-E)
I ABLE 111.		Salt ^{b)}		хо		xo	vo	and the second se	xo	www	хо		ОХ]	vo
	FIEIA	1 IEIG (%)	58		99		90	06		77		73		11	
		Method			ц		Ŀ	IJ		Ц		ц		ц	
		R'	Н		3-CI		2-F	3-F		4-F		2-CH ₃		3-CH ₃	
		¥	0		0		0	0		0		0		0	
		u	5		2		7	7		7		7		7	
		Position ^{a)}	5		3		2	7		7		7		7	
	C	Compa. No.	15		16		17	18		19		20		21	

TABLE III. (continued)

2402

> 30		50		21		25		34		> 50		17		>40		35	
45		35		22		29		20		30		20		33		24	
0.1		0.3		0.3		0.3		0.1		0.1		0.3		0.3		0.3	
	10.25 10.33)		9.23 9.08)		9.23 9.15)	-	9.23 9.17)		9.48 9.56)		9.48 9.37)		9.48 9.24)		9.55 9.54)		9.55 9.37)
$C_{26}H_{34}N_4O_7S$	<i>5</i> 7.13 6.27 1 (<i>5</i> 7.32 6.30 1								56.93 5.97 (56.74 5.94		56.93 5.97 (56.83 6.02		56.93 5.97 (56.78 5.93		59.36 6.53 (59.36 6.50		59.36 6.53 (59.19 6.58
123—124 ATEN	(A-E) (A-E) (A-E)	111—116 (E-C)	149—151.5 ^{d)} (G-C)	151—153.5 (B-C)	(G-C) (G-C)	126—130 (B-C)	133—138 (A-E)	116—118 (B -C-E)	(G-C)	133—134 (A-D	(G-C)	113—116 (B-C)	(A-E-G)	110—112 (F-C)	(G-C) (G-C)	140—141.5 (A-J)	140—142 (G-C)
I	ох	ļ	fum		fum	and the second se	fum		fum		fum		fum		fum		fum
78		86		52		65		11		85		78		16		16	
ц		IJ		Щ		IJ		IJ		IJ		IJ		ц		Ð	
3-OCH ₃		2-CI		3-Cl		4-CI		2-F		3-F		4-F		2-CH ₃		3-CH ₃	
0		S		S		S		S		S		S		S		S	
2		3		ŝ		ŝ		3		ŝ		3		ŝ		3	
7		2		2		7		7		7		7		7		7	
22		23		24		25		26		27,		28		29		30	

(continued)	
III.	
TABLE	

								mp (°C)	Anal	Analysis (%) ^{e)})e)	My	Myocardial contractility Anesthetized dog ¹⁾	actility og ^{r)}
Compd. No	Position ^{a)}	и	Y	R¹	Method	Yield	$\operatorname{Salt}^{b)}$	(Recrystn.	Calco	Calcd (Found)	(p	Dose	LVdP/dt	Duration
						(0/)		solvent ^{c)})	с	Н	Z	(mg/kg) i.v.	($\sqrt[4]{0}$)	(min)
31	5	3	s	4-CH ₃	U	84		163—165 (B. C)	C ₂₉ H ₃₈ N ₄ O ₅ S ₂	O_5S_2		0.3	26	34
							Ium	(D-C) 135—138 ^d (A-E-G)	59.36 (59.28	6.53 6.59	9.55 9.30)			
32	2	ŝ	S	2-0CH ₃	IJ	69	ļ	110—115 (E. C)	$C_{29}H_{38}N_4O_6S_2$	0,S2		0.3	34	25
							Ium	(L-C) 159—161 (G-C)	57.78 (57.67	6.35 6.44	9.30 9.07)			
33	7	3	S	3-OCH ₃	IJ	63	w	149—154 (B-C)	$C_{27}H_{36}N_4O_6S_2$.0 ₆ S ₂		0.3	30	24
							xo	(D-E) (D-E)	56.23 6.29 (56.26 6.30	6.29 6.30	9.72 9.63)			
34	2	3	S	4-0CH ₃	IJ	83	I	158—161 (B. C)	$C_{29}H_{38}N_4O_6S_2$	O_6S_2		0.3	28	20
							fum	(P-C) 129—132 (A-G)	57.78 (57.53	6.35 6.44	9.30 8.99)			
35	7	3	S	4-NO ₂	IJ	TT		191—193 (H-B-C)	$C_{26}H_{33}N_{5}O_{7}S_{2}$	O_7S_2		0.3	25	42
							хо	(D-E)	52.78 (52.48	5.62 5.56	11.84 12.01)			
36	2	Э	0	Н	Ц	99		85.5—90 (R_C_F)	$C_{26}H_{34}N_4O_6S$	O6S		0.03	26	21
							ΟX	(A-E) (A-E)	58.85 (58.75	6.46 6.51	10.56 10.54)			
37	7	ŝ	0	2-F	Ц	58	I	121—129 (K_B_C)	C ₂₆ H ₃₃ FN ₄ O ₆ S	N₄O ₆ S		0.3	20	30
							vo	(A-E) (A-E)	56.92 (56.87	6.06 6.09	10.21 10.27)			

30	40		×	20		65		60 25
25	34	∞ 	Ś	24	∞ 	27	- 15	68 25
0.1	0.3	-	1	0.3	-	0.3	0.03	0.3 0.3
10.21	10.21) 9.55 9.44)	9.75 9.73)	9.78 9.64)	10.15 10.17)	10.85 10.63)	10.25 9.99)	10.56 10.44)	
C ₂₆ H ₃₃ FN ₄ O ₆ S 56.92 6.06	(56.85 6.10 C ₂₉ H ₃₈ N ₄ O ₅ S ₂ 59.36 6.53 (59.56 6.49	C ₂₈ H ₃₈ N ₄ O ₅ S ₂ 58.51 6.66 (58.31 6.59	C ₂₈ H ₃₆ N ₄ O ₅ S ₂ 58.72 6.34 (58.81 6.60	C ₂₃ H ₃₃ Cl ₃ N ₄ OS ₂ 50.04 6.06 1 (50.15 6.13 1	C ₂₅ H ₃₂ N ₄ O ₆ S 58.12 6.24 (57.98 6.20	C ₂₆ H ₃₄ N ₄ O ₅ S ₂ 57.12 6.27 (56.90 6.22	C ₂₆ H ₃₄ N ₄ O ₆ S 58.85 6.46 (58.65 6.41	
103—105 (B-C) 150—151.5 ⁴)	(A-E-G) 105—110 (K) 145—147 (G-C)	(I = 121.5123.5 (K-F) 173175 ^d) (A-D-E)	Oil 144—148 ^{d)} (A-E-G)	Oil 164—167 ^{d)} (A-E-G)	85—91 (B-C) 125—130 ^{d)} (G)	146—149 (K) 115—120 (D-E)	129-130 (B-C) $122-127^{d}$ (G)	
vo	l m			3HCI	- xo	o X	- xo	
68	40	34	72	99	79	69	70	
ĹĨ.	۲.	Ċ	U	Щ	Ľ.	U	ц	
3-F	Н	Н	Н	Н	Н	Н	Н	Н
0	S	S	S	S	0	S	0	S
ŝ	4	Ś	3	7	7	ŝ	ŝ	ю
0	7	7	e	4	4	4	4	7
38	39	40	41	42	43	4	45	I ⁹⁾ Amrinone

n=2)
o-Isomer, n
Ξ,
ethoxy)phenyl)thiazolidine-3-(thio)carboxamides (
ylpiperazino)6
2-(2-(2-(4-Phen)
TABLE IV.

^N ^N ^N ^N ^N ^N ^N ^N	$\gamma \not \sim_{N \subset \mathbb{R}^{3}}$
	لم بر

						;		mp (°C)	Analysis $(\%)^{d}$	(p(%)	M A	Myocardial contractility Anesthetized dog ^{e)}	actility og ^{e)}
Compd. No.	Y	R	\mathbb{R}^2	R³	Method	Yield (%)	Salt ^{a)}	(Recrystn. solvent ^b)	Calcd (Found) C H N		Dose (mg/kg) i.v.	Dose $LVdP/dt_{max}$ Duration mg/kg) $(A\%)$ (min) i.v.	Duration (min)
46	0	H	Н	H	H	82		137—139 (B)	$C_{24}H_{30}N_4O_6S$		0.003	34	45
							хo	146—150.5° (D-G)	57.35 6.06 11.15 (57.64 6.37 10.95)	11.15 10.95)			
47	0	Н	Н	COCH ₃	Μ	46		137—139 (B-C)	$C_{25}H_{31}N_4O_4S\cdot 1/2H_2O$	\sim	0.003	28	20
							1/2 ox	164—168 ^{c)} (G)	59.03 6.34 (58.75 6.02	11.02 10.72)			
48	0	Н	CH3	CH3	Ι	58		100—102 (F)	$C_{26}H_{34}N_4O_6S$		0.1	21	25
							хо	167—168.5 ^{c)} (G)	58.85 6.46 (58.83 6.45	10.56 10.43)			
49	0	3-F	Н	Н	Н	88		142—143 (B-E)	$\mathrm{C}_{24}\mathrm{H}_{29}\mathrm{FN}_{4}\mathrm{O}_{6}\mathrm{S}$		0.01	38	20
							xo	(D-E) (D-E)	55.37 5.62 (55.40 5.60	10.76 10.64)			
50	0	3-F	Н	C_2H_5	Ð	89		116—118 (B-C)	$C_{26}H_{33}FN_4O_6S$		0.03	22	23
							xo	197—198 ^{c)} (J-G-E)	56.92 6.06 (57.08 6.06	10.21 10.28)			

Э		40	35	33	25	30	23	25	32
28		26	39	74	22	32	44	30	27
0.1		0.01	0.03	0.03	0.1	0.1	0.03	0.3	0.3
	9.30 9.33)	9.96	9.72 9.58)		9.99 (77.9		11.10 11.06)	9.92 9.65)	5 ₂ · 1/2 H ₂ O : 8.92 : 8.79)
	59.78 6.52 (59.64 6.52	C ₂₆ H ₃₁ FN ₄ O ₇ S 55.50 5.55 (55.60 5.63	$C_{27}H_{33}FN_4O_7S$ 56.24 5.77 (56.45 5.79	C ₂₆ H ₃₃ FN ₄ O ₆ S 56.92 6.06 (56.96 6.09	C ₂₆ H ₃₂ N ₄ O ₆ S ₂ 55.69 5.75 (55.72 5.83	C ₂₆ H ₃₄ N ₄ O ₅ S ₂ 57.12 6.27 (57.14 6.30	C ₂₄ H ₂₉ FN ₄ O ₃ S 57.12 5.79 (57.24 5.84	C ₂₆ H ₃₃ FN4O ₅ 55.30 5.89 (55.01 6.08	C ₃₀ H ₃₉ FN ₄ O ₅ 57.40 6.42 (57.65 6.25
93—95.5 (E-F-C)	165—167 ^{c)} (A-F)	142—143 (B-E) 165—166 ^{c)} (A)	Oil 110—117° (D-G-C)	90.593 (F) 171172.5 ^{c)} (A-G-E)	139—140.5 (B-C) 156—157 ^c) (G)	Oil 90—100 (G)	136—137 (E) 164—165 ^{c)} (A-E)	Oil 148—151 ^{c)} (G)	Oil 168—170.5° ⁽ (G–C)
1	fum	vo	XO	X0	XO	- XO	1/2 fum	xo	fum
71		50	29	50	56	46	06	66	94
G		M	K	Ι	U	ſ	L	Ċ	Ċ
C_4H_9		cocH ₃	CH ₃	CH ₃	COCH ₃	CH ₃	H	C ₂ H ₅	C4H9
Н		Н	COCH ₃	CH ₃	Н	CH ₃	Н	Н	Н
3-F		3-F	3-F	3-F	Н	Н	3-F	3-F	3-F
0		0	0	0	\mathbf{v}	S	S	S	\mathbf{v}
51		52	53	54	55	56	57	58	59

							TABLE IV.	TABLE IV. (continued)					
								mp (°C)	Analysis (%) ^{d)}	(p)(t)	Myc	Myocardial contractility Anesthetized dog ^{e)}	lctility Dg ^{e)}
Compd.	Y	\mathbf{R}^1	R²	R ³	Method	Y ield	Salt ^{a)}	(Recrystn.	Calco (Fou	(pu	Dore	I VA DIA	Duration
0.						(%)		solvent ^b)	С	z	i.v.	$(mg/kg) = (4\%)^{/(m_{max})}$ $U_{mauoli}^{(mo)}$	(min)
60	S	3-F	Н	C ₆ H ₅	U	62		124—126 (B-C)	C ₃₂ H ₃₅ FN ₄ O ₅ S ₂		0.3	29	7
							um	(<u>A</u> -D) (A-D)	60.17 5.52 (59.94 5.42	8.77 8.70)			
61	S	3-F	Н	coch ₃	G	49	ļ	151—152 (A_F)	$C_{26}H_{31}FN_4O_6S_2$		0.1	50	190
							хо	(A-E) 121-122 ^{c)} (A-E)	53.96 5.40 (53.71 5.47	9.68 9.66)			
62	S	3-F	CUCH3	CH ₃	K	77	X 0	Oil 106—109 ^{c)} (G-E)	C ₂₇ H ₃₃ FN ₄ O ₆ S ₂ 54.71 5.61 (54.61 5.63	9.45 9.47)	0.1	30	20
63	S	3-F	CH3	CH ₃	-	09	- x o	0il 79—84 (G)	C ₂₆ H ₃₃ FN ₄ O ₅ S ₂ 55.30 5.89 (55.59 5.82	9.92 10.00)	0.1	36	20
a-e) S	ee footne	ote b-f, r	a-e) See footnote $b-f$, respectively, in	in Table III.									

extracted with AcOEt. The extracts were washed successively with 10% aq. NaOH and water, and evaporated. The residue was purified by silica gel chromatography with AcOEt–CHCl₃ (1:4) and recrystallized from EtOH to give 3.95 g of Vf as colorless prisms. IR $v_{\text{maid}}^{\text{Nujol}}$ cm⁻¹: 3325. ¹H-NMR (CDCl₃) δ : 3.02 (3H, d, J=4 Hz), 2.98–3.20 (2H, m), 3.79 (2H, t, J=5 Hz), 4.22 (2H, t, J=5 Hz), 4.13–4.74 (2H, m), 5.44 (1H, br), 6.21 (1H, s), 6.88, 7.22 (2H each, ABq, J=9 Hz), MS m/z: 318, 316 (M⁺).

2-(2-Chloroethoxy)benzaldehyde (VIa, o-Isomer, n = 2, X = CI)—A mixture of salicylaldehyde (40 g, 0.328 mol), 1-chloro-2-tosyloxyethane (84 g, 0.358 mol), and K_2CO_3 (50 g, 0.362 mol) in DMF (270 ml) was stirred at room temperature for 68 h. The mixture was poured into water and the liberated oil was extracted with Et_2O . The extracts were washed with 10% aq. NaOH, H_2O , dried, and evaporated. The residue was distilled under reduced pressure to give 51.8 g (86%) of VIa⁸¹ as an oil. bp 116—118 °C (0.2 mmHg). ¹H-NMR (CDCl₃) δ : 3.84 (2H, t, J = 5.5 Hz), 4.33 (2H, t, J = 5.5 Hz), 6.86—7.87 (4H, m), 10.47 (1H, s). The following compounds were prepared in a similar manner.

2-(3-Chloropropoxy)benzaldehyde (VIb, *o*-Isomer, n = 3, X = CI)—-85% yield. bp 125—129 °C (0.3 mmHg). ¹H-NMR (CDCl₃) δ : 2.30 (2H, m), 3.76 (2H, t, J = 6 Hz), 4.24 (2H, t, J = 6 Hz), 6.80—7.89 (4H, m), 10.44 (1H, s).

2-(4-Chlorobutoxy)benzaldehyde (VIc, *o*-Isomer, n = 4, X = Cl)—95% yield. bp 142—144 °C (0.35 mmHg). ¹H-NMR (CDCl₃) δ : 1.93—2.11 (4H, m), 3.63 (2H, distorted t, J = 6 Hz), 4.12 (2H, distorted t, J = 6 Hz), 6.88—7.89 (4H, m), 10.47 (1H, s).

2-(5-Bromopentyloxy)benzaldehyde (VId, *o*-Isomer, n = 5, X = Br)—72% yield. bp 148—157 °C (0.35 mmHg). ¹H-NMR (CDCl₃) δ : 1.45—2.10 (6H, m), 3.44 (2H, t, J = 6.5 Hz), 4.10 (2H, t, J = 5.8 Hz), 6.91—7.88 (4H, m), 10.51 (1H, s).

4-(2-Bromoethoxy)benzaldehyde (VIe, *p*-Isomer, n = 2, X = Br)—21% yield. bp 119—132 °C (0.4 mmHg). ¹H-NMR (CDCl₃) δ : 3.63 (2H, t, J = 6 Hz), 4.35 (2H, t, J = 6 Hz), 6.95, 7.77 (2H each, ABq, J = 9 Hz), 9.81 (1H, s).

4-(3-Chloropropoxy)benzaldehyde (VIf, *p*-Isomer, n = 3, X = CI) — 77% yield. bp 130—140 °C (0.35 mmHg). ¹H-NMR (CDCl₃) δ : 2.26 (2H, m), 3.75 (2H, t, J = 6 Hz), 4.20 (2H, t, J = 6 Hz), 7.00, 7.82 (2H, each ABq, J = 9 Hz), 9.86 (1H, s).

2-(2-(2-Chloroethoxy)phenyl)-N-methylthiazolidine-3-thiocarboxamide (Va, o-Isomer, n=2, X = CI, Y = S)— Method B: This compound was prepared from VIa, cysteamine, and methyl isothiocyanate by the method of the preceding paper.¹) IR v_{max}^{hujol} cm⁻¹: 3325. ¹H-NMR (CDCl₃) δ : 3.02 (3H, d, J = 4.5 Hz), 3.10 (2H, t, J = 5 Hz), 3.80— 4.01 (2H, m), 4.12—4.85 (4H, m), 5.50 (1H, br), 6.41 (1H, s), 6.85—7.47 (4H, m). Compounds Vb—e, g, h were prepared in a similar manner and their physical properties are summarized in Table I.

2-(2-Chloroethoxy)benzaldehyde Ethylene Acetal (VIIa, o-Isomer, n=2, X=CI)—A solution of VIa (46.5 g, 0.25 mol), ethylene glycol (33.2 g, 0.53 mol), and 85% phosphoric acid (0.5 ml) in benzene (500 ml) was refluxed for 18 h with a Dean-Stark water separator. The reaction mixture was cooled to room temperature and washed with aq. NaHCO₃. The organic layer was washed with water, dried, and evaporated. The residue was distilled under reduced pressure to afford 56 g (97%) of VIIa as an oil. bp 130—135 °C (0.3 mmHg). ¹H-NMR (CDCl₃) \delta: 3.71—4.37 (8H, m), 6.18 (1H, s), 6.80—7.60 (4H, m). The following compounds were prepared in a similar manner.

2-(3-Chloropropoxy)benzaldehyde Ethylene Acetal (VIIb, *o*-Isomer, n = 3, X = Cl)—94% yield. bp 136—137 °C (0.2 mmHg). ¹H-NMR (CDCl₃) δ : 2.32 (2H, m), 3.81 (2H, t, J = 6 Hz), 4.13 (4H, m), 4.22 (2H, t, J = 6 Hz), 6.20 (1H, s), 6.79—7.63 (4H, m).

2-(4-Chlorobutoxy)benzaldehyde Ethylene Acetal (VIIc, o-Isomer, n = 4, X = Cl)—90% yield. bp 165—167 °C (0.4 mmHg). ¹H-NMR (CDCl₃) δ : 1.65—2.25 (4H, m), 3.48—3.80 (2H, m), 3.90—4.20 (6H, m), 6.15 (1H, s), 6.80—7.59 (4H, m).

2-(5-Bromopentyloxy)benzaldehyde Ethylene Acetal (VIId, *o*-Isomer, n = 5, X = Br)—88% yield. bp 160—165 °C (0.35 mmHg). ¹H-NMR (CDCl₃) δ : 1.72—2.12 (6H, m), 3.34 (2H, t, J = 6 Hz), 3.84—4.17 (6H, m), 6.04 (1H, s), 6.71—7.49 (4H, m).

4-(2-Bromoethoxy)benzaldehyde Ethylene Acetal (VIIe, *p***-Isomer, n = 2, X = Br)—90% yield. bp 144—155 C (0.4 mmHg). ¹H-NMR (CDCl₃) \delta: 3.10 (2H, t, J = 6 Hz), 3.90—4.40 (6H, m), 5.72 (1H, s), 6.85, 7.39 (2H each, ABq, J = 9 Hz).**

4-(3-Chloropropoxy)benzaldehyde Ethylene Acetal (VIIf, *p*-Isomer, n=3, X=CI)—85% yield. bp 151—156°C (0.3 mmHg). ¹H-NMR (CDCl₃) δ : 2.19 (2H, m), 3.69 (2H, t, J=6 Hz), 3.90—4.30 (7H, m), 5.72 (1H, s), 6.87, 7.38 (2H each, ABq, J=9 Hz).

2-(2-(4-Phenylpiperazino)ethoxy)benzaldehyde (IX₁)—Method C: A mixture of VIIa (18.3g, 80 mmol), N-phenylpiperazine (13.6g, 84 mmol), NaI (12.0g, 80 mmol), and K_2CO_3 (12.2g, 88 mmol) in DMF (200 ml) was stirred at 100 C for 5 h under an argon atmosphere. The mixture was concentrated to one-third of the initial volume and poured into water. The liberated oil was extracted with AcOEt. The extracts were washed with water, dried, and evaporated *in vacuo*. The residue was dissolved in a mixture of tetrahydrofuran (THF) (50 ml) and 10% aq. HCl (30 ml). After being stirred for 1 h at room temperature, the mixture was made alkaline with 10% aq. NaOH, diluted with water, and extracted with AcOEt. The extracts were washed with water, dried, and evaporated by silica gel chromatography with AcOEt–benzene (1:1) and recrystallized from isopropyl ether to give 15.5g of IX₁. IR v_{max}^{Nujoi} cm⁻¹: 1680. MS *m/z*: 310 (M⁺). Compounds IX_{2-5,7-14,16,17,19,21-25,28} were prepared in a similar manner and their physical properties are listed in Table II.

1-(2-Chloroethyl)-4-(3-fluorophenyl)piperazine (VIIIa, n=2, $\mathbb{R}^1=3$ -F, X=Cl)——Thionyl chloride (12 g) was added dropwise to a stirred solution of 4-(3-fluorophenyl)-1-piperazinoethanol⁹ (5.90 g, 26.3 mmol) in CHCl₃ (120 ml). The mixture was refluxed for 1 h and evaporated to dryness. The residue was recrystallized from EtOH-Et₂O to give 6.70 g (91.2%) of the dihydrochloride of VIIIa as needles, mp 215—217 °C (dec.). IR v_{max}^{Nijol} cm⁻¹: 2000—2550, 1610, 1510. MS m/z: 242 (M⁺), 206, 150. ¹H-NMR (D₂O) δ : 3.40—4.15 (12H, m), 6.75—7.55 (4H, m).

1-(3-Chlorophenyl)-4-(3-chloropropyl)piperazine (VIIIb, n=3, $\mathbb{R}^1=3$ -Cl, X=Cl)—A mixture of 4-(3-chlorophenyl)-1-piperazinopropanol⁹⁾ (2.0 g, 7.86 mmol) and triphenylphosphine (2.06 g, 7.86 mmol) in CCl₄ (20 ml) was refluxed overnight. After cooling, the precipitate was filtered off, and the filtrate was concentrated. The residue was chromatographed on silica and eluted with AcOEt–benzene (1:4) to give 1.50 g (70%) of VIIIb as an oil. MS m/z: 274, 272 (M⁺), 211, 209. ¹H-NMR (CDCl₃) δ : 1.7–2.2 (2H, m), 2.4–2.9 (6H, m), 3.1–3.4 (4H, m), 3.60 (2H, t, J = 6 Hz), 6.65–7.50 (4H, m). The following compounds were prepared in a similar manner.

1-(3-Chloropropyl)-4-(3-fluorophenyl)piperazine (VIIIc, n=3, $\mathbb{R}^1=3$ -F, X=Cl)—72% yield. Oil. ¹H-NMR (CDCl₃) $\delta: 1.84$ —2.15 (2H, m), 2.25—2.75 (6H, m), 3.04—3.45 (4H, m), 3.58 (2H, t, J=6 Hz), 6.30—7.45 (4H, m).

1-(3-Chloropropyl)-4-(3-methylphenyl)piperazine (VIIId, n = 3, $\mathbb{R}^1 = 3$ -CH₃, X = Cl)—79% yield. Oil. ¹H-NMR (CDCl₃) $\delta : 1.90$ —2.29 (2H, m), 2.30 (3H, s), 2.35—2.80 (6H, m), 3.10—3.40 (4H, m), 3.61 (2H, t, J = 6 Hz), 6.60—7.60 (4H, m).

1-(3-Chloropropyl)-4-phenylpiperazine (VIIIe, n = 3, \mathbb{R}^1 = \mathbb{H}, X = \mathbb{Cl})—74% yield. Oil. ¹H-NMR (CDCl₃) δ : 1.7—2.2 (2H, m), 2.3—2.8 (6H, m), 3.1—3.4 (4H, m), 3.61 (2H, t, J = 6 Hz), 6.5—7.5 (5H, m).

2-(3-(4-(3-Chlorophenyl)piperazino)propoxy)benzaldehyde (IX₁₅) — Method D: A mixture of salicylaldehyde (0.67 g, 5.5 mmol), VIIIb (1.50 g, 5.5 mmol), and K₂CO₃ (0.76 g) in DMF (10 ml) was stirred at 60 °C overnight. The mixture was diluted with water and extracted with AcOEt. The extracts were washed with water, dried, and evaporated. The residue was purified by silica gel chromatography with AcOEt–benzene (1:4) and recrystallized from Et₂O–hexane to give 1.20 g of IX₁₅. IR v_{max}^{Nujol} cm⁻¹: 1680. Compounds IX_{6,18,20,26,27} were prepared in a similar manner and their physical properties are listed in Table II.

2-(2-(3-(4-(3-Chlorophenyl)piperazino)propoxy)phenyl)-*N*-methylthiazolidine-3-thiocarboxamide (II₂₄) Method E: A mixture of IV¹¹ (*o*-isomer, Y = S, 0.51 g, 2.2 mmol), VIIIb (0.60 g, 2.2 mmol), K₂CO₃ (0.28 g, 2 mmol), and NaI (0.29 g, 2 mmol) in DMF (10 ml) was stirred at 80 °C overnight. The mixture was concentrated, diluted with water, and extracted with AcOEt. The extracts were washed successively with 10% aq. NaOH and water, and evaporated. The residue was purified by silica gel chromatography with AcOEt–benzene (2:3) and recrystallized from AcOEt–hexane to give 0.51 g of II₂₄ as needles. IR v_{max}^{Nijol} cm⁻¹: 3400. MS *m/z*: 490 (M⁺). ¹H-NMR (CDCl₃) δ : 1.75–2.4 (2H, m), 2.5–2.81 (6H, m), 2.9–3.4 (9H, m), 4.0–4.7 (4H, m), 5.4 (1H, br), 6.31 (1H, s), 6.6–7.5 (8H, m).

N-Methyl-2-(2-(2-(4-(2-methylphenyl)piperazino)ethoxy)phenyl)thiazolidine-3-carboxamide (II₂₀) — Method F: A mixture of Vb (2.10 g, 7 mmol), 1-(2-methylphenyl)piperazine (1.23 g, 7 mmol), K₂CO₃ (0.97 g, 7 mmol), and NaI (1.05 g, 7 mmol) in DMF (20 ml) was heated at 80 °C for 20 h. After removal of the solvent, the residue was diluted with water and extracted with AcOEt. The extracts were washed with water, dried, and evaporated. The residue was purified by silica gel chromatography with AcOEt–MeOH (40: 1) and recrystallized from CHCl₃–Et₂O to give 2.26 g of II₂₀. IR v_{max}^{Nujol} cm⁻¹: 3280, 1630. ¹H-NMR (CDCl₃) δ : 2.30 (3H, s), 2.50–3.30 (15H, m), 3.50–4.80 (5H, m), 6.22 (1H, s), 6.80–7.50 (8H, m). MS *m/z*: 440 (M⁺). Compounds II_{15–17,19,21,22,29,36–39,42,43,45} were prepared in a similar manner and their properties are listed in Table III.

N-Methyl-2-(2-(2-(4-phenylpiperazino)ethoxy)phenyl)thiazolidine-3-thiocarboxamide (II₁) — Method G: This compound was prepared according to the reported procedure¹⁾ from IX₁, cysteamine, and methyl isothiocyanate. IR v_{max}^{Nujol} cm⁻¹: 3375. MS *m/z*: 442 (M⁺), 369. ¹H-NMR (CDCl₃) δ : 2.69—3.33 (12H, m), 3.01 (3H, d, *J*=4.5 Hz), 4.24 (2H, t, *J*=5 Hz), 4.24—4.83 (2H, m), 5.56 (1H, br), 6.37 (1H, s), 6.70—7.42 (9H, m). Compounds II_{2-14,18,23,25-28,30-35,40,41,44,50,51,55,58-61} were prepared in a similar manner and their properties are listed in Tables III and IV.

2-(2-(2-(4-Phenylpiperazino)ethoxy)phenyl)thiazolidine-3-carboxamide (II₄₆)—Method H: A solution of acetic acid (2.46 g, 41 mmol) in EtOH (5 ml) was added dropwise to a suspension of X (*o*-isomer, n=2, $R^1=H$; 3.03 g, 8.2 mmol, prepared from the corresponding benzaldehyde and cysteamine) and sodium cyanate (1.07 g, 16.4 mmol) in EtOH (40 ml). After being stirred for 2 h at room temperature, the mixture was made alkaline with 10% aq. K₂CO₃, concentrated, and extracted with AcOEt. The extracts were washed with water, dried over Na₂SO₄, and evaporated. The residue was recrystallized from AcOEt to give 2.22 g of II₄₆. IR v_{max}^{Nijol} cm⁻¹: 1640. ¹H-NMR (CDCl₃) δ : 2.66—3.30 (12H, m), 3.57—4.43 (4H, m), 4.81 (2H, br s), 6.25 (1H, s), 6.83—7.38 (9H, m). MS m/z: 412 (M⁺). Compound II₄₉ was prepared in a similar manner and its properties are listed in Table IV.

N,*N*-Dimethyl-2-(2-(2-(4-phenylpiperazino)ethoxy)phenyl)thiazolidine-3-carboxamide (II₄₈) — Method I: A mixture of X (*o*-isomer, n=2, $R^1=H$; 2.00 g, 5.4 mmol), dimethylcarbamoyl chloride (0.87 g, 8.1 mmol), and K₂CO₃ (1.19 g, 8.6 mmol) in DMF (20 ml) was heated at 50 °C for 5 h. The mixture was poured into water and extracted with AcOEt. The extracts were washed with water, dried, and evaporated. The residue was purified by silica gel chromatography with AcOEt-benzene (5:1) and recrystallized from isopropyl ether to give 1.39 g of II₄₈. IR v_{max}^{Nijol} cm⁻¹: 1620. ¹H-NMR (CDCl₃) δ : 2.68—3.74 (12H, m), 2.81 (6H, s), 3.94—4.58 (4H, m), 6.24 (1H, s), 6.69—7.32 (9H, m). Compound II₅₄ was prepared in a similar manner and its properties are listed in Table IV.

2411

N,*N*-Dimethyl-2-(2-(2-(4-phenylpiperazino)ethoxy)phenyl)thiazolidine-3-thiocarboxamide (II₅₆) — Method J: A solution of X (*o*-isomer, n=2, $\mathbb{R}^1 = \mathbb{H}$; 1.60 g, 4.3 mmol) in THF (30 ml) was added to a stirred solution of thiophosgene (1.00 g, 8.6 mmol) in THF (20 ml) under ice-cooling over a period of 3 h, and then dimethylamine (1.56 g, 34.6 mmol) in toluene (15 ml) was added to the mixture. After being stirred for 30 min at room temperature, the mixture was poured into water, and extracted with AcOEt. The extracts were washed with water, dried, and evaporated. The residue was chromatographed on silica gel and eluted with AcOEt–benzene (1 : 1) to give 0.90 g of II₅₆ as an oil. IR $\nu_{\text{max}}^{\text{rim}}$ cm⁻¹: 1600, 1500. ¹H-NMR (CDCl₃) δ : 2.70–3.65 (12H, m), 3.13 (6H, s), 3.75–3.89 (1H, m), 4.21 (2H, t, J = 6 Hz), 4.45–4.90 (1H, m), 6.66–7.34 (10H, m). MS m/z: 456 (M⁺). Compound II₆₃ was prepared in a similar manner and its properties are listed in Table IV.

N-Acetyl-2-(2-(2-(2-(2-(4-(3-fluorophenyl)piperazino)ethoxy)phenyl)-*N*-methylthiazolidine-3-thiocarboxamide (II₆₂) —Method K: A solution of II₆ (1.90 g, 4.1 mmol) in DMF (10 ml) was added to a suspension of NaH (60% oil dispersion, 0.18 g, 4.5 mmol) in DMF (5 ml) under ice-cooling, and the mixture was stirred for 20 min under an argon atmosphere. A solution of acetyl chloride (0.36 g, 4.5 mmol) in Et₂O (10 ml) was added to the mixture, and the whole was stirred at room temperature overnight. After dilution with water, the mixture was extracted with AcOEt. The extracts were washed with water, dried, and evaporated. The residue was chromatographed on silica gel and eluted with AcOEt–hexane (1:1) to afford 1.60 g of II₆₂ as an oil. IR $v_{max}^{imax} cm^{-1}$: 1670. ¹H-NMR (CDCl₃) δ : 2.13 (3H, s), 2.30–3.50 (15H, m), 4.00–4.80 (4H, m), 6.10–7.50 (9H, m). MS m/z: 502 (M⁺). Compound II₅₃ was prepared in a similar manner and its properties are listed in Table IV.

2-(2-(4-(3-Fluorophenyl)piperazino)ethoxy)thiazolizine-3-thiocarboxamide (II₅₇) — Method L: This compound was prepared according to the reported procedure¹⁾ from II₆₁ and 10% aq. NaOH. IR $\nu_{\text{max}}^{\text{Nujol}}$ cm⁻¹: 3430, 3310, 3180. ¹H-NMR (CDCl₃) δ : 2.60—3.40 (12H, m), 4.10—4.80 (4H, m), 5.76 (2H, brs), 6.35 (1H, s), 6.30—7.50 (8H, m).

N-Acetyl-2-(2-(2-(4-phenylpiperazino)ethoxy)phenyl)thiazolidine-3-carboxamide (II₄₇)-----Method M: A mixture of II₄₆ (1.49 g, 3.5 mmol), triethylamine (0.55 g, 5.4 mmol), and acetyl chloride (0.42 g, 5.4 mmol) in benzene (60 ml) was heated at 80 °C for 1.5 h. An additional amount of triethylamine (0.55 g, 5.4 mmol) and acetyl chloride (0.42 g, 5.4 mmol) was added to the mixture, and the whole was heated at 80 °C for 1 h. The mixture was concentrated, diluted with water, and extracted with AcOEt. The extracts were washed with water, dried, and evaporated. The residue was purified by silica gel chromatography with AcOEt-benzene (1:1) and recrystallized from $CHCl_3$ -Et₂O to give 1.25 g (70%) of the diacetate of II₄₆⁴⁾ as crystals, mp 120–123.5 °C. IR v_{max}^{Nujol} cm⁻¹: 1730, 1700, 1680. MS m/z: 496 (M⁺), 368, 189, 175, 132. ¹H-NMR (CDCl₃) δ : 2.35 (6H, m), 2.67–2.32 (12H, m), 3.98–4.31 (4H, m), 6.85–7.47 (10H, m). The diacetate (1.19g, 2.4 mmol) was hydrolyzed by treatment with a mixture of NaOH (0.29g, 7.2 mmol), H₂O (2.7 ml), EtOH (20 ml), and THF (20 ml) under ice-cooling for 1.5 h. The mixture was concentrated, diluted with water, and extracted with AcOEt. The extracts were washed with water, dried, and evaporated. The residue was purified by silica gel chromatography with AcOEt-CHCl₃ (5:1) and recrystallized from AcOEt-hexane to give 0.72 g (67%) of II₄₇ as colorless prisms. IR v_{max}^{Nijol} cm⁻¹: 3260, 1690, 1680, 1660, 1600. MS m/z: (M⁺ was not observed) 369, 309, 237, 186, 175, 132. ¹H-NMR (CDCl₃) δ: 2.38 (3H, s), 2.67–3.38 (12H, m), 3.72–4.49 (4H, m), 6.44 (1H, s), 6.88-7.44 (9H, m), 7.94 (1H, s). Compounds II₅₂ was prepared in a similar manner from II₄₉ and its properties are listed in Table IV.

Acknowledgements The authors are grateful to Dr. S. Saito, Director of the Organic Chemistry Research Laboratory, Dr. H. Nakajima, Director of the Biological Research Laboratory, Dr. T. Yamazaki, Professor of Toyama Medical and Pharmaceutical University, and Dr. K. Masuda, Professor of the same university, for their interest and encouragement. Thanks are also due to the staff of the Analytical Division of this laboratory for measurement of spectra and elemental analyses.

References and Notes

- 1) Part I: H. Nate, Y. Sekine, Y. Honma, H. Nakai, H. Wada, M. Takeda, H. Yabana, and T. Nagao, Chem. Pharm. Bull., 35, 1953 (1987).
- C. B. Pollard and T. H. Wicker, Jr., J. Am. Chem. Soc., 76, 1853 (1954); C. B. Pollard and J. B. Christie, J. Org. Chem., 23, 1333 (1958); R. Ratouis, J. R. Boissier, and C. Dumont, J. Med. Chem., 8, 104 (1965); A. Schmidt and G. Wickmann, Chem. Ber., 24, 3237 (1891).
- E. E. Reid, "Organic Chemistry of Bivalent Sulfur," Vol. V, Chemical Publishing Co., Inc., New York, 1963, p. 34.
- 4) The structure of this compound (N,O-diacetate or N,N-diacetate) could not be ascertained.
- 5) T. Ikeo and T. Nagao, Jpn. J. Pharmacol., 39, 179 (1985).
- 6) T. Nagao, T. Ikeo, S. Murata, M. Sato, and H. Nakajima, Jpn. J. Pharmacol., 35, 415 (1984).
- 7) The hemifumarate was used for this experiment.
- 8) L. Katz, L. S. Karger, W. Schroeder, and M. S. Cohen, J. Org. Chem., 18, 1380 (1953).
- 9) Tanabe Seiyaku Co., Ltd., Eur. Patent 34284 (1981) [Chem. Abstr., 96, 35302j (1982)].