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Catalytic C-H Bond Activation-Asymmetric Olefin Coupling Reaction:
The First Example of Asymmetric Fujiwara-Moritani Reaction
Catalyzed by Chiral Palladium(IT) Complexes!
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The first example of the asymmetric Fujiwara-Moritani
reaction catalyzed by chiral Pd(II) complexes is reported to
represent a catalytic aromatic C-H bond activation-asymmetric
olefin coupling reaction.

C-H Bond activation? and C-C bond formation are the key
issues in organic synthesis. In this context, we have been
developing catalytic asymmetric ene reactions;3 the ene reaction
is one of the simplest ways for C-C bond formation, which
converts readily available olefins with activation of an allylic C-H
bond and allylic transposition of the C=C bond, into more
functionalized products.# The so-called "Fujiwara-Moritani"
reaction has also proven to be one of the most versatile methods
for activation of aromatic C-H bonds to provide a coupling
product with an olefin using a catalytic amount of Pd(II)
complex.5 However, there is no example of catalytic asymmetric
version of the Fujiwara-Moritani reaction, presumably because of
the inherent nature of the reaction mode that styrene-type products
are formed through syn-B-H-elimination from a-pheny! side of
the olefin insertion intermediate (Scheme 1: path a).
Furthermore, as compared to the significant development of
catalytic asymmetric reactions with chiral Pd(0) catalysts,5
catalytic asymmetric reactions by chiral Pd(II) species have so far
received only little attention.” Herein, we now wish to report the
first example of the catalytic asymmetric Fujiwara-Moritani
reaction of benzene as a coupling reaction with cyclic olefins to
give the chiral phenyl-substituted cyclic olefins through syn-p-H-
elimination, however, from the opposite () side to the phenyl-
group (Scheme 1: path b).8-11
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Scheme 1.

Typical experimental procedure is as follows: Pd(OAc); (0.1
mmol, 10 mol%) was mixed with chiral sulfonylamino-oxazoline
ligand (1) (0.1 mmol, 10 mol%) in dry benzene (2 ml) and then
cyclohexenecarbonitrile (2¢) (1.0 mmol) was added to the
resultant mixture. The mixture was then heated in the presence of
t-butyl perbenzoate (1.0 mmol) as a reoxidant!2 at 100 °C with
stirring for 9 h. The precipitated palladium was separated and the

mixture was poured into water. After usual work-up,
chromatographic purification on silicagel gave 6-phenyl-1-
cyclohexenecarbonitrile (3¢). The enantiomeric excess of the
product was determined by chiral HPLC analysis (Daicel
CHIRALPAK AS, hexane : 2-propanol = 50 : 1); (S)- and (R)-
3c: 28.9 and 31.2 min, respectively.

The representative results are summarized in Table 1. (1)
Interestingly, ester substrate (2a) gave modest yield of the
coupling product (3a), however, in almost racemic form. (2) In
sharp contrast, nitrile 2¢ afforded better enantioselectivity of
product 3c¢. (3) Modification of chiral ligand (1) with an
electron withdrawing and sterically demanding highly
fluorinated sulfonyl group was found to lead to the increased
chemical yield and enantioselectivity.
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Table 1. C-H bond activation by chiral Pd(II) catalysts

Run R GSO, 2(EWG) 3 Yield/% Ee/%
1 i-Pr CFSO, 2a(CO,CHj) 3a 33 1
2 iPr CFSO, 2b(NOy 3b 9 27
3 i-Pr Ts? 2¢ (CN) 3¢ 6 40
4 iPr CFSO, 2 3¢ 25 44
5 tBu CFSO, 2¢ 3¢ 15 47
6 i-Pr CS0, 2¢ 3¢ 25 4
FsC
7 iPr {)S0; 2 3 19 49
FsC

2T. Fujisawa, T. Ichiyanagi, and M. Shimizu, Tetrahedron Lett., 36, 5031
(1995); J. A. Allen, G. J. Dawson, C. G. Frost, and J. M. J. Williams,
Tetrahedron, 50, 799 (1994).

Interesting phenomena of formation of chiral Pd(II)
complexes deserve special comments; upon mixing Pd(OAc),
with an equimolar amount of 1 (R = -Bu, GSO; = CF3S0,) in
dry benzene, a crystalline Pd(I) complex (4) was formed.
However, the use of 4 as a catalyst, no benzene-olefin coupling
product 3¢ was obtained. Only in the co-presence of a catalytic
amount of achiral Pd(OAc)2, the enantio-enriched coupling
product was obtained (30% ee, 30% yield) (Scheme 2). X-Ray
crystallographic analysis of the crystalline complex (4) showed
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the 2 : 1 complex of the chiral ligand and Pd(II) species (Figure
1).13 Therefore, the 1: 1 complex of the chiral ligand and Pd(IT)
species formed through equilibrium between 4 and Pd(OAc); or
in situ prepared from Pd(OAc); with an equimolar amount of the
chiral ligand could be the active catalyst species in this catalytic
asymmetric Fujiwara-Moritani reaction.
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Figure 1. ORTEP drawing of 1 (R = -Bu, GSO, = CF;S0,)
/Pd(Il) 2 : 1 complex (4).

It should be noted here that the coupling product (3c¢) has
been proven to be of (R)-configuration after transformation to the
known (1S,25)-(2-phenylcyclohexane)methanol (5).!14 Thus,
the transition state for the key insertion process can be designated
as follows: The (S)-oxazoline Pd(Il) complex preferentially
provides (R)-3c¢ probably because the transition state A is more
favorable than the transition state B with severe steric repulsion
of the cyclohexene ring with the sulfonylamino (GSO2N) and/or
alkyl (R) groups in the oxazoline ligands (Figure 2).
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Figure 2. Transition states for the insertion process.
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In conclusion, we have reported the first example of the
catalytic asymmetric Fujiwara-Moritani reaction catalyzed by
chiral sulfonylamino-oxazoline ligand-derived chiral Pd(II)
complexes. This process exemplifies a catalytic aromatic C-H
bond activation-asymmetric olefin coupling reaction.
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