Polyhalogenoaromatic Compounds. Part VII.¹ Reaction of 4-Substituted Tetrachloropyridines with n-Butyl-lithium, the Generation of 2-Pyridynes, and their Trapping as Adducts with Furan ²

By J. D. Cook and B. J. Wakefield,* Department of Chemistry and Applied Chemistry, University of Salford, Lancs., M5 4WT

The reactions of n-butyl-lithium with 2,3,5,6-tetrachloro-4-dimethylamino-, tetrachloro-4-pyrrolidino-, and tetrachloro-4-piperidino-pyridine lead to the corresponding 2,5,6-trichloro-4-dialkylamino-3-pyridyl-lithiums. The same reaction with 2,3,5,6-tetrachloropyridine gives tetrachloro-4-pyridyl-lithium; reaction with tetrachloro-4-methylpyridine gives (tetrachloro-4-pyridyl)methyl-lithium; and reaction with 3-bromo-2-chloropyridine gives 2-chloro-3-pyridyl-lithium. In the presence of furan, the 2-chloro-3-pyridyl-lithium compounds gave the 5,8-dihydro-5,8-epoxyquinoline derivatives expected from the cycloaddition of the corresponding 2-pyridynes to furan. Some other derivatives of the 2-pyridynes, formed by cycloaddition or by addition of organolithium compounds, are described. The evidence for 2-pyridyne intermediates is discussed.

THE chemistry of ' hetarynes,' i.e. heterocyclic analogues of arynes, has attracted much interest.³⁻⁵ Two types of pyridyne may be envisaged, conveniently designated 2-pyridynes (I) and 3-pyridynes (II). However, whereas 3-pyridyne (II) and its derivatives are evidently formed as intermediates in a number of reactions, and have been trapped by furan⁶ and by aromatic hydrocarbons,⁷ evidence for 2-pyridyne intermediates has

proved extremely difficult to obtain. Evidence from cine-substitution reactions may be misleading, 3-5,8,9 and prior to the work described here the only clear evidence from trapping was the formation of quinoline in low yield

¹ Part VI, J. I. Hollies, D. Price, and H. Suschitzky, preceding paper.

² Preliminary communications, J. D. Cook and B. J. Wake-field, *Chem. Comm.*, 1968, 297; The Chemical Society, Autumn Meeting, Keele, 1968, Abstract F8.

³ T. Kauffmann, Angew. Chem. Internat. Edn., 1965, 4, 543.

⁴ H. J. den Hertog and H. C. van der Plas, Adv. Heterocyclic Chem., 1965, 4, 121.

⁵ R. W. Hoffmann, 'Dehydrobenzene and Cycloalkynes,' Academic Press, New York, 1967, ch. 6. ⁶ T. Kauffmann and F.-P. Boettcher, *Chem. Ber.*, 1962, **95**,

949.

⁷ (a) J. D. Cook and B. J. Wakefield, *Tetrahedron Letters*, 1967, 2535; (b) J. D. Cook, B. J. Wakefield, H. Heaney, and J. M. Jablonski, *J. Chem. Soc.* (C), 1968, 2727.

4 A

in the reaction of 3-bromo-2-chloropyridine with lithium amalgam in the presence of furan.¹⁰ Since our work was completed, it has been suggested 11 that products obtained by pyrolysis of quinolinic anhydride in the presence of thiophen are best rationalised in terms of 1,4- and 1,2-addition of 2-pyridyne to thiophen. There seems no obvious reason for the elusiveness of such intermediates; indeed, molecular orbital calculations have indicated that 2-pyridyne (Ia) should be stabilised by interaction on the lone pair on nitrogen with the partially occupied orbitals associated with the ring carbon atoms.12

R	a; $R = Li$	g; $R = NO_2$
	b; $R = C_{5}H_{10}N$	h; R = OMe
	c; $\mathbf{R} = \mathbf{C}_{\mathbf{A}}\mathbf{H}_{\mathbf{B}}\mathbf{N}$	i; $\mathbf{R} = \mathbf{OPh}$
CIN, JCI	d; $\mathbf{R} = \mathbf{NMe}_2$	j; $R = CH_2Li$
N	e; $R = H$	$\mathbf{k}; \mathbf{R} = \mathbf{CH}_2 \cdot \mathbf{CO}_2 \mathbf{H}$
(III)	f; $R = Me$	1; $R = Et$

Our experiments on the reaction of n-butyl-lithium with pentachloropyridine 13 gave promise of a convenient route to both trichloro-2-pyridyne (Ib) and trichloro-3-pyridyne (IIb). However, while adducts of the 3-pyridyne (IIb) were indeed readily obtained from

⁸ M. G. Reinecke and H. W. Adickes, J. Amer. Chem. Soc., 1968, **90**, 511.

⁹ T. Kauffmann, R. Nürnberg, and K. Udluft, Angew. Chem., 1968, 80, 614.

¹⁰ (a) R. J. Martens and H. J. den Hertog, *Tetrahedron Letters*, 1962, 643; (b) R. J. Martens and H. J. den Hertog, *Rec. Trav.* chim., 1964, 83, 621.

¹¹ E. K. Fields and S. Meyerson, in 'Organosulfur Chemistry,'
 ed. M. J. Janssen, Interscience, New York, 1967, p. 156.
 ¹² H. L. Jones and D. L. Beveridge, *Tetrahedron Letters*, 1964,

1577.

¹³ (a) J. D. Cook, B. J. Wakefield, and C. J. Clayton, Chem. Comm., 1967, 150; (b) J. D. Cook and B. J. Wakefield, J. Organometallic Chem., 1968, 13, 15.

tetrachloro-4-pyridyl-lithium $(IIIa),^7$ tetrachloro-2pyridyl-lithium (IV) did not appear to eliminate lithium chloride to give the 2-pyridyne (Ib); only a small amount of an adduct of this pyridyne was obtained, as a mixture with other adducts. In this respect, our observations were consistent with an earlier sugges-

tion ^{3,14} that 3-chloro-2-pyridyl-lithium would not readily lose lithium chloride. Zoltewicz and Smith have also shown that base-catalysed deuterium exchange at the 2-position of 3-chloropyridine is extremely slow, suggesting that formation of 3-chloro-2-pyridyl anion (V), a reasonable intermediate in the conversion of 3-chloro-2pyridyl-lithium into 2-pyridyne, is an unfavourable process.¹⁵ On the other hand, the formation of quinoline from the reaction of 3-bromo-2-chloropyridine with lithium amalgam in the presence of furan presumably involved the elimination of lithium chloride from 2-chloro-3-pyridyl-lithium.¹⁰ Similarly, the mesitylene

R ^t	a; $R^1 = Cl, R^2 = Li$ b; $R^1 = C_r H_{12}N, R^2 = Li$
$CI \longrightarrow R^2$	c; $\mathbf{R}^1 = \mathbf{C}_4 \mathbf{H}_8 \mathbf{N}, \mathbf{R}^2 = \mathbf{L}\mathbf{i}$
ci ci	a; $R^{1} = NMe_{2}, R^{2} = Li$ e; $R^{1} = C_{5}H_{10}N_{1}, R^{2} = H$
N	f; $\mathbf{R}^1 = \mathbf{C}_4 \mathbf{H}_8 \mathbf{N}, \mathbf{R}^2 = \mathbf{H}$
(VI)	g; $R^{1} = NMe_{2}$; $R^{2} = H$ h; $R^{1} = C_{5}H_{10}N$, $R^{2} = CO_{2}H$

adducts of trichloro-2-pyridyne (Ib) ⁷ could have been derived from the small proportion of tetrachloro-3pyridyl-lithium (VIa) present in the mixture of tetrachloropyridyl-lithium compounds.

In view of these considerations, we examined 2-chloro-3-lithiopyridines as potential precursors for 2-pyridynes. In order to avoid the concomitant formation of 3pyridynes, the presence of a 4-substituent was desirable. We therefore investigated the reactions of some 4substituted 2,3,5,6-tetrachloropyridines (IIIb-i) with n-butyl-lithium. In the case of 4-dialkylamino-derivatives (IIIb-d) metal-halogen exchange occurred smoothly in diethyl ether at -70° to give solutions of 2,5,6-trichloro-4-dialkylamino-3-lithiopyridines (VIbd). The identity of these lithium compounds was established by hydrolysis to 2,5,6-trichloro-4-dialkylaminopyridines (VIe-g), and in the case of the piperidino-compound by reaction with carbon dioxide to give 2,5,6-trichloro-4-piperidinopyridine-3-carboxylic acid (VIh). The position at which metallation had taken place was inferred from the ¹H n.m.r. spectra of the hydrolysis products. These showed, in addition to the signals due to the amino-substituents, singlets at τ 3.31 (VIe), 3.58 (VIf), and 3.32 (VIg); protons at the 2-position of a pyridine ring give signals below $\tau 2.16$

Metallation in the 3-position is probably favoured by co-ordination of the n-butyl-lithium with the aminosubstituent, although the contrast between this system and N-pentachlorophenylpiperidine, where no metallation adjacent to the piperidino-group is observed,¹⁷ is difficult to account for.

With various 4-substituents other than dialkylaminogroups, reactions involving the substituent occurred in preference to metal-halogen exchange. The substituents tried were hydrogen (IIIe), methyl (IIIf), and nitro-(IIIg); with the 4-methoxy- (IIIh) or 4-phenoxycompound (IIIi), the action of n-butyl-lithium leads to replacement of the 4-substituent by a butyl group.^{18*} With 2,3,5,6-tetrachloropyridine (IIIe), as expected, metal-hydrogen exchange occurred, to give a solution of tetrachloro-4-pyridyl-lithium (IIIa). With 2,3,5,6-tetrachloro-4-methylpyridine (IIIf), the methyl group was metallated, to give a solution of (tetrachloro-4-pyridyl)methyl-lithium (IIIj), characterised by reaction with carbon dioxide to give (tetrachloro-4-pyridyl)acetic acid (IIIk) and with dimethyl sulphate to give 2,3,5,6-tetrachloro-4-ethylpyridine (IIII). The tetrachloro-compound (IIIf) behaved like 4-methylpyridine, and not like 2,3,5,6-tetrafluoro-4-methylpyridine, in which the methyl group is not metallated by n-butyl-lithium.²⁰ It has been reported ²¹ that o-bromonitrobenzenes undergo metal-halogen exchange with n-butyl-lithium at ca. -100° , but we were unable to obtain any recognisable products from the reaction of tetrachloro-4-nitropyridine (IIIg) with n-butyl-lithium.

Besides the experiments described here, we are aware of a few others which might have led to precursors of 2-pyridynes. The reaction of tetrachloro-4-mercaptopyridine with n-butyl-lithium (2 mol.) followed by hydrolysis gave various products, including some 2,3,6-trichloro-4-mercaptopyridine,²² and the reaction of n-butyl-lithium with 2,3,5,6-tetrachloro-4-trimethylsilylpyridine led to products which were probably derived from 5.6-dichloro-4-trimethylsilyl-2-pyridyne via 2,5,6trichloro-4-trimethylsilyl-3-pyridyl-lithium 23 (see later).

The most promising approach to adducts of 2-pyridynes was thus that using 2,3,5,6-tetrachloro-4-dialkylaminopyridines (IIIb—d). Accordingly, the piperidino- (IIIb),

D. J. Berry, I. Collins, S. M. Roberts, H. Suschitzky, and
 B. J. Wakefield, *J. Chem. Soc.* (C), 1969, 1285.
 J. D. Cook and B. J. Wakefield, unpublished work; H.

Heaney, personal communication. ¹⁹ H. N. M. van der Lans and H. J. den Hertog, *Rec. Trav.*

chim., 1968, 87, 549.

²⁰ R. D. Chambers, B. Iddon, W. K. R. Musgrave, and L. Chadwick, Tetrahedron, 1968, 24, 877.

²¹ G. Kobrich and P. Buck, Angew. Chem., 1966, 78, 1062.

²² E. Ager and B. Iddon, personal communication.

²³ S. S. Dua and H. Gilman, J. Organometallic Chem., 1968, 12, 299

^{*} Since our work was completed, it has been reported ¹⁹ that reaction of 2,3-dibromo-4-ethoxypyridine with lithium the amalgam leads to adducts of 4-ethoxy-2-pyridyne, presumably via 2-bromo-4-ethoxy-3-pyridyl-lithium.

¹⁴ T. Kauffmann and F.-P. Boettcher, Chem. Ber., 1962, 95,

^{1528.} ¹⁵ J. A. Zoltewicz and C. L. Smith, J. Amer. Chem. Soc., 1966, **88**, 4766.

¹⁶ R. M. Silverstein and G. C. Bassler, 'Spectrometric Identification of Organic Compounds,' 2nd edn., Wiley, New York, 1967, p. 140.

pyrrolidino- (IIIc), and dimethylamino- (IIId) compounds were converted into the 3-lithio-derivatives (VIb—d) by n-butyl-lithium at -70° . Furan was added to the solutions, which were then allowed to warm to room temperature. In each case, the adduct (VIIa—c) of the 5,6-dichloro-4-dialkylamino-2-pyridyne (Ic—e) with

$$R^{3} = R^{4} = C_{1}, R^{3} = C_{5}H_{10}N, R^{4}-R^{7} = H$$

a; R^{1} = R^{2} = C_{1}, R^{3} = C_{5}H_{10}N, R^{4}-R^{7} = H
b; R^{1} = R^{2} = C_{1}, R^{3} = C_{4}H_{8}N, R^{4}-R^{7} = H
c; R^{1} = R^{2} = C_{1}, R^{3} = NMe_{2}, R^{4}-R^{7} = H
d; R^{1}-R^{7} = H

furan was obtained. The structures of these adducts were established by their elemental analyses and ¹H n.m.r. spectra (Table).

however its ¹H n.m.r. spectrum (Table) showed it to be 5,8-epoxy-5,8-dihydroquinoline (VIId). It was characterised in the form of its adduct (X) with 2,3dimethylbuta-1,3-diene, which was solid, and more stable.

It has recently been pointed out ⁵ (cf. refs. 25 and 26) that the formation of adducts with furan may not provide conclusive evidence for aryne intermediates, as addition of furan may precede elimination of, *e.g.*, metal halide. We can also envisage a route from an *o*-halogenoaryl-lithium compound to an adduct, involving removal of the lithium and formation of a bond between the aromatic and furan rings before the halogen is displaced (cf. ref. 27). However, the simplest explanation of the mild conditions employed, is that 2-pyridynes were involved as intermediates, and that these intermediates, once generated, are normal in their behaviour

			3	Cable			
		¹ H N.	.m.r. spectra of	adducts of 2-	pyridynes ^a		
		Chemic	al shift (τ) of sig	gnal for proton(s) at position ind	icated ^b	
	R1	\mathbb{R}^2	\mathbb{R}^3	\mathbb{R}^4	R ⁵ , R ⁶	R7	\mathbb{R}^8
(VIIa)			$\begin{cases} 6.9(4) \\ 8.3(6) \end{cases}$	4.65(1)	2.95(2)	4 ·05(1)	
(VIIb)			$\begin{cases} 6.42(4) \\ 8.06(4) \end{cases}$	4 ·58(1)	$2 \cdot 95(2)$	3.88(1)	
(VIIc)			7·02(6)	4.53(1)	2.91(2)	3.89(1)	
vIII) °			$\begin{cases} 6.88(4) \\ 8.32(6) \end{cases}$	5.77(1)	$3 \cdot 20(2)$	5.19(1)	7.82(3)
(VIId)	$\left[egin{array}{c} 2{\cdot}05(1) \ d \ 2{\cdot}15(1) \ d \end{array} ight.$	3·32(1) ·	$\left\{ \begin{array}{cc} 2 \cdot 66(1) \ ^{d} \\ 2 \cdot 79(1) \ ^{d} \end{array} \right.$	4 ·54(1)	3.00(2)	4.37(1)	

^a 60 MHz. Solutions in carbon tetrachloride unless otherwise stated. ^bNumber of protons in parentheses. All signals broadened singlets or unresolved multiplets unless otherwise stated. ^c Groups numbered as in (VII). R[§] = NMe. ^d dd. ^c m.

When 1-methylpyrrole was used in place of furan, 2,3,5,6-tetrachloro-4-piperidinopyridine (IIIb) gave 2,3-dichloro-5,8-methylimino-4-piperidino-5,8-dihydroquinoline (VIII), but attempts to prepare adducts of the 2-pyridynes with p-di-isopropylbenzene were unsuccessful. This last result was not unexpected, as the ready 1,4-addition of polyhalogenoarynes to monocyclic aromatic hydrocarbons is evidently associated with the presence of strongly electron-withdrawing groups in the aryne,^{7b,24} particularly in the positions adjacent to the ' triple bond '; in our case the effect of the chlorine substituents and the pyridine ring nitrogen is opposed by that of the electron-releasing dialkylamino-group.

The fact that derivatives of 2-pyridyne were successfully generated, and behaved normally as dienophiles, encouraged us to attempt to trap 2-pyridyne itself. Accordingly, 3-bromo-2-chloropyridine (IXa) was treated with n-butyl-lithium in diethyl ether at -70° . Hydrolysis of the resulting solution gave a high yield of 2chloropyridine (IXb), indicating that metal-halogen exchange had produced 2-chloro-3-lithiopyridine (IXc). When furan was added to the cold solution of this lithio-compound, and the solution was allowed to warm to room temperature, the principal product was an unstable oil, which could not be adequately purified; towards trapping agents. It remains to be determined whether 2-pyridyne is, as predicted, more stable than benzyne or 3-pyridyne.

In the preparation of adducts of the 5,6-dichloro-4dialkylamino-2-pyridynes (Ic—e), we observed small amounts of by-products. These were formed in larger amounts when n-butyl-lithium was added to the tetrachlorodialkylaminopyridines (IIIb—d) at room

(

 ²⁴ R. Harrison and H. Heaney, J. Chem. Soc. (C), 1968, 889.
 ²⁵ K. Rasheed, Tetrahedron, 1966, 22, 2957.

 ²⁶ M. D. Rausch, T. R. Criswell, and A. K. Ignatowicz, J. Organometallic Chem., 1968, 13, 419.
 ²⁷ H. Gilman and R. D. Gorsich, J. Amer. Chem. Soc., 1957,

²⁷ H. Gilman and R. D. Gorsich, J. Amer. Chem. Soc., 1957, 79, 2625.

temperature, or if solutions of the trichlorolithiocompounds (VIb-d) were warmed in the absence of furan. The compounds derived from 2.3.5.6-tetrachloro-4-dimethylaminopyridine (VId) were shown to be 2-butyl-5,6-dichloro-4-dimethylaminopyridine (XI)and 2',5,5',6,6'-pentachloro-4,4'-bisdimethylamino-2,3'bipyridyl (XII); their structures were deduced from their elemental analyses, mass spectra, and ¹H n.m.r. spectra. They evidently arise from addition of organolithium compounds to the 2-pyridyne (Ie), n-butyllithium leading to (XI), and 2,5,6-trichloro-4-dimethylamino-3-pyridyl-lithium leading to (XII). The aromatic ¹H n.m.r. signals in these compounds [τ 3.85 (XI) and 2.91 (XII) indicate the presence of protons in the 3-position, and thus that the addition has occurred in the direction shown. This might be simply explained in terms of attack by the carbanion at the comparatively electron-deficient C-2, although considerations applying to attack on a pyridine do not necessarily apply to a pyridyne (cf. ref. 4, p. 133 and ref. 3, p. 556). In view of our results, it seems likely that a compound obtained by Dua and Gilman²³ from the reaction of n-butyllithium with 2,3,5,6-tetrachloro-4-trimethylsilylpyridine is 2-butyl-5,6-dichloro-4-trimethylsilylpyridine. A product obtained in low yield from the attempted preparation of the adduct of the piperidinopyridyne (Ic) with p-di-isopropylbenzene proved to be a hexachlorodipiperidinopyridine, as indicated by elemental analysis, ¹H n.m.r., and mass spectroscopy. The orientation of the substituents in this product is uncertain, but nucleophilic substitution of 2,3,5,6-tetrachloro-4-piperidinopyridine (IIIb) by 2,5,6-trichloro-4-piperidino-3-

pyridyl-lithium (VIb) might be expected to give 2',3,5,5',6,6'-hexachloro-4,4'-dipiperidino-2,3'-bipyridyl (XIII). Another by-product from this reaction was 1,2-bis-(p-isopropylphenyl)-1,1,2,2-tetramethylethane (XIV) procumably formed by comparison in the second second

(XIV), presumably formed by some reaction involving hydrogen abstraction from the solvent. Its structure was apparent from its ¹H n.m.r. spectrum: τ 2·83 (m, 8H, aromatic), 7·13 (heptet, 2H, Me₂CH), 8·51 (s, 12H, Me), and 8·79 (d, 12H, Me₂CH), but it was unstable, and in a moist atmosphere was converted into *p*-isopropylphenol.

EXPERIMENTAL

Mass spectra were obtained with an A.E.I. MS 12 instrument, and ¹H n.m.r. spectra with a Varian A 60 instrument, with tetramethylsilane as internal standard. n-Butyl-lithium was used in the form of a commercially available solution in hexane (Pfizer).

4-Substituted Tetrachloropyridines.— (a) 2,3,5,6-Tetrachloro-4-piperidinopyridine and 2,3,5,6-tetrachloro-4pyrrolidinopyridine were prepared as described by Roberts and Suschitzky.²⁸

(b) 2,3,5,6-Tetrachloro-4-dimethylaminopyridine. To a mixture ^{28b} of 2,3,5,6-tetrachloro-4-methylaminopyridine and 2,3,4,5-tetrachloro-6-methylaminopyridine (4.0 g.) in diethyl ether (200 ml.) at -75° was added n-butyl-lithium solution (8.15 ml.). The mixture was stirred at -75° for 45 min., allowed to warm to room temperature during 1 hr., stirred for 30 min., and cooled to -75° . Dimethyl sulphate (2.05 g.) was added, and the solution was stirred at -75° for 10 min. and at room temperature for 5 hr. Following hydrolysis and work-up, the product was subjected to chromatography on silica, to yield the 4-dimethylamino-compound (1.3 g.), m.p. 90—92° (lit.,^{28b} 92°), the 2-dimethylamino-compound (1.05 g.), and starting material (1.1 g.).

(c) 2,3,5,6-Tetrachloropyridine was prepared by hydrolysis of tetrachloro-4-pyridylmagnesium chloride. 13b

(d) 2,3,5,6-Tetrachloro-4-methylpyridine. To a solution of tetrachloro-4-pyridyl-lithium [from pentachloropyridine $(5\cdot 0 \text{ g.})^{13b}$] at -75° was rapidly added dimethyl sulphate (25 ml.). The solution was stirred for 10 min. at -75° . Following hydrolysis with conc. ammonium hydroxide, the product was isolated and purified by chromatography on alumina to yield 2,3,5,6-tetrachloro-4-methylpyridine (2.97 g., 64%), m.p. 82-83°, unchanged on recrystallisation from aqueous ethanol; τ 7.40 (s) (Found: C, 31.2; H, 1.4; N, 6.2. C₆H₃Cl₄N requires C, 31.2; H, 1.3; N, 6.2%).

(e) Tetrachloro-4-nitropyridine was prepared by oxidising the 4-nitroso-compound with peroxytrifluoroacetic acid.²⁸⁶

Reactions of 4-Substituted Tetrachloropyridines with n-Butyl-lithium.—(a) General procedure. To the pyridine derivative (1.0 g.) in diethyl ether (100 ml.) at -75° was added with stirring n-butyl-lithium (1.1 equiv.), and the solution was stirred at -75° for 10 min. before being treated as described in the following.

(b) With tetrachloro-4-piperidinopyridine. The solution, prepared as in (a), was stirred and allowed to warm to room temperature during 1 hr., hydrolysed with water (50 ml.), and worked up by conventional methods to yield 2,3,5-trichloro-4-piperidinopyridine (57%), m.p. 37-38°, τ 3.31 (1H, s), 6.32br (4H, s), and 8.32br (6H, s) (Found: C, 45.2; H, 4.1. C₁₀H₁₁Cl₃N₂ requires C, 45.65; H, 4.1%).

When carbon dioxide was passed into the solution, prepared as described in (a), as it warmed to room temperature and then for a further $2\frac{1}{2}$ hr., and the solution was hydrolysed, and worked up *via* extraction with alkali, followed by reprecipitation with acid, the product was 2,5,6-*trichloro-4-piperidinopyridine-3-carboxylic acid* (31%), decomp. *ca.* 200°. The compound was further purified by repeated dissolution in aqueous potassium hydrogen carbonate, followed by reprecipitation with acid [Found: C, 43.0; H, 3.8%; *M* (mass spectrum), 308. C₁₁H₁₁Cl₈N₂O₂ requires C, 42.6; H, 3.6%; *M*, 308].

(c) With tetrachloro-4-pyrrolidinopyridine. The solution, prepared as in (a), was hydrolysed as in (b), to give 2,3,6-trichloro-4-pyrrolidinopyridine (39%), m.p. 118—119°, τ 3.58 (1H, s), 6.40 (4H, m), and 8.00 (4H, m) (Found: C, 43.4; H, 3.7. C₉H₉Cl₃N₂ requires C, 42.9; H, 3.6%).

(d) With tetrachloro-4-dimethylaminopyridine. The re-

²⁸ (a) S. M. Roberts and H. Suschitzky, Chem. Comm., 1967, 893; (b) S. M. Roberts and H. Suschitzky, J. Chem. Soc. (C), 1968, 1537; (c) S. M. Roberts and H. Suschitzky, *ibid.*, p. 2844. action and hydrolysis were carried out as in (c), to yield 2,3,6-trichloro-4-dimethylaminopyridine (45%), m.p. 107—108°, τ 3·32 (1H, s) and 7·00 (6H, s) [Found: C, 37·6; H, 3·3%; M (mass spec.) 223. C₇H₇Cl₃N₂ requires C, 37·25; H, 3·1%; M 223] and 2',5,5',6,6'-pentachloro-4,4'-bisdimethylamino-2,3'-bipyridyl (5·7%), m.p. 118—120°, τ 2·91 (1H, s), 7·32 (6H, s), and 7·40 (6H, s) (Found: C, 40·3; H, 3·25. C₁₄H₁₃Cl₅N₄ requires C, 40·6; H, 3·1%).

When the n-butyl-lithium was added to the solution at room temperature, the main product (59%) was 2-butyl-5,6dichloro-4-dimethylaminopyridine, m.p. 48—50°, τ 3.85 (1H, s), 6.95 (6H, s), 8.5 (2H, m), 8.7 (4H, m), and 9.02 (3H, t) [Found: C, 51.2; H, 6.1; N, 11.05%; *M* (mass spec.) 246. C₁₁H₁₆Cl₂N₂ requires C, 53.4; H, 6.45; N, 11.3%; *M* 246].

(e) With 2,3,5,6-tetrachloropyridine. Reaction and hydrolysis as described in (a) and (b) gave starting material (76%).

(f) With 2,3,5,6-tetrachloro-4-methylpyridine. Reaction and hydrolysis as described in (a) and (b) gave starting material (66%).

When a solution, prepared as described in (a), was allowed to warm to room temperature, re-cooled to -70° , and treated with dimethyl sulphate (1 mol.), the product after hydrolysis as in (b) and purification by sublimation was 2,3,5,6-tetrachloro-4-ethylpyridine (47%), m.p. 47–49° (lit.,²³ 74–75°), τ 6.94 (2H, q) and 8.76 (3H, t) (Found: C, 34.45; H, 2.4; N, 5.6. Calc. for C₇H₅Cl₄N: C, 34.3; H, 2.1; N, 5.7%).

A solution, prepared as described in (a), was allowed to warm to room temperature, then re-cooled to -70° , and a stream of dry carbon dioxide was passed in as the solution warmed to room temperature and for a further $2\frac{1}{2}$ hr. Water (50 ml.) and 2N-sodium hydroxide (50 ml.) were added, with stirring. Acidification of the aqueous layer, followed by extraction with ether, and purification by dissolution in sodium hydrogen carbonate solution followed by re-precipitation with acid, gave 2,3,5,6-tetrachloro-4pyridylacetic acid (73%), m.p. $182\cdot5-183^{\circ}$ (from light petroleum-benzene) (lit.,³⁹ 178-180°), $\tau -0.14$ (1H, s) and $5\cdot82$ (2H, s) (Found: C, $30\cdot55$; H, 0.9; N, $5\cdot4$. Calc. for $C_7H_3Cl_4NO_2$: C, $30\cdot55$; H, $1\cdot1$; N, $5\cdot1\%$).

Adducts of 5,6-Dichloro-4-dialkylamino-2-pyridynes.-(a) With furan. Solutions of 2,5,6-trichloro-4-dialkylamino-3pyridyl-lithium compounds were prepared as already described above in diethyl ether at -70° . Equal volumes of furan were added at -70° , and the solutions were allowed to warm to room temperature, heated under reflux for 6 hr., and hydrolysed with water. The products were recovered by conventional procedures, and separated by chromatography on silica; light petroleum (b.p. 40-60°) eluted starting materials, 1:1 chloroform-light petroleum eluted the trichlorodialkylamino-compounds, and chloroform eluted the adducts. By this procedure, tetrachloro-4-piperidinopyridine gave a trace of the trichloro-compound and 2,3-dichloro-5,8-epoxy-4-piperidino-5,8dihydroquinoline (50%), m.p. 117-118° (Found: C, 56.7; H, 4.6; Cl, 23.8; N, 9.3. C₁₄H₁₄Cl₂N₂O requires C, 56.6; H, 4.7; C., 23.9; N, 9.4%).

Similarly, tetrachloro-4-pyrrolidinopyridine gave the trichloro-compound (17%) and 2,3-dichloro-5,8-epoxy-4-

³⁰ 'Handbook of Chemistry and Physics,' Chemical Rubber Publishing Co. pyrrolidino-5,8-dihydroquinoline (22%), m.p. 138—139° (Found: C, 54.7; H, 4.5. $C_{13}H_{12}Cl_2N_2O$ requires C, 55.1; H, 4.2%).

Tetrachloro-4-dimethylaminopyridine gave traces of the trichloro-compound and bipyridyls, and 2,3-dichloro-4-dimethylamino-5,8-epoxy-5,8-dihydroquinoline (43%), m.p. 104-106° (Found: C, 51.45; H, 3.5; Cl, 27.8; N, 10.8. C₁₁H₁₀Cl₂N₂O requires C, 51.3; H, 3.9; Cl, 27.6; N, 10.9%).

(b) With N-methylpyrrole. Procedure (a), with N-methylpyrrole in place of furan, converted tetrahydro-4-piperidinopyridine into the trichloro-compound (42%) and 2,3-dichloro-5,8-methylimino-4-piperidino-5,8-dihydro-quinoline (18%), m.p. 114-115° (Found: C, 57.85; H, 5.6;

N, 13·1. $C_{15}H_{15}Cl_2N_3$ requires C, 58·1; H, 5·5; N, 13·55%).

Reaction of n-Butyl-lithium with Tetrachloro-4-piperidinopyridine in p-Di-isopropylbenzene.-To a solution of 2,5,6trichloro-4-piperidino-3-pyridyl-lithium, from tetrachloro-4-piperidinopyridine (3.2 g.), in diethyl ether (100 ml.) was added p-di-isopropylbenzene (100 ml.). Most of the ether was distilled off, and the residue was heated under reflux at 160° for 5 hr. Following hydrolysis with water (50 ml.), the mixture of products was isolated by conventional means, and separated into its components by chromatography on silica. Light petroleum (b.p. 60-80°) eluted tri- and tetra-chloropiperidinopyridines and p-di-isopropylbenzene, and benzene-light petroleum (1:4) eluted 2',3,5,5',6,6'-hexachloro-4,4'-dipiperidino-2,3'-bipyridyl (0.16 g., 2.9%), m.p. 152-153°, 7 7.07 (8H, m) and 8.61 (12H, m) [Found: C, 45.1; H, 4.0%; M (mass spectrum), 525. C₂₀H₂₀Cl₆N₄ requires C, 45.4; H, 3.8%; M, 525]. The recovered p-di-isopropylbenzene was chromatographed on silica; light petroleum eluted p-di-isopropylbenzene, and chloroform eluted an oil (4.2 g.) formulated as 1,2-bis-(p-isopropylphenyl)-1,1,2,2-tetramethylethane. Attempts to purify this compound were unsuccessful; after it had been exposed to the atmosphere for some days, sublimation gave p-isopropylphenol, m.p. 60.5-61° (lit., 30 61°), τ (CCl₄) 3.19 (4H, m), 4.16 (1H, s, removed on addition of D_2O), 7.19(1H, heptet), and 8.82 (6H, d).

3-Bromo-2-chloropyridine.—To 3-amino-2-chloropyridine (1.00 g.) in 45% hydrobromic acid (20 ml.) at -15° was added sodium nitrite (0.7 g.) in water (2 ml.), the temperature being kept below -10° . A solution of cuprous bromide (1.0 g.) in 45% hydrobromic acid (10 ml.) was added slowly, the temperature being maintained at -20 to -10° . The solution was made alkaline with 4N-sodium hydroxide, and the product was obtained via ether extraction and purified by chromatography, to give 3-bromo-2-chloropyridine (1.46 g., 97%), m.p. 54° (lit.,³¹ m.p. 55.5—56.5°).

Reactions of 2-Chloro-3-pyridyl-lithium.—(a) Hydrolysis. n-Butyl-lithium solution (2.5 ml.) was added to 3-bromo-2chloropyridine (1.0 g.) in diethyl ether (120 ml.) at -75° . The solution was stirred at -75° for 2 hr., water (50 ml.) was added, and the product (0.35 g., 52%) was isolated from the ether layer and shown to be identical (i.r., ¹H n.m.r., and g.l.c.) with an authentic specimen of 2-chloropyridine.

(b) Generations of 2-pyridyne. To a solution of 2-chloro-3-pyridyl-lithium [prepared as in (a), from 3-bromo-2chloropyridine (1.50 g.)] in diethyl ether (100 ml.) at -75° was added furan (20 ml.). The mixture was stirred at -75° for 30 min. and at room temperature for 3 hr. Water (50 ml.) was added, and the product was isolated, and

²⁹ A. Roedig and K. Grohe Chem Ber., 1965, 98, 923.

³¹ H. J. den Hertog and N. A. I. M. Boelrijk, *Rec. Trav. chim.*, 1951. **70**. 578.

purified by chromatography on silica (chloroform eluant) to give 5,8-epoxy-5,8-dihydroquinoline (0.36 g., 31%), as an oil, which rapidly darkened and gradually became viscous.

The adduct (0.7 g.), prepared as already described, was dissolved in xylene (10 ml.), and 2,3-dimethylbuta-1,3-diene (5 ml.) was added, together with a trace of hydroquinone. The mixture was heated under reflux for 16 hr., and the solvents were removed *in vacuo*. Chromatography of the residue on silica (chloroform eluant), followed by vacuum sublimation, gave 1-*aza*-9,10-*epoxy*-6,7-*dimethyl*-5,8,8a,9,10,10a-*hexahydroanthracene* (0.66 g., 60%), m.p. 103-104°, as pale yellow crystals, which slowly darkened;

 τ (CDCl₃) 1.77 (1H, dd, H-2), 2.54 (1H, dd, H-4), 3.02 (1H, q, H-3), 4.99 (1H, s, H-9), 5.01 (1H, s, H-10), 7.85 (6H, m, H-5, -8, -8a, and -10a), and 8.30 (6H, s, Me) [Found: *M* (mass spectrum), 227.1311. C₁₅H₁₇NO requires *M*, 227.1310].

We thank Imperial Chemical Industries, Ltd. (through Dr. M. B. Green, Mond Division) for gifts of pentachloropyridine and for the mass measurement on the dimethylbutadiene adduct (X); and the University of Salford for a maintenance grant (to J. D. C.).

[9/074 Received, January 15th, 1969]