

Available online at www.sciencedirect.com

Journal of Fluorine Chemistry 122 (2003) 219-227

www.elsevier.com/locate/jfluchem

Lewis acids catalyzed ring-opening reactions of methylenecyclopropanes and epoxides in supercritical carbon dioxide or modified supercritical carbon dioxide with perfluorocarbon

Min Shi^{a,*}, Yu Chen^b

^aState Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Science, 354 Fenglin Lu, Shanghai 200032, China

^bDepartment of Chemistry, East China Normal University, 3663 Zhong Shan Bei Lu, Shanghai 200062, China

Received 4 February 2003; received in revised form 13 March 2003; accepted 18 March 2003

Abstract

The reactions of methylenecyclopropanes (MCPs) and epoxides with alcohols and aromatic amines can be carried out in supercritical carbon dioxide ($scCO_2$) or modified $scCO_2$ with perfluorocarbon which offer a way to synthesize various alcohols, amino-alcohols, homoallylic ethers, and amines under an environmentally benign condition.

© 2003 Elsevier Science B.V. All rights reserved.

Keywords: Epoxides; Methylenecyclopropanes (MCPs); Supercritical carbon dioxide; Lewis acid; Perfluorocarbon

1. Introduction

In the past decade, researchers have focused on using liquid or supercritical carbon dioxide (scCO₂) as ideal solvent alternatives [1], which have become one of the most important parts in green chemistry. Several of the advantages include that CO₂ is inexpensive, nonflammable, environmentally benign and readily separated from products [2]. Meanwhile, CO₂ is not strongly Lewis acidic or basic and chemically inert to most conditions [3]. Although CO_2 has been considered as a greenhouse gas, the process using CO₂ do not add directly to the greenhouse effect but rather aid in the reduction of emitted CO2 [4]. Above the critical temperature and pressure, ($T_c = 31 \ ^\circ C$, $P_c = 7.4 \ MPa$) CO₂ has gas-like viscosity and liquid-like density. These moderate critical conditions allow for safe commercial and laboratory operating conditions. For example, in 1994 Noyori and coworkers [5], reported one of the first synthetically useful homogeneous catalytic hydrogenation catalyzed by Ru(II) catalyst involving scCO₂ as both solvent and substrate. Tanko and Blackert [3], Tanko and co-workers [6], Beckman and co-workers [7] reported radical reactions in scCO₂. Besides, a number of applications, such as oxidation [8],

hydroformylation [9], Diels-Alder cycloaddition [10], Mukaiyama aldol reaction [11] and various metal-catalyzed reactions [12] were carried out in scCO₂. CO₂, however, is a non-polar molecule and therefore the solubility of polar molecules is much lower than for non-polar molecules. For this reason, the key factor of the metal catalyzed reaction in scCO₂ is to find ways to enhance the solubility of metal catalyst and substrate. Of special interest, is the greater solubility of organic fluorocarbons in scCO₂, compared to the corresponding hydrocarbons. Hence, the metal-attached phosphine ligands containing perfluorinated side chains or the reactants of perfluorinated side chains as CO₂-philic surfactants are widely investigated to increase the solubility in scCO₂ [11,13].

Methylenecyclopropanes (MCPs) and epoxides can react with many nucleophilies via a ring-opening reaction in conventional organic solvents, such as 1,2-dichloroethane (DCE), dichloromethane (DCM), CH₃CN, THF or toluene in the presence of various metal catalysts [14]. But to the best of our knowledge, many organic solvents are environmentally hazardous materials. Herein, we wish to report the ring-opening reactions of MCPs and epoxides with aromatic amines and alcohols catalyzed by Lewis acids in the presence of perfluorinated compounds in scCO₂, which offer a way to produce various alcohols, amino-alcohols, homoallylic amines and ethers under an environmentally benign condition.

^{*}Corresponding author. Tel.: +86-21-64163300;

fax: +86-21-64166128.

E-mail address: mshi@pub.sioc.ac.cn (M. Shi).

^{0022-1139/\$ –} see front matter 0 2003 Elsevier Science B.V. All rights reserved. doi:10.1016/S0022-1139(03)00083-6

Scheme 1.

2. Results and discussion

First of all, we used diphenylmethylenecyclopropane 1a and 3-(trifluoromethyl)aniline 2a as the substrates to examine the reaction product in the presence of various Lewis acids in scCO₂. It was found that the reaction can proceed in the presence of Lewis acid Yb(C₈F₁₇SO₃)₃, but unfortunately, the yield was very low, if without any additive (Scheme 1, Table 1, entry 1). Then we used Sn(OTf)₂ instead of Yb($C_8F_{17}SO_3$)₃ as the catalyst. However, the yields of **3a** and 4a are still low (Table 1, entry 2). This may be due to the low solubility of reactants and catalysts in scCO₂. Based on the consideration that perfluorinated surfactants may increase the solubility of catalyst and substrate in scCO₂, we added pentafluorophenol F1 to the reaction system. As results, we found that the yields of 3a and 4a were dramatically increased (Table 1, entries 3 and 4). Lewis acid $Sn(OTf)_2$ is more effective than $Yb(C_8F_{17}SO_3)_3$ under the same conditions. In addition, instead of pentafluorophenol F1, using perfluorotoluene F2 as an additive in this reaction gave two products 3a and 4a in higher yields (Table 1, entry 5). The effect of perfluorodecalin (cis- and trans-mixture) **F3** on this reaction was also examined, but it is less effective than perfluorotoluene F2 (Table 1, entry 6). Using Yb(OTf)₃ as the catalyst also gave lower yields than that of Sn(OTf)₂ (Table 1, entry 7). Through the high pressure glass window placed in scCO₂ reaction vessel, we confirmed that the fluorocabons can make reactants and catalyst to be completely dissolved in scCO₂ to form homogeneous system.¹ Accordingly, monoalkylated product 4 and dialkylated product 3 were produced in good yields.

Several examples of the $Sn(OTf)_2$ catalyzed reaction of **1a** with various aromatic amines (we have already known that no reaction occurred using aliphatic amines under the same conditions) [14b] in the presence of perfluorotoluene **F2** in $scCO_2$ at 10 MPa are shown in Table 2. Moreover, in this case the electron-withdrawing groups on the benzene ring of aromatic amine can significantly accelerate the reaction [14b]. While, the reaction of **1a** with aniline **2c** or 4-ethoxylaniline **2d** having an electron-donating group on

the benzene ring of aromatic amine is much slower than that of **1a** with 3-fluoroaniline **2b** to give monoalkylated product **4** in trace without any dialkylated product **3** at 65 °C (Scheme 2, Table 2, entries 1, 2 and 3). Thus, we carried out the reaction of **1a** with **2b** at higher temperature (85 °C) in scCO₂, the yields were found to be significantly improved (Table 2, entry 4). The reaction of **1a** with 3,5-dichloroaniline **2e** produced only dialkylated product **3e** in high yield with no monoalkylated product **4e**, which was thoroughly transformed to give **3e** at 85 °C (Table 2, entry 5). Even the reaction of **1a** with 2,6-dibromoaniline **2f** which is a more sterically hindered aromatic amine also proceeded smoothly to form dialkylated product **3f** in high yield under the same conditions (Table 2, entry 6).

Besides 1a, we also examined the reactions of diverse MCPs with 2a catalyzed by $Sn(OTf)_2$ in the presence of perfluorotoluene F2 within 24 h at 10 MPa in scCO₂. As can be seen from Table 3, both aromatic and aliphatic MCPs can react with 2a to give the corresponding homoallylic amines. Moreover, the reaction of di(*p*-tolyl)methylenecyclopropane 1b or di(*p*-methoxyphenyl)methylenecyclopropane 1c with 2a even can be completed at lower temperature (60 or 40 °C) giving dialkylated adduct 3i or 3j in high yield (Scheme 3, Table 3, entries 1 and 2). Compared with those MCPs having electron-donating groups on the benzene ring, the reaction of 2a with 2-chlorobenzophenylmethylenecyclopropane 1d, which has electron-withdrawing groups on the benzene ring, gave 3k in lower yield even under higher temperature (Table 3, entry 3). Aliphatic MCPs, such as *p*-phenylcyclo-

Table 1

The effects of Lewis acids and additives on the reactions of 1a with 2a in ${\rm scCO}_2$

Entry	Lewis acid	Additive	Yields (%) ^a	
			3a	4a
1	Yb(C ₈ F ₁₇ SO ₃) ₃	None	-	9
2	Sn(OTf) ₂	None	13	11
3	$Yb(C_8F_{17}SO_3)_3$	F OH (F1)	23	15
4	Sn(OTf) ₂	F1	27	35
5	Sn(OTf) ₂	F (F2)	56	18
6	Sn(OTf) ₂	FF (F3)	20	33
7	Yb(OTf) ₃	F2	58	7

^a Isolated yield.

¹Typical reaction procedure: **1a** (93 mg, 0.45 mmol), **2a** (24 mg, 0.15 mmol), Sn(OTf)₂ (13 mg, 20 mol%) and **F2** (40 mg) were placed in the equipment of scCO₂. The reaction proceeded at 65 °C, 10 MPa for 24 h. The residue was purified by flash chromatography (SiO₂) using CH₂Cl₂/hexane (1:8) as the eluent to yield **3a** (0.048 g, 56%) as colorless solid and **3b** (0.010 g, 18%) as an oil compound. Their spectroscopic data have been shown in supporting information.

Table 2 The reactions of **1a** with ArNH₂ catalyzed by Lewis acid $Sn(OTf)_2$ (20 mol%) in the presence of perfluorotoluene **F2** in scCO₂

Entry	ArNH ₂	Temperature (°C)	Yields (%) ^a	
			Compound 3	Compound 4
1	F NH ₂ 2b	65	3b (34)	4b (16)
2	NH ₂ 2c	65	_	Trace
3	C ₂ H ₅ O ^{NH₂} 2d	65	_	Trace
4	F NH ₂ 2b	85	3b (61)	4b (21)
5	Br 2e Br NH ₂	85	3e (93)	_
6	Br 2f Br 2f	85	3f (81)	_

^a Isolated yield.

Scheme 2.

Table 3

The reactions of MCPs with 2a catalyzed by $Sn(OTf)_2~(20~mol\%)$ in the presence of perfluorotoluene F2 in $scCO_2$

Entry	MCPs	Temperature	Yields (%) ^a		
		(()	Compound 3	Compound 4	
1	Me	65	3b (34)	4b (16)	
2	MeQ MeQ MeQ	40	_	Trace	
3	©-Cl S=⊂	85	_	Trace	
4	Ph-{>=<	85	3b (61)	4b (21)	

^a Isolated yield.

hexylidenecyclopropane **1e** was also examined, albeit in low yield (Table 3, entry 4).

From Tables 2 and 3, we can conclude that MCPs having electron-donating groups or aromatic amines having electron-withdrawing groups on the benzene ring should be used as substrates in the reactions of MCPs with aromatic amines to give the corresponding homoallylic amines in high yields in modified $scCO_2$ with perfluorocarbon.

In addition to aromatic amines as nucleophiles, alcohols, such as ethanol, isopropanol and *tert*-butanol can also act as nucleophiles to give homoallyic ethers **5** in high yields. It can be seen from Table 4, all reactions proceeded very well without any perfluorocarbon as additive. This is because alcohol itself can modify $scCO_2$ fluid to solvate Lewis acids. In this case, even for (*o*-chlorophenyl)phenylmethylenecy-clopropane **1d** and methylheptylmethylenecyclopropane **1f** which were less reactive or inactive in the reaction of aromatic amines with MCPs, the conversion of the reaction was approximately 100% to give the corresponding homoallylic ethers **5** in very high yields (Scheme 4, Table 4, entries 5 and 6).

Scheme 3.

Table 4 The reactions of MCPs with various ROH catalyzed by $Sn(OTf)_2$ (5 mol%) in $scCO_2$

Entry	MCPs 1	ROH	Compound 5 (yield, %) ^a
1		EtOH	5a (95)
2		<i>i</i> -PrOH	5b (99)
3	МеО	<i>i</i> -BuOH	5c (93)
4	lc	EtOH	5d (96)
	MeO Cl		
5		EtOH	5e $(E/Z = 5.6:1)$ (90)
6	1f	EtOH	5f $(E/Z = 3.2:1)$ (96)

^a The products were isolated and the starting MCPs disappeared.

A plausible mechanism for the ring-opening reactions of MCPs with HNu is shown in Scheme 5. The MCPs first coordinate with Lewis acid before the subsequent nucleophilic attack of HNu to affords the adduct **6**. The final product is formed after proton-transfer.

For epoxides, we found that the ring-opening reactions with aromatic amine or alcohol can be carried out in the presence of a Lewis acid Yb(OTf)₃ without perfluorocarbon under the same conditions (Scheme 6). This is because epoxides are more reactive than MCPs **1** and polar epoxide itself can modify the physical property of $scCO_2$ to dissolve

In conclusion, $scCO_2$ is rapidly emerging as an ideal medium for carrying out a diverse range of synthetic reactions in the replacement of conventional organic solvents. Herein, we have disclosed the reactions of MCPs with ArNH₂ and alcohol catalyzed by Lewis acid in the presence of perfluorotoluene in scCO₂ to give various homoallylic amines and ethers which are an important class of compounds for its utilities as synthetic intermediates in good yields. In addition, the ring-opening reactions of epoxides have been also investigated. The corresponding aminoalcohols can be obtained in good yields under an environmentally benign condition. Our success is helpful to broaden the reactions in scCO₂ catalyzed by Lewis acids. Further investigations to develop this reaction of MCPs or epoxides with other nucleophiles in $scCO_2$ or modified $scCO_2$ are now in progress.

3. Experimental section

3.1. General methods

Melting points are uncorrected. ¹H and ¹³C NMR spectra were recorded at 300 and 75 MHz, respectively. Mass spectra were recorded by EI methods, and HRMS was measured on a Finnigan MA⁺ mass spectrometer. Organic solvents used were dried by standard methods when necessary. All solid compounds reported in this paper gave satisfactory CHN microanalyses. Commercially obtained reagents were used without further purification. All reactions were monitored by TLC with Huanghai GF254 silica gel coated plates. Flash column chromatography was carried out using 300–400 mesh silica gel at increased pressure. The starting materials **1a–e** were prepared according to the literature [15].

3.1.1. General procedure for the reactions of MCP 1a with $ArNH_2$ 2a in the presence of various additives

MCP **1a** (93 mg, 0.45 mmol), ArNH₂ **2a** (24 mg, 0.15 mmol), Sn(OTf)₂ (13 mg, 20 mol%) and corresponding additive (40 mg) were placed in the equipment of scCO₂. The reaction was performed at 65 °C, 10 MPa for 24 h. Purification was carried out by passing through a silica gel column (hexane/CH₂Cl₂ as an eluent) to afford the products **3a** and **4a**.

Table 5 The reactions of epoxide with various aromatic amines or ethanol catalyzed by Yb(OTf)₃ (5 mol%) in $scCO_2$

Entry	Epoxide	R ² XH	Compound 6	Yields (%) ^a
	R ¹			
1		$p-C_2H_5OC_6H_4NH_2$	<i>p</i> -C ₂ H ₅ OC ₆ H ₄ HN OH _{6a}	27
			<i>p</i> -C ₂ H ₅ OC ₆ H ₄ N OH 6b	58
2		m-CF ₃ C ₆ H ₄ NH ₂	<i>m</i> -CF ₅ C ₆ H ₄ HN OH _{6c}	38
			<i>m</i> -CF ₅ C ₆ H ₄ HN OH _{6d}	51
3		<i>m</i> -NO ₂ C ₆ H ₄ NH ₂	m -NO ₂ C ₆ H ₄ HN OH $_{6e}$	26
			<i>m</i> -NO ₂ C ₆ H ₄ HN OH 6f	33
4		C ₆ H ₅ NH ₂	OH C ₆ H ₅ HN ^{6g}	32
			C ₆ H ₅ HN 6h	8
5	C ₆ H ₅	C ₆ H ₅ NH ₂	C ₆ H ₅ OH 6i C ₆ H ₅ HN	75
6	C ₆ H ₅	C ₂ H ₅ OH	C ₂ H ₅ O C ₆ H ₅ 6j	95

^a Isolated yield.

3.1.2. General procedure for the reactions of MCP 1a with $ArNH_2$ 2a–d in the presence of perfluorotoluene F2

MCP 1a (93 mg, 0.45 mmol), the corresponding ArNH₂ 2 (0.15 mmol), Sn(OTf)₂ (13 mg, 20 mol%) and perfluorotoluene F2 (40 mg) were placed in the equipment of scCO₂. The reaction was performed at 65 °C, 10 MPa for 24 h. Purification was carried out by passing through a silica gel column (hexane/CH₂Cl₂ as an eluent) to afford the products **3** and **4**.

3.1.3. General procedure for the reactions of MCP 1a with $ArNH_2$ 2e–f in the presence of perfluorotoluene F2

MCP 1a (93 mg, 0.45 mmol), the corresponding ArNH₂ 2 (0.15 mmol), Sn(OTf)₂ (13 mg, 20 mol%) and perfluorotoluene F2 (40 mg) were placed in the equipment of scCO₂. The reaction was performed at 85 °C, 10 MPa for 24 h. Purification was carried out by passing through a silica gel column (hexane/CH₂Cl₂ as an eluent) to afford the product **3**.

3.1.4. Procedure for the reactions of MCPs 1b,1c,1d,1ewith ArNH₂ 2a in the presence of perfluorotoluene F2

MCPs **1b–e**, respectively (0.45 mmol), $ArNH_2$ **2a** (0.15 mmol), $Sn(OTf)_2$ (13 mg, 20 mol%) and perfluoroto-

luene **F2** (40 mg) were placed in the equipment of scCO₂. The reaction was performed at 65, 40, 85, 85 °C, respectively, 10 MPa for 24 h. Purification was carried out by passing through a silica gel column (hexane/CH₂Cl₂ as an eluent) to afford the products **3** and **4**.

3.1.4.1. [*N*,*N*-*di*-(1,1-*diphenyl*-1-*butenyl*)-3-(*trifluoro-methyl*)]*aniline* (**3a**). **3a** was obtained as colorless solid, yield 56%. mp 118–120 °C, IR (neat): *v* 3052, 3028, 2925, 2883, 1609, 1495, 1454, 1322, 1120, 850, 761 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ : 2.30–2.38 (m, 4H, CH₂), 3.29 (t, 4H, *J* = 7.6 Hz, CH₂), 6.05 (t, 2H, *J* = 7.5 Hz, =CH), 6.40–6.43 (m, 1H, Ar), 6.69 (s, 1H, Ar), 6.81 (d, 1H, *J* = 8.0 Hz, Ar), 7.07–7.39 (m, 21H, Ar); MS (EI) *m*/*z*: 573 (*M*⁺, 0.3), 380 (54), 167 (100), 129 (61), 91 (53); Anal. Calcd. for C₃₉H₃₄F₃N (%): C, 81.68; H, 5.93; N, 2.44. Found: C, 81.72; H, 6.09; N, 2.41.

3.1.4.2. $1 \cdot (1, 1 - Diphenyl - 1 - butenylamino) - 3 \cdot (trifluoro$ methyl)benzene (4a). 4a was obtained as a colorless oil,yield 18%. IR (neat): v 3421, 3054, 2986, 1614, 1495, 1449, $1421, 1265 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) <math>\delta$ 2.43–2.50 (m, 2H, CH₂), 3.24 (t, 2H, J = 6.8 Hz, CH₂), 3.81 (s, 1H, NH), 6.12 (t, 1H, J = 7.5 Hz, =CH), 6.64–6.67 (m, 1H, Ar), 6.74 (s, 1H, Ar), 6.90–6.92 (d, 1H, J = 7.5 Hz, Ar), 7.10– 7.41 (m, 11H, Ar); ¹³C NMR (75 MHz, CDCl₃) δ 29.810, 43.886, 109.788, 111.494, 113.878, 123.749 (q, J =271.4 Hz), 125.802, 127.274, 127.392, 127.452, 128.366, 128.584, 129.796, 129.942, 130.059 (q, J = 31.6 Hz), 139.868, 143.543, 145.976, 149.833; MS (EI) m/z: 367 (M^+ , 1.75), 174 (100), 145 (9.25), 91 (6.68), 77 (3.25); HRMS (EI) Calcd. for C₂₃H₂₀F₃N 367.1548, Found: 367.1526.

3.1.4.3. [N,N-di-(1,1-diphenyl-1-butenyl)-3-fluoro]aniline (3b). 3b was obtained as colorless oil, yield 61%. IR (neat): v 3079, 3055, 3022, 2969, 2885, 1618, 1598, 1576, 1497, 1443, 1265, 1154, 822 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 2.28–2.36 (m, 4H, CH₂), 3.22 (t, 4H, J = 7.4 Hz, CH₂), 6.06 (t, 2H, J = 7.8 Hz, =CH), 6.08–6.14 (m, 2H, Ar), 6.24-6.30 (m, 1H, Ar); 6.91-6.99 (m, 1H, Ar), 7.12-7.37 (m, 20H, Ar); ¹³C NMR (75 MHz, CDCl₃) δ 27.882, 51.059, 98.985 (d, J = 25.2 Hz), 102.397 (d, J = 20.4Hz), 107.058, 125.758, 127.443, 127.504, 127.562, 128.531, 128.727, 130.039, 130.503 (d, J = 10.2 Hz), 140.056, 142.484, 144.348, 149.541 (d, J = 9.0 Hz), 164.619 (d, J = 240.2 Hz); MS (EI) m/z: 523 (M^+ , 1.98), 330 (61.92), 167 (100), 129 (71.14), 91 (73.30); HRMS (EI) Calcd. for C₂₃H₂₁FN: 330.1658, Found: 330.1707 $([M - 193.1017]^+).$

3.1.4.4. 1-(1,1-Diphenyl-1-butenylamino)-3-fluorobenzene (**4b**). **4b** was obtained as colorless oil, yield 16%, IR (neat): v 3057, 2960, 2929, 1713, 1621, 1591, 1511, 1497, 1442, 1266 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 2.40–2.47 (m, 2H, CH₂), 3.20 (t, 2H, J = 7.1 Hz, CH₂), 3.78 (s, 1H, NH), 6.11 (t, 1H, J = 7.5 Hz, =CH), 6.20–6.25 (m, 1H, Ar), 6.21–6.31 (m, 1H, Ar), 6.32–6.39 (m, 1H, Ar), 7.05–7.07 (m, 1H, Ar), 7.16–7.38 (m, 10H, Ar); ¹³C NMR (75 MHz, CDCl₃) δ 30.538, 43.952, 100.558 (d, J = 22.7 Hz), 105.099 (d, J = 21.6 Hz), 108.337, 125.744, 125.955, 127.390, 127.435, 128.381, 128.589, 129.962, 130.565 (d, J = 9.2 Hz), 140.169, 142.581, 144.197, 149.167 (d, J = 9.5 Hz), 160.484 (d, J = 248.6 Hz). MS (EI) m/z: 317 (M^+ , 7.60), 124 (100), 91 (4.10), 77 (2.35); HRMS (EI) Calcd. for C₂₂H₂₀FN: 317.1580, Found: 317.1593.

3.1.4.5. [N,N-di-(1,1-diphenyl-1-butenyl)-3,5-(dichloro)]aniline (**3e**). **3e** was obtained as colorless oil, yield 93%. IR (neat): v 3080, 3053, 3024, 2985, 1738, 1626, 1587, 1551, 1492, 743 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 2.27–2.34 (m, 4H, CH₂), 3.20 (t, 4H, J = 7.3 Hz, CH₂), 6.01 (t, 2H, J = 7.7 Hz, =CH), 6.31 (s, 2H, Ar), 6.57 (s, 1H, Ar), 7.09– 7.37 (m, 20H, Ar); ¹³C NMR (75 MHz, CDCl₃) δ 27.341, 50.462, 109.854, 115.384, 124.801, 127.077, 127.118, 127.188, 128.127, 128.357, 129.465, 135.424, 139.442, 141.935, 144.148, 148.073; MS (EI) *m*/*z*: 573 (*M*⁺, 2.75), 380 (54.45), 167 (100), 129 (48.45), 91 (34.76); HRMS (EI) Calcd. for C₂₃H₂₀Cl₂N: 380.0973, Found: 380.1003 ([*M* – 193.1017]⁺). 3.1.4.6. [*N*,*N*-*di*-(1,1-*diphenyl*-1-*butenyl*)-2,6-(*dibromo*)]*aniline* (**3f**). **3f** was obtained as colorless oil, yield 81%, IR (neat): *v* 3054, 2986, 1738, 1601, 1494, 1443, 1424 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 2.24–2.32 (m, 4H, CH₂), 3.23 (t, 4H, *J* = 7.4 Hz, CH₂), 6.11 (t, 2H, *J* = 7.5 Hz, =CH), 6.79 (t, 1H, *J* = 8.3 Hz, Ar), 7.09–7.47 (m, 22H, Ar); ¹³C NMR (75 MHz, CDCl₃) δ 29.760, 53.063, 126.794, 126.862, 127.135, 127.184, 127.287, 127.381, 128.012, 128.068, 129.788, 133.065, 139.934, 142.509, 142.599, 146.770; MS (EI) *m*/*z*: 663 (*M*⁺, 0.78), 470 (51.58), 167 (67.24), 129 (100), 91 (87.64), 77 (9.95); HRMS (EI) Calcd. for C₂₃H₂₀Br₂N: 467.9962, Found: 467.9944 ([*M* – 193.1017]⁺).

3.1.4.7. [N,N-di-(1,1-di-p-tolyl-1-butenyl)-3-(trifluoromethyl) Janiline (3i). 3i was obtained as colorless oil, yield 85%; IR (neat): v 3023, 2922, 2851, 1609, 1584, 1508, 1454, 1322 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 2.22 (s, 6H, CH₃), 2.28 (s, 6H, CH₃) 2.29–2.37 (m, 4H, CH₂), 3.26 (t, 4H, J = 7.4 Hz, CH₂), 5.99 (t, 2H, J = 7.8 Hz, =CH), 6.38–6.41 (m, 1H, Ar), 6.69 (s, 1H, Ar), 6.80 (d, 1H, J = 7.8 Hz, Ar), 6.99–7.12 (m, 17H, Ar); ¹³C NMR (75 MHz, CDCl₃) δ 21.498, 21.655, 27.846, 51.118, 108.289, 112.334, 115.080, 124.582, 127.034 (q, J = 271.7 Hz), 127.472, 129.309, 129.461, 129.922, 129.974, 131.844 (q, J = 31.4 Hz), 137.109, 137.251, 137.286, 140.005, 144.348, 148.013; MS (EI) m/z: 629 (M^+ , 0.26), 408 (12.86), 195 (100), 143 (39.03), 105 (35.57), 91 (4.71); HRMS (EI) Calcd. for C₂₆H₂₅F₃N: 408.1939, Found: 408.1942 ([*M*-193.1017]⁺).

3.1.4.8. [N,N-di-(1,1-di-p-methoxyphenyl-1-butenyl)-3-(trifluoromethyl)]aniline (3j). 3j was obtained as colorless oil, yield 74%. IR (neat): v 2956, 2934, 2836, 1646, 1606, 1515, 1462, 1200, 1120 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ : 2.31–2.38 (m, 4H, CH₂), 3.29 (t, 4H, J = 7.4 Hz, CH₂), 3.76 (s, 6H, OCH₃), 3.79 (s, 6H, OCH₃), 5.93 (t, 2H, J = 7.8 Hz, =CH), 6.43–6.46 (m, 1H, Ar), 6.71 (s, 1H, Ar), 6.78–6.88 (m, 9H, Ar), 7.01–7.16 (m, 9H, Ar); ¹³C NMR (75 MHz, CDCl₃) δ 27.342, 50.587, 55.163, 55.351, 107.585, 111.559, 113.377, 113.552, 114.420, 123.269, 124.469 (q, J = 271.5 Hz), 128.157, 130.659, 131.238 (q, J = 31.6 Hz, 132.028, 132.180, 135.126, 142.950, 147.596, 158.528, 158.759; MS (EI) m/z: 244 (M^+ , 1.85), 440 (10.31), 227 (100), 167 (30.58), 129 (29.26), 91 (27.20); HRMS (EI) Calcd. for C₂₆H₂₅F₃NO₂: 440.1837, Found: 440.1850 ($[M - 193.1017]^+$).

3.1.4.9. [*N*,*N*-*di*-(1-*o*-chlorophenyl-1-phenyl-1-butenyl)-3-(*trifluoromethyl*)]*aniline* (**3***k*). **3k** was obtained as colorless oil, yield 21%. IR (neat): *v* 3062, 2917, 2865, 1623, 1599, 1499 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 2.20– 2.25 (m, 4H, CH₂), 3.32 (t, 4H, *J* = 7.5 Hz, CH₂), 6.23 (t, 2H, *J* = 7.7 Hz, =CH), 6.42–6.79 (m, 4H, Ar), 7.05– 7.44 (m, 18H, Ar); ¹³C NMR (75 MHz, CDCl₃) δ 27.393, 43.433, 106.291, 108.890, 111.199, 116.960, 125.111 (q, *J* = 270.8 Hz), 126.404, 126.453, 127.661, 128.537, 128.845, 129.933, 131.370, 131.594, 131.869 (q, J = 31.5 Hz), 133.601, 140.068, 141.709, 142.518, 148.212; MS (EI) m/z: 641 (M^+ , 2.05), 414 (100), 145 (10.81), 91 (7.09), 77 (2.76); HRMS (EI) Calcd. for C₃₉H₃₂F₃NCl₂: 641.1864, Found: 641.1878.

3.1.4.10. 1-(*p*-Phenylcyclohexylidene-*n*-propylamino)-3-(trifluoromethyl)benzene (**4**). **4**I was obtained as a colorless oil, yield 36%. IR (neat): *v* 3415, 3060, 2926, 1615, 1599, 1493 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 1.21–2.40 (m, 9H, CH₂, CH), 2.67–2.75 (m, 2H, CH₂), 3.14–3.20 (m, 2H, CH₂), 3.87 (s, 1H, NH), 5.19 (t, 1H, J = 7.4 Hz, =CH), 6.72–6.94 (m, 3H, Ar), 7.17–7.33 (m, 6H, Ar); ¹³C NMR (75 MHz, CDCl₃) δ 26.898, 28.476, 35.080, 35.771, 36.848, 43.817, 44.584, 109.112, 113.832, 116.119, 118.153, 125.236 (q, J = 273.9 Hz), 125.979, 126.817, 128.300, 129.545, 131.456 (q, J = 31.5 Hz), 141.534, 146.692, 148.027; MS (EI) *m/z*: 359 (*M*⁺, 2.01), 174 (100), 145 (6.23), 91 (9.18), 77 (3.82); HRMS (EI) Calcd. for C₂₂H₂₄F₃N 359.1861, Found: 359.1909.

3.1.5. General procedure for the reactions of MCPs 1 with alcohols in scCO₂

The reaction was carried out in the same manner as that described earlier. For the known compounds, their structures have been checked by the ¹H NMR spectroscopic data with those reported previously.

3.1.5.1. 4,4-Diphenyl-but-3-enyl ethyl ether (**5a**). **5a** was obtained as colorless oil, yield 95%. IR (neat): v 3023, 2973, 2861, 1598, 1493, 1443, 1110 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 1.19 (t, J = 6.8 Hz, 3H), 2.40 (q, J = 7.3 Hz, 2H), 3.42–3.50 (m, 4H), 6.12 (t, J = 7.3 Hz, 1H), 7.19–7.38 (m, 10H, Ar); ¹³C NMR (75 MHz, CDCl₃) δ 15.26, 30.52, 66.16, 70.30, 125.84, 126.98, 127.00, 127.27, 128.05, 128.23, 129.89, 139.95, 142.58, 143.16; MS (EI) *m*/*z*: 252 (*M*⁺), 208, 193, 178, 115, 91; HRMS (EI) Calcd. for C₁₈H₂₀O: 252.1514, Found: 252.1489.

3.1.5.2. 4,4-Diphenyl-but-3-enyl iso-propyl ether (**5b**). **5b** was obtained as colorless oil, yield 99%. IR (neat): v 2970, 2857, 1493, 1443, 1366, 1128 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 1.07 (t, J = 6.1 Hz, 6H), 2.35–2.42 (m, 2H), 3.48 (t, J = 6.7 Hz, 2H), 3.57 (q, J = 6.1 Hz, 1H), 6.12 (t, J = 7.3 Hz, 1H), 7.18–7.38 (m, 10H, Ar); ¹³C NMR (75 MHz, CDCl₃) δ 22.77, 30.93, 67.78, 71.40, 126.09, 126.93, 126.97, 127.28, 128.07, 128.18, 128.21, 129.90, 129.92, 129.93, 140.06, 142.70, 143.10; MS (EI) m/z: 266 (M^+), 208, 193, 180, 165, 130, 115; HRMS (EI) Calcd. for C₁₉H₂₂O: 266.1671, Found: 266.1628.

3.1.5.3. 4,4-Diphenyl-but-3-enyl tert-butyl ether (5c). 5c was obtained as colorless oil, yield 93%. IR (neat): v 2970, 2856, 1490, 1441, 1366, 1126 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 1.18 (s, 9H), 2.32–2.39 (m, 2H),

3.41 (t, J = 6.7 Hz, 2H), 6.12 (t, J = 7.3 Hz, 1H), 7.18–7.36 (m, 10H, Ar); MS (EI) m/z: 280 (M^+), 251, 226, 194, 179, 165; HRMS (EI) Calcd. for C₂₀H₂₄O: 280.1827, Found: 280.1870.

3.1.5.4. 4,4-Di-(4-methoxyphenyl)-but-3-enyl ethyl ether (5d). 5d was obtained as colorless oil, yield 96%. IR (neat): v 2912, 2864, 1606, 1574, 1463, 1287, 1173 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 1.22 (t, J = 6.6 Hz, 3H, CH₃), 2.40–2.48 (m, 2H), 3.45–3.52 (m, 4H), 3.78 (s, 3H), 3.83 (s, 3H), 6.00 (t, J = 7.5 Hz, 1H), 6.79–6.82 (m, 2H, Ar), 6.89–6.92 (m, 2H, Ar), 7.12–7.19 (m, 4H, Ar); ¹³C NMR (75 MHz, CDCl₃) δ 15.24, 30.53, 55.19, 55.22, 60.09, 70.45, 113.38, 113.51, 123.79, 128.40, 130.98, 132.48, 135.70, 142.19, 158.52, 158.72; MS (EI) *m/z*: 312, 253, 242, 211, 145.

3.1.5.5. 1-Chloro-2-(4-ethoxy-phenyl-but-1-enyl)-benzene (5e). 5e was obtained as colorless oil, yield 90%, E:Z = 5.6:1. E-5e: IR (neat): v 2974, 2863, 1494, 1414, 1375, 1353 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 1.16 (t, J = 6.8 Hz, 3H, CH₃), 2.24–2.28 (m, 2H), 3.50–3.56 (m, 4H), 6.31 (t, J = 7.3 Hz, 1H), 7.15–7.45 (m, 9H, Ar); MS (EI) *m*/*z*: 286 (*M*⁺), 243, 228, 214, 192, 179; HRMS (EI) Calcd. for C₁₈H₁₉ClO: 286.1124, Found: 286.1079. Z-5e: ¹H NMR (300 MHz, CDCl₃) δ 1.19 (t, J = 6.6 Hz, 3H), 2.58–2.63 (m, 2H), 3.50–3.56 (m, 4H), 5.81 (t, J = 7.3 Hz, 1H), 7.15–7.45 (m, 9H).

3.1.5.6. 1-Ethoxy-4-methyl-undec-3-ene (**5***f*). **5***f* was obtained as colorless oil, yield 96%, E:Z = 3.2:1. IR (neat): *v* 2959, 2855, 1376, 1111 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 0.86 (t, *J* = 6.9 Hz, 3H, CH₃), 1.14–1.21 (m, 13H), 1.58 (s, 3H), 1.92–2.02 (m, 2H), 2.24–2.31 (m, 2H), 3.34–3.50 (m, 4H), 5.10 (t, *J* = 7.2 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 14.32, 15.44, 16.19, 22.89, 28.00, 29.20, 30.03, 32.07, 39.91, 66.26, 70.66, 119.99, 137.72; MS (EI) *m*/*z*: 212 (*M*⁺), 184, 166, 138, 95, 59; HRMS (EI) Calcd. for C₁₄H₂₈O: 212.2140, Found: 212.2143.

3.1.6. General procedure for the reactions of epoxides with alcohols in $scCO_2$

The reaction was carried out in the same manner as that described above using $Yb(OTf)_3$ as a Lewis acid but without perfluorotoluene **F2**.

3.1.6.1. 2-(4-Ethoxyphenylamino)ethanol (**6a**). 2-(4-Ethoxyphenylamino)ethanol (**6a**): a colorless oil (27%). IR (neat): v 3350 (broad), 2978, 2926, 2875, 1504, 1455, 821 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 1.39 (t, J = 6.9 Hz, 3H, CH₃), 2.76 (br. s, 1H, OH), 3.24 (t, J = 5.1 Hz, 2H, CH₂), 3.80 (t, J = 5.1 Hz, 2H, CH₂), 3.81 (s, 1H, NH), 3.97 (q, J = 6.9 Hz, 2H, CH₂), 6.62 (d, J = 9.0 Hz, 2H, Ar), 6.79 (d, J = 9.0 Hz, 2H, Ar); MS (EI) m/z: 181 (M^+), 150, 122, 91; HRMS (EI) Calcd. for C₁₀H₁₅NO₂ ($M^+ -$ H₂O): 163.0997, Found: 163.1018.

3.1.6.2. N,N-bis(2-hydroxyethyl)-p-phenetidin (**6b**). N,Nbis(2-hydroxyethyl)-p-phenetidin (**6b**): a colorless oil (58%). This is an known compound [16]. ¹H NMR (300 MHz, CDCl₃) δ 1.39 (t, J = 6.9 Hz, 3H, CH₃), 3.39 (t, J = 4.8 Hz, 4H, CH₂), 3.71 (t, J = 4.8 Hz, 4H, CH₂), 3.96 (q, J = 6.9 Hz, 2H, CH₂), 4.22 (br. s, 2H, OH), 6.68 (d, J = 9.0 Hz, 2H, Ar), 6.82 (d, J = 9.0 Hz, 2H, Ar); MS (EI) m/z: 225 (M^+), 194, 163, 150, 122.

3.1.6.3. 2-(3-Trifluoromethylaniline)ethanol (**6c**). 2-(3-Trifluoromethylaniline)ethanol (**6c**): a colorless oil (38%). IR (neat): v 3397 (broad), 2932, 2878, 1598, 1497, 1443, 1122, 785 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 3.34 (t, J = 5.1 Hz, 2H, CH₂), 3.88 (t, J = 5.1 Hz, 2H, CH₂), 3.88 (t, J = 5.1 Hz, 2H, CH₂), 6.78–7.31 (m, 2H, Ar); MS (EI) *m*/*z*: 205 (*M*⁺), 174, 145, 127; HRMS (EI) Calcd. for C₉H₁₀F₃NO (*M*⁺ – *H*₂O): 187.0609, Found: 187.0615.

3.1.6.4. N,N-bis(2-hydroxyethyl)-3-trifluoromethylaniline (6d). N,N-bis(2-hydroxyethyl)-3-trifluoromethylaniline (6d): a colorless oil (51%). IR (neat): v 3334 (broad), 2935, 2883, 1586, 1504, 1456, 1121, 782 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 3.57 (t, J = 4.8 Hz, 4H, CH₂), 3.80 (t, J = 4.8 Hz, 4H, CH₂), 4.30 (br. s, 2H, OH), 6.79–7.32 (m, 4H, Ar); MS (EI) m/z: 249 (M^+), 218, 174, 145, 84; HRMS (EI) Calcd. for C₁₁H₁₄F₃NO₂ (M^+): 249.0977, Found: 249.1019.

3.1.6.5. 2-(3-Nitroaniline)-ethanol (6e). 2-(3-Nitroaniline)ethanol (6e): a colorless oil (26%). IR (neat): v 3407 (broad), 3059, 2935, 2881, 1593, 1529, 1461, 1349, 735 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 2.38 (br. s, 1H, OH), 3.35 (t, J = 5.1 Hz, 2H, CH₂), 3.89 (t, J = 5.1 Hz, 2H, CH₂), 4.50 (s, 1H, NH), 6.90–7.55 (m, 4H, Ar); MS (EI) m/z: 182 (M^+), 151, 122, 105, 91; HRMS (EI) Calcd. for C₈H₁₀N₂O₃ (M^+): 182.0691, Found: 182.0699.

3.1.6.6. N,N-bis(2-hydroxyethyl)-3-nitroaniline (**6f**). N,Nbis(2-hydroxyethyl)-3-nitroaniline (**6f**): a colorless oil (33%). This is an known compound [17]. ¹H NMR (300 MHz, CDCl₃) δ 3.60 (t, J = 4.8 Hz, 4H, CH₂), 3.83 (t, J = 4.8 Hz, 4H, CH₂), 4.38 (br. s, 2H, OH), 6.80–7.52 (m, 4H, Ar); MS (EI) *m*/*z*: 226 (*M*⁺), 195, 151, 122, 91.

3.1.6.7. 1-Anilino-propan-2-ol (**6g**). 1-Anilino-propan-2-ol (**6g**): a colorless oil (32%). This is an known compound [18]. ¹H NMR (300 MHz, CDCl₃) δ 1.26 (d, J = 6.0 Hz, 3H, CH₃), 2.99 (dd, J = 12.9, 8.4 Hz, 1H, CH), 3.23 (dd, J = 3.3 Hz, 1H, CH), 3.99–4.05 (m, 1H, CH), 6.66 (d, J = 7.9 Hz, 2H, Ar), 6.74 (t, J = 7.2 Hz, 1H, Ar), 7.19 (t, J = 7.9 Hz, 2H, Ar); MS (EI) *m*/*z*: 151 (*M*⁺), 106, 91, 77.

3.1.6.8. 2-Anilino-1-propanol (**6***h*). 2-Anilino-1-propanol (**6***h*): a colorless oil (8%). This is an known compound [19]. ¹H NMR (300 MHz, CDCl₃) δ 1.19 (d, J = 6.6 Hz, 3H, CH₃), 3.50 (dd, J = 10.5, 5.7 Hz, 1H, CH), 3.60–3.67

(m, 1H, CH), 3.72 (dd, *J* = 10.5, 4.2 Hz, 1H, CH), 6.58–6.72 (m, 3H, Ar), 7.15–7.18 (m, 2H, Ar); MS (EI) *m/z*: 151 (*M*⁺), 120, 92, 91.

3.1.6.9. 2-Phenylamino-2-phenylethanol (6i). 2-Phenylamino-2-phenylethanol (6i): a colorless oil (75%). This is an known compound [20]. ¹H NMR (300 MHz, CDCl₃) δ 3.72 (dd, J = 11.0, 7.2 Hz, 1H, CH), 3.91 (dd, J = 11.0, 4.5 Hz, 1H, CH), 4.48 (dd, J = 6.9, 4.5 Hz, 1H, CH), 6.54– 6.58 (m, 3H, Ar), 7.07–7.12 (m, 2H, Ar), 7.23–7.37 (m, 5H, Ar); MS (EI) *m/z*: 213 (*M*⁺), 180, 135, 121, 91.

3.1.6.10. 2-Ethoxyl-2-phenylethanol (6j). 2-Ethoxyl-2phenylethanol (6j): a colorless oil (95%). This is an known compound [21]. ¹H NMR (300 MHz, CDCl₃) δ 1.22 (t, J = 6.9 Hz, 3H, CH₃), 2.62 (br. s, 1H, OH), 3.38–3.50 (m, 2H, CH, CH), 3.60–3.71 (m, 2H, CH₂), 4.42 (dd, J = 8.1, 4.2 Hz, 1H, CH), 7.30–7.38 (m, 5H, Ar); MS (EI) m/z: 166 (M^+), 149, 135, 121, 107, 91, 77.

Acknowledgements

We thank the State Key Project of Basic Research (Project 973) (No. G2000048007), Shanghai Municipal Committee of Science and Technology, and the National Natural Science Foundation of China for financial support (nos. 20025206 and 20272069).

References

- [1] (a) R.S. Oakes, A.A. Clifford, C.M. Rayner, J. Chem. Soc., Perkin Trans. 1 (2001) 917–941;
 (b) J.A. Behles, J.M. DeSimone, Pure Appl. Chem. 73 (2001) 1281– 1285.
- [2] M. Mchugh, V. Krukonis, Supercritical Fluid Extraction: Principles and Practice, Butterworths, Boston, 1986.
- [3] J.M. Tanko, J.F. Blackert, Science 263 (1994) 203-205.
- [4] S.L. Wells, J. DeSimone, Angew. Chem. Int. Ed. Engl. 40 (2001) 518–527.
- [5] P.G. Jessop, T. Ikariya, R. Noyori, Nature 368 (1994) 231-233.
- [6] B. Fletcher, N.K. Suleman, J.M. Tanko, J. Am. Chem. Soc. 120 (1998) 11839–11844.
- [7] S. Hadida, M.S. Super, E.J. Beckman, D.P. Curran, J. Am. Chem. Soc. 119 (1997) 7406–7407.
- [8] (a) R.S. Oakes, A.A. Clifford, K.D. Bartle, M. Thornton-Pett, C.M. Rayner, Chem. Commun. (1999) 247–248;
 (b) G.R. Haas, J.W. Kolis, Organometallics 17 (1998) 4454–4460.
- [9] (a) J.W. Rathke, R.J. Klinger, T.R. Krause, Organometallics 10 (1991) 1350–1355;
- (b) D. Koch, W. Leitner, J. Am. Chem. Soc. 120 (1998) 13398-13404.
- [10] (a) M.E. Paulaitis, G.C. Alexander, Pure Appl. Chem. 59 (1987) 61– 68;

(b) C. Chapuis, A. Kucharska, P. Rzepecki, J. Jurczak, Helv. Chim. Acta. 81 (1998) 2314–2325;

(c) R.S. Oakes, T.J. Heppenstall, N. Shezad, A.A. Clifford, C.M. Rayner, Chem. Commun. (1999) 1459–1460;

(d) J. Matsui, T. Tsuchiya, K. Odashima, S. Kobayashi, Chem. Lett. (2000) 178–179.

- [11] I. Komoto, S. Kobayashi, Org. Lett. 4 (2002) 1115-1118.
- [12] (a) M.A. Carroll, A.B. Holmes, Chem. Commun. (1998) 1395– 1396;
 - (b) M.T. Reetz, W. Konen, T. Strack, Chimia 47 (1993) 493–493;
 (c) N. Jeong, S.H. Hwang, Y.W. Lee, J.S. Lim, J. Am. Chem. Soc. 119 (1997) 10549–10550;

(d) A. Furstner, D. Koch, K. Langemann, W. Leitner, C. Six, Angew. Chem. Int. Ed. Engl. 36 (1997) 2466–2469.

- [13] (a) S. Kainz, D. Koch, W. Baumann, W. Leitner, Angew. Chem. Int. Ed. Engl. 36 (1997) 1628–1639;
 (b) S. Kainz, A. Brinkmann, W. Leitner, A. Pfaltz, J. Am. Chem. Soc. 121 (1999) 6421–6429;
 (c) G. Francio, W. Leitner, Chem. Commun. (1999) 1663–1664;
 (d) G. Francio, K. Wittmann, W. Leitner, J. Organomet. Chem. 621 (2001) 130–142.
- [14] (a) I. Nakamura, Y. Yamamoto, Adv. Synth. Catal. 2 (2002) 111– 129;

(b) M. Shi, Y. Chen, B. Xu, J. Tang, Tetrahedron Lett. 43 (2002) 8019–8024;

(c) M. Shi, B. Xu, Org. Lett. 4 (2002) 2145-2148;

(d) G.L.N. Peron, J. Kitteringham, J.D. Kilburn, Tetrahedron Lett. 40 (1999) 3045–3048;

(e) L. Patient, M.B. Berry, J.D. Kilburn, Tetrahedron Lett. 44 (2003) 1015–1017.

- [15] K. Utimoto, M. Tamura, K. Sisido, Tetrahedron 29 (1973) 1169– 1171.
- [16] J.W. Wise, J.E. Wynn, R.L. Beamer, C.T. Bauguess, J. Pharm. Sci. 71 (1982) 561–564.
- [17] B.D. Palmer, W.R. Wilson, S.M. Pullen, W.A. Denny, J. Med. Chem. 33 (1990) 112–121.
- [18] C.S. Cho, J.H. Kim, T.-J. Kim, S.C. Shim, Tetrahedron 57 (2001) 3321–3329.
- [19] A. Arcelli, R. Cecchi, G. Porzi, S. Rinaldi, S. Sandri, Tetrahedron 57 (2001) 4039–4043.
- [20] U. Das, B. Crousse, V. Kesavan, D. Bonnet-Delpon, J.P. Begue, J. Org. Chem. 65 (2000) 6749–6751.
- [21] G. Scheffler, M.E. Behrendt, R.R. Schmidt, Eur. J. Org. Chem. 65 (2000) 3527–3539.