

Tetrahedron Letters 41 (2000) 6655-6656

TETRAHEDRON LETTERS

A simple synthesis of pyridine-tethered porphyrins

Andrew N. Cammidge* and Karen M. Lifsey

School of Chemical Sciences, University of East Anglia, Norwich NR4 7TJ, UK

Received 26 May 2000; accepted 29 June 2000

Abstract

Zinc porphyrin **4**, in which a pyridine ligand is tethered to the 3-position of a *meso*-phenyl substituent via a nine-atom spacer, has been synthesised and is found to exist as the intramolecularly bound complex in solution. © 2000 Elsevier Science Ltd. All rights reserved.

Keywords: porphyrins; pyridines.

Metalloporphyrins which bear tethered ligands capable of reversible binding to the central metal ion are potentially important as synthetic mimics of biological catalysts (such as cytochromes)¹ and as sensors. With the latter application in mind, we sought a straightforward synthesis of pyridine-tethered porphyrins which could be easily adapted to influence the intramolecular binding. A few examples of such tethered porphyrins are known.^{1,2} However, a simple molecular model indicated that novel porphyrin **4**, in which a pyridine is attached to the 3-position of a *meso*-phenyl group via a nine-atom spacer, would form a relatively strain-free intramolecular complex. More importantly, it was envisaged that **4** could be easily synthesised by a general procedure and modification would allow access to a range of derivatives.

Porphyrin 4 was synthesised as shown in Scheme 1. Sodium was dissolved in 1,6-hexane diol and the alkoxide solution treated with 4-picolyl chloride. The resulting alcohol 1 was coverted to the chloride 2, using thionyl chloride, and used to alkylate mono-hydroxy porphyrin 3 (made by a statistical condensation of pyrrole with benzaldehyde and 3-hydroxybenzaldehyde³). Metallation with zinc acetate afforded tethered porphyrin 4.⁴ Monomethoxy porphyrin 5^4 was also prepared by methylation and metallation of 3.

The absorption spectrum of model porphyrin **5** undergoes changes typical for zinc porphyrins⁵ $(\lambda_{max} = 419 \text{ nm in CH}_2\text{Cl}_2, \lambda_{max} = 428 \text{ nm when fully complexed with pyridine in CH}_2\text{Cl}_2$ (pK = 3.8)). The absorption spectrum for **4** is essentially identical to that of the **5**:pyridine complex. The spectrum is not concentration dependent, implying that **4** exists as the intramolecularly

^{*} Corresponding author. E-mail: a.cammidge@uea.ac.uk

Scheme 1. Reagents and conditions: (i) HO(CH₂)₆ONa/HO(CH₂)₆OH (74%); (ii) SOCl₂, CH₂Cl₂ (54%); (iii) propionic acid, reflux 30 min (5%); (iv) K₂CO₃, TBAI, MEK, reflux 12 h (92%); (v) zinc acetate, DMF (93%); (vi) K₂CO₃, (CH₃)₂SO₄, TBAI, MEK, reflux 12 h (74%); (vii) zinc acetate, DMF (91%)

complexed species. This deduction is supported by the ¹H NMR spectrum of **4**, which shows the pyridine hydrogens shielded by the porphyrin ring current.⁴

The use of this and related derivatives for sensor applications and catalysis is currently being explored.

Acknowledgements

We thank the EPSRC for support (K.M.L.) and the EPSRC Mass Spectrometry Service Centre at Swansea for accurate mass measurements.

References

- 1. D'Souza, F.; Hsieh, Y.-Y.; Deviprasad, G. R. Inorg. Chem. 1996, 35, 5747-5749 and references therein.
- 2. Takahashi, K.; Terashima, T.; Komura, T.; Imanaga, H. Bull. Chem. Soc. Jpn. 1989, 62, 3069–3074.
- 3. Maiya, G. B.; Krishnan, V. J. Phys. Chem. 1985, 89, 5225-5235.
- 4. Selected characterisation data. Compound 4: m.p. 197–200°C; $\delta_{\rm H}$ (300 MHz, CDCl₃) 1.4–1.8 (8H, m), 2.40 (2H, d, J 6.3 Hz, pyridine-H_{2,6}), 2.92 (2H, t, J 5.6 Hz), 3.49 (2H, s), 3.87 (2H, t, J 7.6 Hz), 5.48 (2H, d, J 6.3 Hz, pyridine-H_{3,5}), 7.23 (1H, m), 7.55–7.75 (11H, m), 8.12–8.28 (7H, m), 8.8–8.9 (8H, m); acc. mass (FAB) found 884.3036 (M+H), C₅₆H₄₆N₅O₂Zn = 884.2943. Compound 5: m.p. > 290°C; $\delta_{\rm H}$ (300 MHz, CDCl₃) 3.98 (3H, s), 7.33 (1H, dd, J 8.2 Hz, 2.6 Hz), 7.64 (1H, t, J 7.4 Hz), 7.72–7.84 (11H, m), 8.20–8.26 (6H, m), 8.94–9.02 (8H, m); acc. mass (FAB) found 707.1812 (M+H), C₄₅H₃₁N₄OZn = 707.1789.
- 5. Whitten, D. G.; Lopp, I. G.; Wildes, P. D. J. Am. Chem. Soc. 1968, 90, 7196-7200.