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Abstract: The C3-selective Friedel–Crafts alkylation of indoles
with electron-deficient olefins has been achieved using a mesopo-
rous aluminosilicate catalyst with 3D cage-type porous structure to
furnish the 3-alkylindole derivatives in excellent yields due to its
high surface area, large pore volume and high acidity. Pyrrole also
reacted efficiently under similar reaction conditions to give the cor-
responding 2-alkylated pyrrole derivatives in good yields.
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The C3-selective Friedel–Crafts alkylation of indoles is
one of the most important organic transformations and
plays a key role in the total synthesis of complex natural
products such as diolmycins1 and hapalindole.2 The hapal-
indole alkaloids are mostly obtained from the blue-green
algae Hapalosiphon fontinalis2 and exhibit potent antibac-
terial and antimycotic activity.3 Therefore, the synthesis
of 3-substituted indoles has been receiving significant in-
terest in medicinal chemistry. The 3-alkylated indoles are
generally prepared by the simple conjugate addition of in-
doles with electron-deficient olefins in the presence of ei-
ther protic4 or Lewis acids.5–7 Recently, some Lewis acids
also became known to be effective in promoting this reac-
tion under mild reaction conditions.7 Asymmetric version
of conjugate addition of indole has also been reported us-
ing proline-derived chiral amines to produce enantiomer-
ically enriched indole derivatives.6 However, the acid-

catalyzed addition of indoles on olefin often requires care-
ful control of the acidity to prevent side reactions such as
dimerization of indoles or polymerization of pyrroles.
Thus, the development of an effective catalyst for the
preparation of the alkyl derivatives of indole or pyrrole is
highly critical as they have become increasingly useful
and important in the field of drugs and pharmaceuticals.
Recently we have found that the mesoporous aluminosili-
cate catalyst with 3D mesoporous cage-type porous struc-
ture, high surface area and large pore volume (AlKIT-5)
has been highly active and efficient for various acid-cata-
lyzed multicomponent organic transformations due to its
excellent structural order and high acidity.8,9

In continuation of our research on the application of Al-
KIT-5 catalyst in various organic transformations, we
herein report a simple and efficient method for the C3-
alkylation of indoles with electron-deficient olefins using
a highly acidic 3D mesoporous aluminosilicate nanocage
catalyst. In a test experiment, 1 mmol of indole was treat-
ed with 1 mmol of chalcone in 1,2-dichloroethane at room
temperature in the presence of 100 mg of AlKIT-5(10)
where the number in the parenthesis indicates the nSi/nAl

ratio of the final product. Even though the reaction pro-
ceeded at room temperature, the yield of the desired prod-
uct 3a was low even after 12 hours. However, the reaction
was completed within 8.5 hours under reflux conditions
and the final product 3a was obtained in 87% yield
(Scheme 1).
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The effect of nSi/nAl ratio of the AlKIT-5 catalyst on the
alkylation of indole has also been investigated. It has been
found that the catalytic activity of the materials increases
with increasing the Al content of the sample as each Al
atom in the aluminosilicate matrix of the catalyst offers an
active site. Among the catalysts with different nSi/nAl ratio
studied, AlKIT-5(10) was found to be the best, affording
a high yield of the final product. The high activity of the
AlKIT-5(10) catalyst is mainly due to the fact that the
acidity, surface area, pore diameter and pore volume of
the catalyst are higher as compared to those of other cata-
lysts used in the study.8,9 These factors are highly critical
for the adsorption, diffusion, and the activation of the re-
actant molecules in the pore channels of the catalyst.

Inspired by the results obtained from indole and chalcone,
we turned our attention to various indoles. Substituted in-
doles such as 2-methyl, 5-methoxy, 5-bromo, and N-me-
thyl derivatives participated well in this reaction (entries
b–e, Table 1). In addition, various electron-deficient ole-
fins such as 1,3-diphenyl-2-propen-1-one, 4-chlorochal-
cone, trans-b-nitrostyrene, 1-cyclohex-2-enone and 1-
cyclopent-2-enone were examined for this transforma-
tion. In all the cases, the reactions were highly selective
and the catalyst afforded the corresponding Michael ad-
ducts in excellent yields (entries a–i, Table 1). Next, we
have attempted the Friedel–Crafts alkylation of pyrrole
with various electron-deficient olefins. To our surprise,
the reaction of pyrrole with chalcone (Scheme 2) under
similar reaction conditions underwent smoothly to furnish
the C2-alkylated pyrrole in 65% yield (entry j, Table 1).

To explore the generality and scope of the pyrrole alkyla-
tion catalyzed by AlKIT-5(10), the reaction was carried
out with various electron-deficient olefins. It has been
found that the pyrrole reacted well with cyclopentenone,
4-chlorochalcone, and trans-b-nitrostyrene to afford the

corresponding C2-alkylated pyrrole derivatives in good
yields (entries k–m, Table 1). It should be noted that no
by-products arising from 1,2-addition or bisaddition were
observed. The reaction was also carried out with a,b-un-
saturated esters and nitriles using AlKIT-5 which failed to
undergo Michael addition with indoles or pyrroles under
identical conditions. In order to confirm the effectiveness
of the AlKIT-5 catalyst, the reaction was carried out at
room temperature or reflux conditions without catalyst.
Unsurprisingly, no product was formed even after long re-
action times (10–20 h) in the absence of a catalyst, reveal-
ing the effectiveness of the AlKIT-5 catalyst for this
particular reaction. It is noteworthy to highlight that this
method is useful for the alkylation of both pyrrole and in-
doles. Various electron-deficient olefins have been used
with similar success to provide the corresponding C3-
alkylated indoles in high yields, which are also of much
interest with respect to biological activity. In all the cases,
the corresponding products were obtained in high yields
(60–91%). The structure of the products was determined
from their spectral data (NMR, IR, and MS) and also by
comparison with authentic samples.5,7

Mechanistically, the reaction proceeds via the activation
of enone by AlKIT-5 followed by indole addition on ole-
fin. The resulting intermediate undergoes subsequent tau-
tomerization to give the C3-alkylated product as shown in
Scheme 3. The catalyst was easily separated by filtration
and reused after activation at 500 °C for three to four
hours. The efficiency of the recovered catalyst was veri-
fied in the alkylation of indole with chalcone (entry a,
Table 1). Using the fresh catalyst, the yield of product 3a
was 87%, while the recovered catalyst gave the yield of
87%, 85% and 82% over three cycles, respectively. The
scope and generality of this process is illustrated with re-
spect to various electron-deficient olefins and indoles and
the results are summarized in Table 1.10

Scheme 2 C2-Alkylation of pyrrole with chalcone
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Table 1 AlKIT-5-Catalyzed Conjugate Addition of Indoles and Pyrrole with Electron-Deficient Olefins

Entry Indole 1 Enone 2 Product 3a Time (h) Yield (%)b

a 8.5 87

b 9.5 85

c 8.0 91

d 9.0 82

e 10.0 80

f 9.0 89

g 8.0 91

h 11.0 82

i 10.5 85

j 10.0 65
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In summary, we have demonstrated for the first time the
Friedel–Crafts alkylation of indoles and pyrrole with elec-
tron-deficient olefins using a highly acidic 3D mesopo-
rous aluminosilicate nanocage as the novel catalyst. The
catalyst was highly active and selective, affording the
alkylated indoles and pyrroles in a good to excellent
yields. The high activity of the AlKIT-5 catalyst on the
Friedel–Crafts alkylation is due to its high surface area,
large pore volume, and high acidity. In addition, the cata-
lyst is highly stable and can be recycled several number of
times without much affecting the activity of the catalyst
which makes this process simple, convenient and practical
(Figure 1S and Table 1S, see Supporting Information). 

Supporting Information for this article is available online at
http://www.thieme-connect.com/ejournals/toc/synlett.
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