

Tetrahedron 55 (1999) 8385-8396

TETRAHEDRON

Asymmetric Synthesis of Polyacetate Derived Building Blocks with α -Oxyanion Functionality. Lewis Acid Catalyzed Opening of 2,9-Dioxabicyclo[3.3.1]nonan-3-ones

Ralf Dunkel and H. M. R. Hoffmann

Department of Organic Chemistry, University of Hannover, Schneiderberg 1B, D-30167 Hannover, Germany

Received 22 March 1999; accepted 19 May 1999

Abstract. All four stereoisomeric cyclic 3,5,7-trihydroxyheptanoic acid equivalents of the polyacetate aldol type (Scheme 1) are obtainable from 8-oxabicyclo[3.2.1]oct-6-en-3-one which functions as a *meso-configurated 4-way* optical switch. Lewis acid assisted nucleophilic ring opening of anomeric [3.3.1] oxabicyclic lactones is a key step. The utility of the methodology is exemplified by a 6 step synthesis of the C17-C23 fragment of spongistatin (altohyrtin) and C-glycoside analogues. © 1999 Elsevier Science Ltd. All rights reserved.

Polyketides are widespread building blocks of natural products.¹ The asymmetric aldol reaction works almost perfectly for the *polypropionate* type,² where stereocontrol is not only established by the chiral auxiliary, but

Figure 1

supported by a 1,2-relationship of alkyl substituent and carbonyl function in the transition state.³ In aldol reactions of the *polyacetate* type chiral induction is necessarily weaker and enantioselectivity drops, often dramatically. Enantioselective variants of Lewis acid catalyzed additions of enol silanes to aldehydes commonly known as Mukaiyama aldol reaction are limited to specific substrates, e. g. d² components with phantom ligands⁴ which are removed eventually or a¹ components with bulky substituents.⁵ Chiral boron reagents in methyl ketone aldol reaction give only moderate levels of enantioselectivity at least for 1,3-induction.⁶ Thus chirality is often transferred intramolecularly, as in hydroxy directed hydride transfer reactions to a prostereogenic carbonyl group. Recent examples for the reduction of aldols to 1,3-*anti* diols are Evans-Tishchenko⁷ and Saksena-Evans⁸ *internal* hydride transfer. In contrast 1,3-*syn* diols have often been obtained *via* Lewis acid complexation and *external* hydride donors.⁹ Several skipped polyol chains have been prepared by two directional synthesis¹⁰ *via meso* compounds and then desymmetrization.

We recently demonstrated high stereocontrol for the construction of polyacetate building blocks starting from *meso* 8-oxabicyclo[3.2.1]oct-6-en-3-one (1) as outlined in Figure 1. For example *cis* and also *trans* C-glycosides as in bryostatin ring A¹¹ and the C3-C9 fragment of the phorboxazoles A and B,¹² respectively, are easily accessible *via* different ring opening strategies of the five membered ring of the bicyclic starting material. Stereocontrol of all five ring carbon centres is possible as shown for spongistatin ring E.¹³ High flexibility and absolute stereocontrol are demonstrated in the synthesis of the tetrahydropyran rings B, C and D¹⁴ of the spongistatins^{15, 16} and the C33-C37 fragment of the phorboxazoles A and B¹⁷ (Figure 1). Functionalized 3,5-substituted β -alkoxy- δ -valerolactones allow coupling through nucleophilic attack. They also appear as chiral unit in the mevinic acids.^{14, 18}

Scheme 1

We now report functionalization of the anomeric centre to provide C-glycoside precursors. In fact, *meso* bicyclic ketone 1 offers access to all four stereoisomers of the corresponding 3,5,7-trihydroxyheptanoic acids and their cyclic equivalents (Scheme 1). Selective reduction of the carbonyl function by reagent and substrate control gives the *syn*-aldol equivalent 2b and *anti*-1,3-diol 2a. The *meso* compounds 2a and 2b were desymmetrized *via* asymmetric hydroboration, oxidized and submitted to Baeyer-Villiger rearrangement. Thus all four enantiopure compounds 3a - 3d have been prepared. Oxabicyclic ketone 1 functions as an early *meso-configurated 4-way optical switch*. For umpolung of anomeric reactivity we have introduced a triphenyl-phosphonium group which allows Wittig olefination, ¹⁹ e. g. in natural product synthesis.²⁰

Scheme 2. a) HPPh₃BF₄; b) PhSH, BF₃·OEt₂; c) TMSCN, TMSOTf; d) CH₃OH, catal. H₂SO₄.

Compound	R	P ¹	x	Yield [%]	ax : eq
6	Н	CH3	PPh ₃ BF ₄	>99	1:1
7	Н	Bn	PPh₃BF₄	>99	1:1
8	Н	CH3	SPh	>99	5:1
9	Н	Bn	SPh	93	1:1
10	Н	Bn	CN	98	5:1
11	Bu'	Bn	CN	53 ^{a)}	5:1
14		CH3	PPh3BF₄	>99	1:5
15		Bn	PPh₃BF₄	>99	1:1
16		CH3	SPh	98	5:1

Table 1. Various carbanion stabilizing groups at the anomeric centre.

*) small scale esterfication of 10 via Bu'OH, DCC, DMAP

Introduction of a sulfone group for which α -oxyanion stabilization is also known (Scheme 4 below),²¹ was considered. However, attempts to convert simplified glycosidic methyl acetals, e. g. 12, 13 with benzenesulphinic acid²² into the sulfones and with dipyridyl disulphide and tributylphosphine²³ into the corresponding sulfides were not successful. The soft-hard combination of thiophenol and boron trifluoride

etherate was more promising. The reaction proceeded directly and under even milder conditions with anomeric lactones, i. e. 2,9-dioxabicyclo[3.3.1]nonan-3-ones (-)-4, (-)-5. Introduction of the phosphonium group was tolerated by the protecting groups present in the lactones (-)-4, (-)-5 and in the acetals 12 and 13. The high reactivity of anomeric oxabicyclic lactones is obvious from the reaction of thiophenol with boron trifluoride etherate. Thus, lactones (-)-4 and (-)-5 were converted without deprotection at 0 °C and even at room temperature into the corresponding O,S-acetals 8 and 9 (Scheme 2). In contrast monocyclic acetals 12, 13, containing a terminal ester functionality required longer reaction times at ambient temperature for complete conversion. With stable protecting groups such as methyl protected acetal 12 conversion occurs without any side reactions, but the benzyl protecting group as in acetal 13 was partly removed during conversion into the corresponding O,S-acetal.²⁴ Ring opening of the 2,9-dioxabicyclo[3.3.1]nonan-3-ones was extended to other Lewis acid/nucleophile combinations, such as the opening of lactone (-)-5 with trimethylsilyl cyanide and trimethylsilyl triflate, giving cyano acid 10. Reaction was almost quantitative although characterization was easier with the derived *t*-butyl ester 11.

Scheme 3. a) HPPh₃BF₄; b) PhSH, BF₃·OEt₂; c) TMSCN, TMSOTf; d) CH₃OH, catal. H₂SO₄; e) BH₃·DMS, B(OEt)₃; f) NaH, BnBr, Bu₄NI; g) *m*-CPBA, NaHCO₃.

For anomeric sulfides 8 the sequence was completed by borane reduction to the corresponding alcohols 17ax and 17eq which were separated by column chromatography (Scheme 3). Protection to the benzyl ethers 18ax and 18eq and oxidation to the anomeric sulfones 20 afforded the spongistatin C17-C23 fragment, correctly functionalized for α -oxyanion coupling. Sulfones 19ax and the epimeric 19eq were obtained by a shorter sequence *via* oxidation of anomeric sulfides 16. They are equivalent building blocks and contain an ester functionality at C17 (Figure 1), ready for C16-C17 coupling by established methodology.²⁵

In summary all four bicyclic anomeric lactones 3a - 3d and their monocyclic deoxygenated heptopyranuronic acids are accessible from *meso* 8-oxabicyclo[3.2.1]oct-6-en-3-one (1), which is a highly versatile building block (Scheme 1). Polyacetate based oxacycles 6 - 10 were obtained enantiopure in only 6 steps and 50% yield overall. Stereoselectivity is induced by substrate and reagent control only, without recourse to a chiral auxiliary. Beyond Figure 1 we have extended the utility of title bicyclic compound to building blocks containing a variety of carbanion stabilizing π -acceptors (Scheme 2, 3). Umpolung of anomeric reactivity was established by straightforward Lewis acid catalyzed ring opening of 2,9-dioxabicyclo[3.3.1]nonan-3-ones. The utility of our single-isomer, anomeric [3.3.1] oxabicyclic lactones has also been illustrated by the synthesis of the spongistatin ring C and E segment.²⁶

Experimental

General. Infrared spectra were recorded on a Perkin-Elmer 1710 infrared spectrometer. $-{}^{1}$ H NMR and 13 C NMR spectra were recorded on a Bruker AM 400 spectrometer in deuterated chloroform unless otherwise stated, with tetramethylsilane as internal standard. – Mass spectra were recorded on a Finnigan MAT 312 (70 eV) or a VG Autospec spectrometer at room temperature unless otherwise stated. – Preparative column chromatography was performed on J. T. Baker silica gel (particle size 30 - 60 µm). – Analytical TLC was carried out on aluminium-backed 0.2-mm silica gel 60 F₂₅₄ plates (E. Merck). – Diethyl ether (E) and THF were distilled over sodium and benzophenone before use. CH₂Cl₂ (DCM) was distilled over CaH₂ before use. DMF was dried over BaO and distilled over CaH₂ before use. Methyl *t*-butyl ether (MTBE), ethyl acetate (EA), cyclohexane (CH) and light petroleum (PE, bp 40-60 °C) were distilled before use.

8-Oxabicyclo[3.2.1]oct-6-en-3-one (1) was prepared from furan and tetrabromoacetone by our optimized procedure²⁷ on a 1 molar scale. Selective reduction to the axial **2a** or equatorial alcohol **2b** was performed via L-Selectride at -78 °C or SmI₂ reduction in refluxing THF, respectively.¹⁴ Desymmetrization of the protected alcohols via asymmetric hydroboration with (-)-(Ipc)₂BH or (+)-(Ipc)₂BH afforded the enantiopure alcohols **3a** - **3d**.¹⁴ PCC and Baeyer-Villiger oxidation gave the 2,9-dioxabicyclo[3.3.1]nonan-3-ones, e. g. (-)-4 and (-)-5 which were cleaved as described below, or by acidic methanolysis to give methylacetals **12** and **13**.^{11, 14}

General procedure for the conversion of lactones and acetals into the corresponding triphenylphosphonium tetrafluoroborates. The substrate was heated (0.1 M in acetonitrile) with an equimolar amount of

triphenylphosphonium tetrafluoroborate under reflux for 1 h. The mixture was concentrated *in vacuo* and recrystallized from ethyl ether/chloroform (50/1).

Triphenylphosphonium tetrafluoroborate salt **6**. According to the general procedure lactone (-)-**4** was converted into **6**, white solid (ax/eq = 1/1) in >99% yield. Spectroscopic data was determined from the anomeric mixture. ¹H NMR (400 MHz, CDCl₃, TMS) δ 7.85 - 7.62 (m, 30 H, PPh₃), 5.71 (m, 2 H, H-6/H-6'), 4.64 (m, 1 H, H-2), 4.36 (m, 1 H, H-2'), 3.93 (m, 1 H, H-4), 3.79 (bd, J = 3.1 Hz, 1 H, H-4'), 3.32 (s, 3 H, OCH₃), 3.27 (s, 3 H, OCH₃), 2.69 (dd, J = 16.4 Hz, J = 4.3 Hz, 1 H, H-7a), 2.55 (m, 2 H, H-7b/H-7a'), 2.48 (dd, J = 16.2 Hz, J = 8.3 Hz, 1 H, H-7b'), 2.36 (m, 1H, H-3_{eq}), 2.09 (m, 3 H, H-3_{eq}', H-5_{eq}/H-5_{eq}'), 1.92 (bd, J = 15.7 Hz, 1 H, H-3_{ax}), 1.45 (ddd, J = 11.6 Hz, J = 10.7 Hz, 1 H, H-3_{ax}'), 1.23 (m, 2 H, H-5_{ax}/H-5_{ax}'); ¹³C NMR (100 MHz, CDCl₃, TMS) δ 173.85 (C, C-8), 135.75/135.72/135.55/135.52 (CH, p-C_{Ph}), 134.36/134.32/134.26/134.22 (CH, o-C_{Ph}), 130.73/130.60/130.57/130.45 (CH, m-C_{Ph}), 116.28/115.90/115.43/115.06 (C, C_{Ph}), 75.48/74.27 (CH, C-2), 71.73/70.81 (CH, C-4), 70.51/65.22 (CH, C-6), 56.36/55.92 (CH₃, OCH₃), 40.50/37.75 (CH₂, C-7), 36.63/31.26 (CH₂, C-3), 30.51/29.13 (CH₂, C-5); v_{max} (CHCl₃)/cm⁻¹ 3300, 3040, 2932, 1716, 1484, 1440, 1388, 1372, 1340, 1284, 1228, 1188, 1152, 1112, 1072, 996; FAB: 435 (M⁺-87 (BF₄), 100), 263 (54), 183 (15), 141 (17).

Triphenylphosphonium tetrafluoroborate salt 7. According to the general procedure lactone (-)-5 was converted into 7, white solid (ax/eq = 1/1) in >99% yield. Spectroscopic data was determined from the anomeric mixture. Further assignment was possible through CH-COSY (400 MHz, TMS). ¹H NMR (400 MHz, CDCl₃, TMS) δ 7.88 - 7.62 (m, 30 H, PPh₃), 7.29 - 7.15 (m, 10 H, Bn), 5.71 (m, 1H, H-6^{α}), 5.69 (dd, J = 11.0 Hz, J = 1.0 H 3.7 Hz, 1 H, H-6^{β}), 4.64 (m, 1H, H-2^{α}), 4.58/4.51 (d, J = 11.2 Hz, 1 H, CH₂Ph), 4.52/4.44 (d, J = 12.1 Hz, 1 H, CH₂Ph), 4.38 (m, 1 H, H-2^{β}), 4.20 (ddd, J = 10.8 Hz, J = 6.1 Hz, J = 4.4 Hz, H-4^{α}), 4.00 (m, 1H, H-4^{β}), 3.32 $(dd, J = 16.4 Hz, J = 9.9 Hz, 1 H, H-7a^{\beta}), 2.74 (dd, J = 16.4 Hz, J = 4.2 Hz, 1 H, H-7b^{\beta}), 2.56 (dd, J = 16.1 Hz, J = 4.2 Hz, 1 H, H-7b^{\beta}), 2.56 (dd, J = 16.1 Hz, J = 4.2 Hz, 1 H, H-7b^{\beta}), 2.56 (dd, J = 16.1 Hz, J = 4.2 Hz, 1 H, H-7b^{\beta}), 2.56 (dd, J = 16.1 Hz, J = 4.2 Hz, 1 H, H-7b^{\beta}), 2.56 (dd, J = 16.1 Hz, J = 4.2 Hz, 1 H, H-7b^{\beta}), 2.56 (dd, J = 16.1 Hz, J = 4.2 Hz, 1 Hz, J = 4.2 Hz, J = 4.2 Hz, 1 Hz, J = 4.2 Hz, J = 4.2$ J = 3.6 Hz, 1 H, H-7a^{α}), 2.48 (dd, J = 16.1 Hz, J = 8.4 Hz, 1 H, H-7b^{α}), 2.35 (m, 1H, H-5_{ax}^{α}), 2.22 (m, 1H, H- 3_{eq}^{β} , 2.12 (m, 2 H, H- $3_{eq}^{\alpha}/H-5_{eq}^{\alpha}$), 2.06 (m, 1H, H- 5_{ax}^{β}), 1.93 (bd, J = 13.2 Hz, 1 H, H- 5_{eq}^{β}), 1.54 (ddd, J = 13.2 Hz, 1 H, H- 5_{eq}^{β}), 1 H, H- 5_{eq} 11.6 Hz, J = 11.5 Hz, J = 10.7 Hz, $H-3_{ax}^{\beta}$), 1.34 (ddd, J = 12.0 Hz, J = 11.8 Hz, J = 11.7 Hz, $H-3_{ax}^{\alpha}$); ¹³C NMR (100 MHz, CDCl₃, TMS) δ 174.44/174.26 (C, C-8), 138.20/137.83 (C, C_{Bn}), 135.75/135.72/135.53/135.50 (CH, p-C_{Ph}), 134.32/134.27/134.23/134.18 (CH, m-C_{Ph}), 130.71/130.58/130.54/130.42 (CH, o-C_{Ph}), 128.53/ 128.35 (CH, m-C_{Bn}), 127.94/127.69 (CH, o-C_{Bn}), 127.81/127.64 (CH, p-C_{Bn}), 116.20/115.80/115.36/114.96 (C, Срь), 75.38/75.24 (СН, С-2), 73.31/73.14 (СН, С-4), 71.08/70.89 (СН, С-6), 40.40/37.90 (СН₂, С-7), 37.12/31.85 (CH₂, C-3), 31.39/29.48 (CH₂, C-5); v_{max} (CHCl₃)/cm⁻¹ 3336, 3012, 2952, 2924, 2872, 2848, 1716, 1652, 1616, 1600, 1588, 1508, 1484, 1440, 1396, 1360, 1112, 1072, 996, 912, 864, 620, 568, 520; MS (200 °C): 565 (M^{+} -33, 3.2), 424 (3.0), 310 (3.2), 277 (3.1), 263 (21.0), 262 (100.0), 261 (15.8), 184 (17.5), 183 (75.4), 157 (6.7), 152 (11.2), 108 (36.8), 107 (16.3), 91 (14.9), 81 (10.1), 79 (14.8), 77 (15.6); FAB: 511 (M⁺-87 (BF₄), 100), 403 (5), 263 (46), 183 (14), 141 (8).

(2S, 4S)-(4-Methoxy-6-phenylsulfanyl-tetrahydro-pyran-2-yl)-acetic acid (8). At 0 °C 72.0 µl (0.7 mmol) of thiophenol and 88.0 μ l (0.7 mmol) of boron trifluoride etherate were added to a solution of 120.7 mg (0.7 mmol) of lactone (-)-4 in 2 ml of abs. DCM. The solution was stirred 2 h at 0 °C and quenched with 0.5 ml of water, stirred for 1.5 h at rt, dried over Na₂SO₄ and concentrated in vacuo. Recrystallization of the crude product (PE/E = 15/1) afforded 8 (197.0 mg, 0.7 mmol, >99%) as an anomeric mixture $\alpha/\beta = 5/1$ (determined by ¹H NMR). Spectroscopic data for the predominating α -anomer were determined from the anomeric mixture. ¹H NMR (400 MHz, CDCl₃, TMS) δ 7.51 - 7.41 (m, 2 H, o-Ph), 7.33 - 7.18 (m, 3 H, m-, p-Ph), 5.68 (bd, J =5.3 Hz, 1 H, H-6), 4.76 (dd, J = 12.0 Hz, J = 1.8 Hz, 1 H, H-2), 4.70 (dddd, J = 11.7 Hz, J = 11.4 Hz, J = 5.5 Hz, J = 5.3 Hz, 1 H, H-4), 3.38 (s, 3 H, OCH₃), 2.59 (dd, J = 15.4 Hz, J = 7.5 Hz, 1 H, H-7a), 2.52 (dd, J = 15.4 Hz, J = 7.4 Hz, 1 H, H-7b), 2.20 (ddd, J = 12.0 Hz, J = 5.3 Hz, J = 1.8 Hz, 1 H, H-3_{eq}), 2.09 (m, 1H, H-5_{eq}), 1.86 (m, 1H, H-5_{ax}), 1.52 (ddd, J = 12.0 Hz, J = 11.9 Hz, J = 11.2 Hz, 1 H, H-3_{ax}); ¹³C NMR (100 MHz, CDCl₃, TMS) δ 176.39 (C, C-8), 134.89 (C, C_{Ph}), 131.31 (CH, m-C_{Ph}), 128.90 (CH, o-C_{Ph}), 127.08 (CH, p-C_{Ph}), 84.79 (CH, C-6), 72.12 (CH, C-2), 65.55 (CH, C-4), 55.55 (CH₃, OCH₃), 40.52 (CH₂, C-7), 37.34 (CH₂, C-5), 36.74 $(CH_2, C-3); v_{max}$ (CHCl₃)/cm⁻¹ 3512, 3064, 3000, 2928, 1712, 1584, 1480, 1440, 1380, 1296, 1264, 1228, 1188, 1152, 1080, 1024, 984, 956, 908; FAB: 282 (M⁺, 27), 281 (36), 218 (46), 173 (100), 163 (57); HR-MS calcd. for C14H18O4S (M⁺) 282.0926, found 282.0928.

(2S,4S)-(4-Benzyloxy-6-phenylsulfanyl-tetrahydro-pyran-2-yl)-acetic acid (9). At 0 °C 23.0 µl (0.2 mmol) of thiophenol and 28.0 µl (0.2 mmol) of boron trifluoride etherate were added to a solution of 55.7 mg (0.2 mmol) of lactone (-)-5 in 1 ml of abs. DCM. The solution was stirred 15 min at 0 °C and 45 min at rt, quenched with 30 μ l of water, dried over Na₂SO₄ and concentrated *in vacuo*. Recrystallization of the crude product (PE/E = 15/1) afforded 9 (74.2 mg, 0.2 mmol, 93%) as an anomeric mixture $\alpha/\beta = 1/1$ (determined by ¹H NMR). Spectroscopic data were determined from the anomeric mixture. ¹H NMR (400 MHz, CDCl₃, TMS) δ 7.45 -7.39 (m, 4 H, o-SPh), 7.34 - 7.14 (m, 16 H, p-, m- SPh/Bn), 5.68 (d, J = 5.1 Hz, H-6^{α}), 4.73 (dd, J = 11.8 Hz, J = 1.9 Hz, 1 H, H-6^B, 4.68 (m, 1H, H-2), 4.57 (d, J = 12.0 Hz, 1 H, CH₂Ph), 4.53 (d, J = 12.0 Hz, 1 H, CH₂Ph), 4.55 (d, J = 12.5 Hz, 1 H, CH₂Ph), 4.52 (d, J = 12.5 Hz, 1 H, CH₂Ph), 3.90 (m, 1H, H-4^{α}), 3.86 (m, 1H, H-2), $3.62 \text{ (ddd, } J = 11.7 \text{ Hz}, J = 10.8 \text{ Hz}, J = 4.6 \text{ Hz}, 1 \text{ H}, \text{H}-4^{\beta}$), 2.73 (dd, J = 16.4 Hz, J = 8.5 Hz, 1 H, H-7a), 2.73 (dd, J = 15.4 Hz, J = 8.1 Hz, 1 H, H-7a), 2.53 (dd, J = 15.4 Hz, J = 4.4 Hz, 1 H, H-7b), 2.52 (dd, J = 16.4 Hz, J)= 5.0 Hz, 1 H, H-7b), 2.45 (ddd, J = 12.9 Hz, J = 4.4 Hz, J = 1.7 Hz, 1 H, H-5_{eq}^{α}), 2.39 (ddd, J = 12.9 Hz, J4.6 Hz, J = 1.9 Hz, 1 H, H-5_{eq}^{β}), 2.20 (ddd, J = 11.8 Hz, J = 4.4 Hz, J = 2.2 Hz, 1 H, H-3_{eq}), 2.09 (ddd, J = 11.8Hz, J = 4.4 Hz, J = 2.2 Hz, 1 H, H-3_{e0}), 1.95 (ddd, J = 12.9 Hz, J = 11.8 Hz, J = 5.1 Hz, 1 H, H-5_{ax}^(a)), 1.62 (ddd, J = 12.9 Hz, J = 11.8 Hz, J = 5.1 Hz, 1 H, H-5_{ax}^(a)), 1.62 (ddd, J = 12.9 Hz, J = 11.8 Hz, J = 5.1 Hz, 1 H, H-5_{ax}^(a)), 1.62 (ddd, J = 12.9 Hz, J = 11.8 Hz, J = 5.1 Hz, 1 H, H-5_{ax}^(a)), 1.62 (ddd, J = 12.9 Hz, J = 11.8 Hz, J = 5.1 Hz, 1 H, H-5_{ax}^(a)), 1.62 (ddd, J = 12.9 Hz, J = 11.8 Hz, J = 5.1 Hz, 1 H, H-5_{ax}^(a)), 1.62 (ddd, J = 12.9 Hz, J = 11.8 Hz, J = 5.1 Hz, 1 H, H-5_{ax}^(a)), 1.62 (ddd, J = 12.9 Hz, J = 11.8 Hz, J = 5.1 Hz, 1 H, H-5_{ax}^(a)), 1.62 (ddd, J = 12.9 Hz, J = 5.1 Hz, J = 5.1J = 12.9 Hz, J = 11.8 Hz, J = 11.8 Hz, 1 H, H-5_{ax}^{β}), 1.39 (ddd, J = 11.8 Hz, J = 11.7 Hz, J = 11.6 Hz, 1 H, H- 3_{ax}), 1.36 (ddd, J = 11.8 Hz, J = 11.7 Hz, J = 11.4 Hz, 1 H, $H-3_{ax}$); ¹³C NMR (100 MHz, CDCl₃, TMS) δ 176.61/176.54 (C, C-8), 138.16/138.02 (C, C_{Bn}), 134.87/134.38 (C, C_{SPh}), 132.77/132.44/131.38/130.66/128.96 /128.81/128.78/128.51/128.48/128.47/127.96/127.89/127.76/127.73/127.70/127.64/127.60/127.10/127.09 (CH. CBn/CSPh), 84.83/82.53 (CH, C-2), 74.40/73.88 (CH, C-4), 72.12/70.92 (CH, C-6), 70.09/69.91 (CH₂, CH₂Ph), 40.70/40.52 (CH₂, C-7), 37.87/37.24/37.16/36.68 (CH₂, C-5/C-3); v_{max} (CHCl₃)/cm⁻¹ 3400, 3064, 3028, 2948, 2924, 1712, 1584, 1480, 1440, 1412, 1360, 1296, 1256, 1192, 1152, 1112, 1068, 1024, 984, 960, 932, 908; MS $(130 \text{ °C}): 250 \text{ (M}^+-108, 1.4), 249 (7.7), 218 (3.8), 200 (2.4), 199 (9.9), 155 (2.3), 143 (5.3), 141 (31.3), 118$ (8.6), 109 (20.5), 91 (100.0), 81 (10.4), 70 (8.1), 65 (11.2); HR-MS calcd. for $C_{14}H_{17}O_4$ (M⁺-SPh) 249.1126, found 249.1124.

(2S,4S)-(4-Benzyloxy-6-cyano-tetrahydro-pyran-2-yl)-acetic acid (10). At 0 °C 140.0 µl (1.0 mmol) of trimethylsilyl cyanide and 40.0 µl (0.2 mmol) of trimethylsilyl triflate were added successively to a solution of 52.0 mg (0.2 mmol) of lactone (-)-5 in 2 ml of abs. acetonitrile. The reaction mixture was stirred for 30 min at rt, then poured into sodium hydrogen carbonate solution. After neutralization with ammonium chloride the aqueous layer was extracted with DCM, dried over Na₂SO₄ and concentrated in vacuo to afford a vellow solid which was recrystallized from PE/E = 10/1. Yield 41.2 mg (0.15 mmol, 71%) of 10 (ax/eq = 5/1). Spectroscopic data were determined from the anomeric mixture. ¹H NMR (400 MHz, CDCl₃, TMS) δ 9.20 (bs, 1 H, OH), 7.38 -7.30 (m, 5 H, Ph), 4.94 (dd, J = 5.5 Hz, J = 1.3 Hz, 1 H, H-6), 4.61 (d, J = 11.4 Hz, 1 H, CH₂Ph), 4.56 (d, J = 1.4 Hz, 1 Hz 11.4 Hz, 1 H, CH₂Ph), 4.25 (m, 1H, H-2), 3.93 (dddd, J = 11.4 Hz, J = 11.3 Hz, J = 4.4 Hz, J = 4.2 Hz, 1 H, H-4), 2.66 (dd, J = 16.0 Hz, J = 7.5 Hz, 1 H, H-7a), 2.56 (dd, J = 16.0 Hz, J = 5.2 Hz, 1 H, H-7b), 2.25 (ddd, J = 16.0 Hz, J = 5.2 Hz, 1 H, H = 70 13.6 Hz, J = 4.2 Hz, J = 1.3 Hz, 1 H, H-5_{eq}), 2.24 (bd, J = 12.5 Hz, 1 H, H-3_{eq}), 1.81 (ddd, J = 13.6 Hz, J = 11.3Hz, J = 5.5 Hz, 1 H, H-5_{ax}), 1.40 (ddd, J = 12.5 Hz, J = 11.6 Hz, J = 11.4 Hz, 1 H, H-3_{ax}); ¹³C NMR (100 MHz, CDCl₃, TMS) δ 175.60 (C, C-8), 137.70 (C, C_{Ph}), 128.54 (CH, m-C_{Ph}), 127.92 (CH, o-C_{Ph}), 127.64 (CH, p-C_{Ph}), 116.93 (C, CN), 70.97/70.44 (CH, C-2/C-6), 63.72 (CH, C-4), 40.33 (CH₂, C-7), 37.01 (CH₂, C-5), 29.65 (CH₂, C-3); v_{max} (CHCl₃)/cm⁻¹ 3040, 2924, 2868, 2680, 2584, 1716, 1452, 1432, 1364, 1312, 1264, 1228, 1164, 1120, 1076, 1028, 976, 912, 864, 840; MS (50 °C): 279 (M⁺+4, 2.5), 168 (2.8), 167 (4.0), 149 (12.8), 139 (2.3), 111 (3.8), 107 (6.8), 91 (12.7), 87 (12.1), 85 (69.3), 84 (10.6), 83 (100.0), 80 (9.8), 69 (6.6).

(2S,4S)-(4-Benzyloxy-6-cyano-tetrahydro-pyran-2-yl)-acetic acid tert-butyl ester (11). A solution of 30.0 mg (0.1 mmol) of acid 10, 26.5 mg (0.1 mmol) of N,N'-dicyclohexylcarbodiimide, 96.2 mg (1.3 mmol) of t-butanol and a catalytic amount of 4-dimethylaminopyridine in 1 ml of abs. DCM was stirred overnight at rt. The reaction mixture was poured into sodium hydrogen carbonate solution, extracted with DCM, dried over Na₂SO₄ and concentrated *in vacuo*. Purification by column chromatography (CH/EA = 5/1) yielded 19.2 mg (0.06 mmol, 53%) of ester 11 (ax/eq = 5/1). Spectroscopic data were determined from the anomeric mixture. ¹H NMR (400 MHz, CDCl₃, TMS) δ 7.36 - 7.32 (m, 5 H, Ph), 4.93 (dd, J = 5.9 Hz, J = 1.7 Hz, 1 H, H-6), 4.60 (d, J = 11.6 Hz, CH₂Ph), 4.56 (d, J = 11.6 Hz, 1 H, CH₂Ph), 4.21 (m, 1H, H-2), 3.90 (dddd, J = 11.2 Hz, J = 8.8 Hz, J = 6.7 Hz, J = 4.4 Hz, 1 H, H-4), 2.49 (dd, J = 15.3 Hz, J = 7.5 Hz, 1 H, H-7a), 2.43 (dd, J = 15.3 Hz, J = 5.4 Hz,

1 H, H-7b), 2.23 (ddd, J = 13.1 Hz, J = 4.4 Hz, J = 1.7 Hz, 1 H, H-5_{eq}), 2.21 (m, 1H, H-3_{eq}), 1.79 (ddd, J = 13.1 Hz, J = 11.2 Hz, J = 5.9 Hz, 1 H, H-5_{ax}), 1.47 (s, 9 H, C(CH₃)₃), 0.97 (m, 1H, H-3_{ax}); ¹³C NMR (100 MHz, CDCl₃, TMS) δ 169.12 (C, C-8), 137.88 (C, C_{Ph}), 128.55 (CH, *m*-C_{Ph}), 127.90 (CH, *p*-C_{Ph}), 127.64 (CH, *o*-C_{Ph}), 117.15 (C, CN), 81.19 (C, C(CH₃)₃), 73.77 (CH, C-6), 70.91 (CH, C-2), 70.43 (CH₂, CH₂Ph), 63.75 (CH, C-4), 42.06 (CH₂, C-7), 37.18 (CH₂, C-5), 34.49 (CH₂, C-3), 28.07 (CH₃, C(CH₃)₃); v_{max} (CHCl₃)/cm⁻¹ 3008, 2980, 2932, 2868, 1724, 1496, 1452, 1392, 1368, 1312, 1260, 1232, 1152, 1076, 1028, 976, 840; MS (80 °C): 276 (M⁺-55, 1.4), 275 (7.4), 274 (18.4), 258 (2.5), 240 (1.8), 184 (1.5), 167 (5.1), 150 (3.7), 141 (12.7), 107 (51.6), 105 (6.3), 92 (18.6), 91 (100.0), 80 (3.7), 65 (4.7); HR-MS calcd. for C₁₅H₁₆NO₄ (M⁺-Bu^t) 274.1079, found 274.1076.

Triphenylphosphonium tetrafluoroborate salt 14. According to the general procedure acetal 12 was converted into 14. Yield 129.0 mg (0.24 mmol, >99%) of white crystals, mp 153 - 156 °C. The product was obtained as an anomeric mixture (ax : eq = 1 : 5 (¹H NMR)). Spectroscopic data for the major anomer were determined from the anomeric mixture. ¹H NMR (400 MHz, CDCl₃, TMS) δ 7.90 - 7.65 (m, 15 H, PPh₃), 5.78 (dd, *J* = 12.3 Hz, *J* = 2.6 Hz, 1 H, H-6), 4.38 (m, 1H, H-2), 3.94 (m, 1H, H-4), 3.54 (s, 3 H, OCH₃), 3.34 (s, 3 H, OCH₃), 2.52 - 2.47 (m, 2 H, H-3_{eq}/H-5_{eq}), 2.41 (bd, *J* = 12.9 Hz, 1 H, H-7a), 2.18 (bd, *J* = 12.9 Hz, 1 H H-7b), 1.42 (ddd, *J* = 11.4 Hz, *J* = 11.0 Hz, *J* = 10.8 Hz, 1 H, H-3_{ax}), 1.21 (ddd, *J* = 12.9 Hz, *J* = 11.8 Hz, *J* = 11.8 Hz, 1 H, H-5_{ax}); ¹³C NMR (100 MHz, CDCl₃, TMS) δ 170.29 (C, C-8), 135.40/135.37 (CH, *p*-C_{Ph}), 134.37/134.27 (CH, *o*-C_{Ph}), 130.52/130.40 (CH, *m*-C_{Ph}), 116.35/115.51 (C, C_{Ph}), 75.53 (CH, C-2), 74.11 (CH, C-4), 70.51 (CH, C-6), 55.97 (CH₃, OCH₃), 51.73 (CH₃, OCH₃), 40.68 (CH₂, C-7), 36.80 (CH₂, C-3), 31.21 (CH₂, C-5); v_{max} (CHCl₃)/cm⁻¹ 3040, 2952, 2932, 1736, 1588, 1440, 1228, 1112, 1076; FAB: 449 (M⁺-87 (BF₄), 80), 263 (100), 183 (70), 155 (47), 133 (50).

Triphenylphosphonium tetrafluoroborate salt 15. According to the general procedure acetal 13 was converted into 17. Yield 301.6 mg (0.5 mmol. >99%) of white crystals. The product was obtained as an anomeric mixture (ax : eq = 1 : 1 (¹H NMR)). Spectroscopic data were determined from the anomeric mixture. ¹H NMR (400 MHz, CDCl₃, TMS) δ 7.87 - 7.64 (m, 30 H, PPh₃), 7.38 - 7.21 (m, 10 H, Bn), 5.78 (dd, J = 9.9Hz, J = 4.4 Hz, 1 H, H-2), 5.62 (m, 1H, H-2), 4.63 (m, 1H, H-4), 4.59/4.53 (d, J = 11.2 Hz, CH₂Ph), 4.54/4.45 $(d, J = 12.0 \text{ Hz}, 1 \text{ H}, \text{CH}_2\text{Ph}), 4.38 \text{ (m, 1H, H-4)}, 4.20 \text{ (dd}, J = 10.1 \text{ Hz}, J = 4.4 \text{ Hz}, 1 \text{ H}, \text{H-6}^{\text{B}}), 4.04 \text{ (dd}, J = 6.6 \text{ Hz})$ Hz, J = 3.3 Hz, 1 H, H-6^a), 3.59 (s, 3 H, OCH₃), 3.53 (s, 3 H, OCH₃), 3.25 (dd, J = 16.0 Hz, J = 9.9 Hz, 1 H, H-7a), 2.70 (dd, J = 16.0 Hz, J = 4.4 Hz, 1 H, H-7b), 2.50 (dd, J = 15.5 Hz, J = 4.2 Hz, 1 H, H-7a), 2.44 (dd, J = 15.5 Hz, J = 4.2 Hz, 1 H, H-7a), 2.44 (dd, J = 15.5 Hz, J = 4.2 Hz, 1 H, H-7a), 2.44 (dd, J = 15.5 Hz, J = 4.2 Hz, 1 H, H-7a), 2.44 (dd, J = 15.5 Hz, J = 4.2 Hz, 1 H, H-7a), 2.44 (dd, J = 15.5 Hz, J = 4.2 Hz, 1 H, H-7a), 2.44 (dd, J = 15.5 Hz, J = 4.2 Hz, 1 H, H-7a), 2.44 (dd, J = 15.5 Hz, J = 4.2 Hz, 1 H, H-7a), 2.44 (dd, J = 15.5 Hz, J = 4.2 Hz, 1 H, H-7a), 2.44 (dd, J = 15.5 Hz, J = 4.2 Hz, 1 H, H-7a), 2.44 (dd, J = 15.5 Hz, J = 4.2 Hz, 1 H, H-7a), 2.44 (dd, J = 15.5 Hz, J = 4.2 Hz, 1 H, H-7a), 2.44 (dd, J = 15.5 Hz, J = 4.2 Hz, 1 H, H-7a), 2.44 (dd, J = 15.5 Hz, J = 4.2 Hz, 1 H, H-7a), 2.44 (dd, J = 15.5 Hz, J = 4.2 Hz, 1 H, H-7a), 2.44 (dd, J = 15.5 Hz, J = 4.2 Hz, 1 H, H-7a), 2.44 (dd, J = 15.5 Hz, J = 4.2 Hz, 1 H, H-7a), 2.44 (dd, J = 15.5 Hz, J = 4.5 Hz, J =15.5 Hz, J = 8.1 Hz, 1 H, H-7b), 2.38 (m, 1H, H-5_{eq}), 2.19 (m, 3 H, H-5_{ax}^{α}, H-5_{ax}^{β}/H-3_{eq}), 1.92 (m, 1H, H-5_{eq}), 1.52 (ddd, J = 12.1 Hz, J = 12.1 Hz, J = 10.1 Hz, 1 H, H- 3_{ax}), 1.32 (ddd, J = 12.3 Hz, J = 11.6 Hz, J = 11.4 Hz, 1 H, H-3_{ax}); ¹³C NMR (100 MHz, CDCl₃, TMS) δ 171.20/170.34 (C, C-8), 135.72/135.69/135.38/135.35 (CH, p-C_{ph}), 134.39/134.35/134.30/134.26 (CH, o-C_{ph}), 130.72/130.62/130.51, 130.39 (CH, m-C_{ph}), 128.53/128.35/127.94/127.65 (C, CPh), 75.57/73.27 (CH, C-2), 71.55/70.58 (CH, C-4), 71.21/70.96 (CH₂, CH2Ph), 68.95/65.76 (CH, C-6), 51.88/51.74 (CH3, OCH3), 40.67/38.05 (CH2, C-7), 37.32/31.82 (CH2, C-3), 31.44/29.50 (CH₂, C-5); v_{max} (CHCl₃)/cm⁻¹ 3030, 2954, 1736, 1602, 1485, 1439, 1230, 1111, 1062, 998, 909, 522; FAB: 525 (M⁺-87 (BF₄), 100), 417 (15), 263 (27).

(2S, 4S)-(4-Methoxy-6-phenylsulfanyl-tetrahydro-pyran-2-yl)-acetic acid methyl ester (16). At 0 °C 47.0 μl (0.45 mmol) of thiophenol and 58.0 μl (0.45 mmol) of boron trifluoride etherate were added successively to a solution of 100.0 mg (0.45 mmol) of acetal 12 in 3 ml of abs. DCM. After 5 min. the reaction mixture was warmed to ambient temperature, stirred for 3 h, poured into sat. sodium hydrogen carbonate solution, extracted with DCM, dried over Na₂SO₄ and concentrated *in vacuo*. Column chromatography (CH/EA = 5/1 to 2/1) yielded 133.4 mg (0.45 mmol, 98%) of 16 as an anomeric mixture (ax/eq = 0.8/1 (¹H NMR)). Spectroscopic data for the major anomer were determined from the anomeric mixture. ¹H NMR (400 MHz, CDCl₃, TMS) δ 7.46 (m, 2 H, *o*-Ar), 7.25 (m, 3 H, *p*-/*m*-Ar), 5.70 (bd, J = 5.5 Hz, 1 H, H-6), 4.68 (dddd, J = 11.0 Hz, J = 8.3 Hz, J = 5.0 Hz, J = 2.2 Hz, 1 H, H-2), 3.88 (m, 1H, H-4), 3.56 (s, 3 H, OCH₃), 3.37 (s, 3 H, OCH₃), 2.57 (dd, J = 15.0 Hz, J = 8.3 Hz, J = 5.5 Hz, 1 H, H-7a), 2.49 (dd, J = 12.0 Hz, J = 5.0 Hz, 1 H, H-3_{eq}), 1.85 (ddd, J = 12.9 Hz, J = 11.5 Hz, J = 5.5 Hz, 1 H, H-5_{ax}), 1.50 (ddd, J = 12.0 Hz, J = 12.0 Hz, J = 11.0 Hz, 1 H, H-3_{ax}); ¹³C NMR (100 MHz, CDCl₃, TMS) δ 171.22 (C, C-8), 135. 20 (C, C_{Ar}), 131.06 (CH, *m*-C_{Ar}), 128.79 (CH, *o*-C_{Ar}), 126.90 (CH, *p*-C_{Ar}), 84.46 (CH, C-6), 72.59 (CH, C-2), 65.92 (CH, C-4), 55.57 (CH₃, OCH₃), 51.74 (CH₃, OCH₃),

40.92 (CH₂, C-7), 37.49 (CH₂, C-5), 36.73 (CH₂, C-3); v_{max} (CHCl₃)/cm⁻¹ 3060, 3000, 2952, 2928, 2856, 2828, 1736, 1584, 1480, 1440, 1380, 1328, 1296, 1260, 1228, 1148, 1112, 1080, 1224, 988, 956; MS (70 °C): 296 (M⁺, 0.9), 233 (2.5), 219 (38.7), 210 (8.5), 199 (24.1), 187 (19.1), 155 (98.0), 143 (22.3), 124 (28.2), 109 (17.2), 106 (12.2), 105 (14.6), 101 (23.9), 95 (6.6), 87 (31.6), 85 (13.6), 81 (100.0), 77 (9.4), 65 (8.5); HR-MS calcd. for C₁₅H₂₀O₄S (M⁺) 296.1082, found 296.1078.

(2R, 4S, 6R)-2-(4-Methoxy-6-phenylsulfanyl-tetrahydro-pyran-2-yl)-ethanol (17ax). At 0 °C 100.0 µl (1.0 mmol) of the borane dimethyl sulphide complex (10 M) were added to a solution of 197.0 mg (0.7 mmol) of acid 8 and 237.0 ul (1.4 mmol) of triethyl borate in 1 ml of abs. THF. The solution was stirred for 1 h at 0 °C and overnight at rt. For work-up 1 ml of methanol was added and the mixture was concentrated in vacuo. This procedure was repeated twice. The anomers could be separated by column chromatography (CH/EA = 2/1) to afford (136.7 mg, 0.5 mmol, 73% overall) of alcohol 17ax/17eq = 5/1. 17ax, $[\alpha]_D^{25} = +209.8$ (c = 1, CHCl₃); ¹H NMR (400 MHz, CDCl₃, TMS) δ 7.49 (m, 2 H, o-Ar), 7.33 (m, 3 H, m-Ar u. p-Ar), 5.80 (d, J = 5.5 Hz, 1 H, H-6), 4.42 (dddd, J = 12.5 Hz, J = 8.7 Hz, J = 3.9 Hz, J = 2.2 Hz, 1 H, H-2), 3.71 (dddd, J = 11.4 Hz, J = 11.2Hz, J = 5.7 Hz, J = 4.2 Hz, 1 H, H-4), 3.62 (ddd, J = 11.4 Hz, J = 5.3 Hz, J = 1.5 Hz, 2 H, H-8), 3.41 (s, 3 H, OCH₃), 2.41 (ddd, J = 13.2 Hz, J = 5.7 Hz, J = 1.2 Hz, 1 H, H-5_{ea}), 2.12 (ddd, J = 12.5 Hz, J = 4.2 Hz, J = 2.2J = 12.5 Hz, J = 12.5 Hz, J = 11.2 Hz, 1 H, H-3_{ax}); ¹³C NMR (100 MHz, CDCl₃, TMS) δ 134.71 (C, C_{Ar}), 131.25 (CH, m-CAr), 129.06 (CH, o-CAr), 127.26 (CH, p-CAr), 84.10 (CH, C-6), 72.71 (CH, C-2), 67.80 (CH, C-4), 60.28 (CH₂, C-8), 55.49 (CH₃, OCH₃), 37.98 (CH₂, C-7), 36.55 (CH₂, C-5), 26.91 (CH₂, C-3); v_{max} (CHCl₃)/cm⁻¹ 3624, 3532, 2988, 2948, 2928, 2884, 1480, 1440, 1372, 1296, 1236, 1156, 1132, 1084, 1000, 976, 948, 908; MS (120 °C): 268 (M⁺, 1.1), 237 (1.8), 219 (3.0), 179 (10.7), 163 (14.1), 159 (32.6), 149 (16.1), 135 (22.4), 127 (100.0), 115 (15.6), 110 (28.7), 109 (32.1), 101 (78.5), 91 (13.7), 87 (19.8), 75 (40.1); HR-MS calcd. for C₁₄H₂₀O₃S (M⁺) 268.1133, found 268.1131.

(2R, 4S, 6S)-2-(4-Methoxy-6-phenylsulfanyl-tetrahydro-pyran-2-yl)-ethanol (17eq). $[\alpha]_D^{25} = -38.2^{\circ}$ (c = 1, CHCl₃); ¹H NMR (400 MHz, CDCl₃, TMS) δ 7.49 - 7.47 (m, 2 H, o-Ar), 7.31 - 7.26 (m, 3 H, m-Ar/p-Ar), 4.73 (dd, J = 12.0 Hz, J = 2.0 Hz, 1 H, H-6), 3.72 (ddd, J = 14.3 Hz, J = 4.6 Hz, J = 2.4 Hz, 2 H, H-8), 3.59 (dddd, J = 12.0 Hz, J = 9.0 Hz, J = 5.7 Hz, J = 1.8 Hz, 1 H, H-2), 3.40 (dddd, J = 12.0 Hz, J = 11.3 Hz, J = 4.2 Hz, J = 2.0 Hz, 1 H, H-4), 3.35 (s, 3 H, OCH₃), 2.36 (ddd, J = 12.0 Hz, J = 4.2 Hz, J = 2.0 Hz, 1 H, H-5_{eq}), 1.98 (ddd, J = 12.0 Hz, J = 4.2 Hz, J = 1.8 Hz, 1 H, H-3_{eq}), 1.86 (m, 1H, H-7a), 1.73 (m, 1 H, H-7b), 1.47 (ddd, J = 12.0 Hz, J = 12.0 Hz, J = 12.0 Hz, J = 12.0 Hz, I = 12.0 Hz

(2R, 4S, 6R)-2-(2-Benzyloxy-ethyl)-4-methoxy-6-phenylsulfanyl-tetrahydro-pyran (**18eq**). A suspension of 59.0 mg (0.2 mmol) of **17eq** and 18.0 mg (0.5 mmol) of sodium hydride (60%) in 1 ml of abs. THF was refluxed for 15 min. At 0 °C a catalytic amount of tetra-*n*-butylammonium iodide and 56.0 µl (0.5 mmol) of benzyl bromide were added. The mixture was heated under reflux for 10 h, poured into sat. sodium hydrogen carbonate solution, extracted with MTBE, dried over MgSO₄ and concentrated *in vacuo*. Column chromatography (CH/EA = 5/1) afforded 60.6 mg (0.17 mmol, 77%) of **18eq**, $[\alpha]_D^{27} = -14.2$ (c = 1, CHCl₃); ¹H NMR (400 MHz, CDCl₃, TMS) δ 7.47 (m, 2 H, *o*-SPh), 7.36 - 7.20 (m, 8 H, *m*-, *p*-SPh/Ph), 4.74 (dd, *J* = 11.9 Hz, *J* = 1.9 Hz, 1 H, H-6), 4.46 (d, *J* = 11.8 Hz, 1 H, CH₂Ph), 4.41 (d, *J* = 11.8 Hz, 1 H, CH₂Ph), 3.65 - 3.53 (m, 3 H, H-8/H-2), 3.41 (dddd, *J* = 11.3 Hz, *J* = 10.9 Hz, *J* = 4.2 Hz, *J* = 4.0 Hz, 1 H, H-4), 3.34 (s, 3 H, OCH₃), 3.41 (s, 3 H, OCH₃), 2.36 (ddd, *J* = 12.3 Hz, *J* = 4.0 Hz, *J* = 1.9 Hz, 1 H, H-4), 3.34 (s, 3 H, OCH₃), 1.22 (m, 1H, H-3_{ax}); ¹³C NMR (100 MHz, CDCl₃, TMS) δ 138.45 (C, C_{Ph}), 134.66 (C, C_{SPh}), 130.94 (CH, C_{Ar}), 128.76 (CH, C_{Ar}), 128.40 (CH, C_{Ar}), 127.59 (CH, C_{Ar}), 127.06 (CH, C_{Ar}), 82.33 (CH, C-6), 76.44 (CH, C-2), 73.13 (CH₂, CH₂Ph), 72.88 (CH, C-4), 66.48 (CH₂, C-8), 55.54 (CH₃, OCH₃), 37.52 (CH₂, C-7), 37.07 (CH₂, C-5), 36.09 (CH₂, C-3); v_{max} (CHCl₃)/cm⁻¹ 3064, 3000, 2948, 2924, 2860, 1584, 1480, 1452, 1360, 1296, 1260,

1228, 1164, 1136, 1096, 1024, 948; MS (120 °C): 268 (M^+ -90, 1.1), 237 (1.8), 219 (3.0), 179 (10.7), 163 (14.1), 159 (32.6), 149 (16.1), 135 (22.4), 127 (100.0), 115 (15.6), 110 (28.7), 109 (32.1), 101 (78.5), 91 (13.7), 87 (19.8), 75 (40.1); HR-MS calcd. for C₁₄H₂₀O₃S (M^+ -90) 268.1133, found 268.1129.

(2R, 4S, 6S)-2-(2-Benzyloxy-ethyl)-4-methoxy-6-phenylsulfanyl-tetrahydro-pyran (18ax). Following the procedure described for 18eq alcohol 17ax was converted into 18ax in 76% yield, $[\alpha]_D^{27} = +182.3$ (c = 1, CHCl₃); ¹H NMR (400 MHz, CDCl₃, TMS) δ 7.50 - 7.19 (m, 10 H, Ar), 5.76 (d, J = 5.5 Hz, 1 H, H-6), 4.36 (d, J = 11.8 Hz, 1 H, CH₂Ph), 4.34 (m, 1H, H-2), 4.32 (d, J = 11.8 Hz, 1 H, CH₂Ph), 3.65 (dddd, J = 11.6 Hz, J = 11.6 Hz, J = 4.4 Hz, 1 H, H-4), 3.44 (m, 2 H, H-8), 3.36 (s, 3 H, OCH₃), 2.36 (ddd, J = 13.1 Hz, J = 4.4 Hz, J = 1.1 Hz, 1 H, H-5_{eq}), 2.10 (ddd, J = 12.0 Hz, J = 4.6 Hz, J = 2.2 Hz, 1 H, H-3_{eq}), 1.89 - 1.81 (m, 2 H, H-7), 1.84 (ddd, J = 13.1 Hz, J = 11.6 Hz, J = 5.5 Hz, 1 H, H-5_{ex}), 1.23 (ddd, J = 12.0 Hz, J = 11.6 Hz

(2S, 4S, 6R)-(6-Benzenesulfonyl-4-methoxy-tetrahydropyran-2-yl)-acetic acid methyl ester (19ax). At 0 °C 150.0 mg (0.6 mmol) of m-chloroperoxybenzoic acid (ca. 70%) was added to a suspension of 60.0 mg (0.2 mmol) of 16 and 120.2 mg (1.4 mmol) of sodium hydrogen carbonate in 6 ml of DCM. After 1 h the reaction mixture was poured into sat. sodium hydrogen carbonate solution, washed with 2 N sodium hydroxide, extracted with DCM, dried over Na₂SO₄ and concentrated in vacuo. The anomers could be separated by column chromatography (19ax/19eq = 1.4/1). Overall yield 59.0 mg (0.2 mmol, 89%). 19ax $[\alpha]_D^{20} = +5.0^\circ$ (c = 0.3, CHCl₃); ¹H NMR (400 MHz, CDCl₃, TMS) & 7.93 (m, 2 H, o-Ar), 7.66 (m, 1H, p-Ar), 7.57 (m, 2 H, m-Ar), 4.96 (dddd, J = 10.8 Hz, J = 7.7 Hz, J = 5.0 Hz, J = 2.6 Hz, 1 H, H-2), 4.85 (dd, J = 7.0 Hz, J = 2.0 Hz, 1 H, H-6), 4.08 (dddd, J = 11.0 Hz, J = 7.2 Hz, J = 4.4 Hz, J = 4.2 Hz, 1 H, H-4), 3.60 (s, 3 H, OCH₃), 3.42 (OCH₁), 2.95 (ddd, J = 14.2 Hz, J = 4.2 Hz, J = 2.6 Hz, 1 H, H-3_{ea}), 2.45 (dd, J = 11.0 Hz, J = 7.7 Hz, 1 H, H-7a), 2.44 (dd, J = 11.0 Hz, J = 5.0 Hz, 1 H, H-7b), 2.18 (ddd, J = 12.6 Hz, J = 4.4 Hz, J = 2.0 Hz, 1 H, H-5ea), 1.75 (ddd, J = 14.2 Hz, J = 10.8 Hz, J = 7.2 Hz, 1 H, H-3_{ax}), 1.27 (ddd, J = 12.6 Hz, J = 11.0 Hz, J = 5.2 Hz, 1 H, H-5_{ax}); ¹³C NMR (100 MHz, CDCl₃, TMS) δ 170.73 (C, C-8), 136.97 (C, C_{Ar}), 133.88 (CH, p-C_{Ar}), 129.26 (CH, m-C_{Ar}), 129.02 (CH, o-C_{Ar}), 89.65 (CH, C-6), 71.16 (CH, C-2), 70.08 (CH, C-4), 55.88 (CH₃, OCH₃), 51.75 (CH₃, OCH₃), 41.17 (CH₂, H-7), 36.25 (CH₂, C-5), 27.67 (CH₂, C-3); v_{max} (CHCl₃)/cm⁻¹ 3040, 2952, 2936, 1736, 1600, 1448, 1392, 1352, 1308, 1232, 1148, 1084, 1044, 1000, 944; FAB: 351 (M⁺+23 (Na), 27), 297 (18), 176 (27), 165 (34), 155 (79), 133 (100).

(2S, 4S, 6S)-(6-Benzenesulfonyl-4-methoxy-tetrahydro-pyran-2-yl)-acetic acid methyl ester (19eq). $[\alpha]_D^{20} = +5.0^{\circ}$ (c = 0.3, CHCl₃); ¹H NMR (200 MHz, CDCl₃, TMS) δ 7.90 (m, 2 H, o-Ar), 7.59 (m, 3 H, p- u. m-Ar), 4.36 (dd, J = 12.0 Hz, J = 2.2 Hz, 1 H, H-6), 3.78 (m, 1H, H-2), 3.54 (s, 3 H, OCH₃), 3.46 (dddd, J = 11.1 Hz, J = 11.0 Hz, J = 6.5 Hz, J = 4.6 Hz, 1 H, H-4), 3.38 (s, 3 H, OCH₃), 2.61 (dd, J = 15.5 Hz, J = 7.7 Hz, 1 H, H-7a), 2.43 (dd, J = 15.5 Hz, J = 5.3 Hz, 1 H, H-7b), 2.09 (m, 1 H, H-3_{eq}), 2.03 (ddd, J = 12.2 Hz, J = 4.6 Hz, J = 2.2 Hz, 1 H, H-5_{eq}), 1.51 (ddd, J = 12.2 Hz, J = 12.0 Hz, J = 11.0 Hz, J = 10.4 Hz, J = 9.8 Hz, 1 H, H-3_{ax}); ν_{max} (CHCl₃)/cm⁻¹ 3068, 3012, 2952, 2932, 2856, 2832, 1736, 1448, 1372, 1328, 1260, 1232, 1180, 1148, 1048, 992, 968, 908, 868, 808; MS (70 °C): 156 (M⁺-172, 2.2), 155 (2.9), 120 (3.8), 118 (4.8), 115 (4.1), 97 (3.9), 87 (12.2), 85 (72.0), 83 (100.0), 82 (4.5), 71 (3.7); FAB: 351 (M⁺+23 (Na), 36), 209 (17), 187 (33), 155 (100), 135 (35), 123 (43), 109 (47); HR-MS calcd. for C₈H₁₂O₃ (M⁺-CH₃OSO₂Ph) 156.0786, found 156.0782.

(2R, 4S)-2-Benzenesulfonyl-6-(2-benzyloxy-ethyl)-4-methoxy-tetrahydro-pyran (20). At 0 °C 315.0 mg (1.3 mmol) of *m*-chloroperoxybenzoic acid (ca. 70%) were added to a suspension of 252.0 mg (3.0 mmol) of sodium hydrogen carbonate and 114.0 mg (0.3 mmol) of 18ax in abs. DCM (8 ml). After 1 h the reaction mixture was poured into sat. sodium hydrogen carbonate solution. The organic layer was washed with 2 N sodium hydroxide solution, the combined aqueous layers were extracted with DCM, dried over Na₂SO₄ and concentrated *in vacuo*.

Column chromatography afforded 123.2 mg (0.3 mmol, 99%, white solid) of sulfone **20** as an anomeric mixture (ax/eq = 2.5/1 (¹H NMR)). Spectroscopic data for the axial anomer was determined from the anomeric mixture. ¹H NMR (400 MHz, CDCl₃, TMS) δ 7.92 (m, 2 H, o-SPh), 7.65 (m, 1H, p-SPh), 7.52 (m, 2 H, m-SPh), 7.35 - 7.19 (m, 5 H, Ph), 4.33 (dd, J = 11.8 Hz, J = 2.0 Hz, 1 H, H-6), 4.27 (d, J = 12.0 Hz, 1 H, CH₂Ph), 4.22 (d, J = 12.0 Hz, 1 H, CH₂Ph), 3.52 (m, 1H, H-4), 3.41 (m, 2 H, H-8), 3.36 (s, 3 H, OCH₃), 3.31 (dddd, J = 9.2 Hz, J = 8.6 Hz, J = 5.3 Hz, J = 5.1 Hz, 1 H, H-2), 2.63 (dddd, J = 12.0 Hz, J = 3.3 Hz, J = 3.1 Hz, J = 2.0 Hz, 1 H, H-5_{eq}), 1.96 (dddd, J = 12.7 Hz, J = 3.2 Hz, J = 3.1 Hz, J = 1.8 Hz, H-3_{eq}), 1.78 (m, 2 H, H-7), 1.50 (ddd, J = 12.0 Hz, J = 11.8 Hz, J = 11.0 Hz, 1 H, H-5_{ax}), 1.25 (m, 1H, H-3_{ax}); ¹³C NMR (100 MHz, CDCl₃, TMS) δ 138.19 (C, C_{SPh}), 136.27 (C, C_{Ph}), 133.95 (CH, *p*-C_{SPh}), 129.65/128.83/128.41 (CH, *o*-, *m*-C_{Ph}/*o*-C_{SPh}), 127.67 (CH, *p*-C_{Ph}), 127.56 (CH, *m*-C_{SPh}), 89.73 (CH, C-6), 75.43 (CH, C-2), 74.28 (CH, C-4), 73.03 (CH₂, CH₂Ph), 65.99 (CH₂, C-8), 55.75 (CH₃, OCH₃), 37.17 (CH₂, C-7), 35.62 (CH₂, C-5), 29.38 (CH₂, C-3); v_{max} (CHCl₃)/cm⁻¹ 3068, 3000, 2940, 2928, 2860, 1600, 1448, 1368, 1320, 1264, 1228, 1148, 1084, 1028, 984, 932, 888, 816, 600; MS (150 °C): 264 (M⁺-126, 1.4), 250 (1.4), 248 (8.4), 231 (1.0), 217 (13.4), 173 (4.3), 159 (33.0), 146 (7.4), 125 (7.8), 111 (5.8), 105 (5.7), 91 (100.0), 87 (13.9), 77 (10.4); HR-MS calcd. for C₁₅H₂₀O₃ (M⁺-HSO₂Ph) 248.1413, found 248.1413.

Acknowledgments. We thank the Deutsche Forschungsgemeinschaft (Graduiertenkolleg Chemische und technische Grundlagen der Naturstofftransformation) for a PhD fellowship (R. D.), the Fonds der chemischen Industrie for financial support and Matthias Mentzel for his help.

References

- ¹ Barton, D. H. R.; Nakanishi, K.; Meth-Cohn, O. Eds. Comprehensive Natural Products Chemistry, Vol. 1, Sankawa, U. Vol.Ed., Elsevier 1999.
- ² a) Evans, D. A.; Ratz, A. M.; Huff, B. E.; Sheppard, G. S. J. Am. Chem. Soc. 1995, 117, 3448; b) Evans, D. A.; Ng, H. P.; Rieger, D. L. J. Am. Chem. Soc. 1993, 115, 11446; c) Oppolzer, W.; Blagg, J.; Rodriguez, I.; Walther, E. J. Am. Chem. Soc. 1990, 112, 2767; d) Oppolzer, W.; Darcel, C.; Rochet, P.; Rosset, S.; de Brabander, J. Helv. Chim. Acta 1997, 80, 1319.
- ³ For a review see: Braun, M. Angew. Chem. 1987, 99, 24.
- ⁴ Kiyooka, S.; Maeda, H. Tetrahedron: Asymm. 1997, 8, 3371.
- ⁵ a) Corey, E. J.; Cywin, C. L.; Roper, T. D. Tetrahedron Lett. 1992, 33, 6907; b) Parmee, E. R.; Hong, Y.; Tempkin, O.; Masamune, S. Tetrahedron Lett. 1992, 33, 1729; c) Keck, G. E.; Krishnamurthy, D. J. Am. Chem. Soc. 1995, 117, 2363; d) Carreira, E. M.; Singer, R. A.; Lee, W. J. Am. Chem. Soc. 1994, 116, 8837; e) Mikami, K.; Matsukawa, S. J. Am. Chem. Soc. 1994, 116, 4077; f) Evans, D. A.; Murry, J. A.; Kozlowski, M. C. J. Am. Chem. Soc. 1996, 118, 5814.
- ⁶ a) Paterson, I.; Goodman, J. M.; Lister, M. A.; Schumann, R. C.; McClure, C. K.; Norcross, R. D. *Tetrahedron* 1990, 46, 4663; b) For recent improvements on 1,5-anti induction see: Paterson, I.; Gibson, K. R.; Oballa, R. M. *Tetrahedron Lett.* 1996, 37, 8585.
- ⁷ Evans, D. A.; Hoveyda, A. H. J. Am. Chem. Soc. 1990, 112, 6447.
- ⁸ a) Saksena, A. K.; Mangiaracina, P. Tetrahedron Lett. 1983, 24, 273; b) Evans, D. A.; Chapman, K. T.; Carreira, E. M. J. Am. Chem. Soc. 1988, 110, 3560.
- ⁹ a) Sletzinger, M.; Verhoeven, T. R.; Volante, R. P.; McNamara, J. M.; Corley, E. G.; Liu, T. M. H. *Tetrahedron Lett.* **1985**, *26*, 2951; b) Chen, K.-M.; Hardtmann, G. E.; Prasad, K.; Repic, Shapiro, M. J. *Tetrahedron Lett.* **1987**, *28*, 155; c) Mori, Y.; Asai, M.; Okumura, A.; Furukawa, H. *Tetrahedron* **1995**, *51*, 5299.
- ¹⁰ a) Poss, C. S.; Schreiber, S. L. Acc. Chem. Res. 1994, 27, 9; b) Rychnovsky, S. D. Chem. Rev. 1995, 95, 2021.
- ¹¹ Lampe, T. F. J.; Hoffmann, H. M. R. J. Chem. Soc., Chem. Commun. 1996, 1931.
- ¹² Wolbers, P., Hoffmann, H. M. R. Tetrahedron 1999, 55, 1905.
- ¹³ Kim, H.; Hoffmann, H. M. R. publication in preparation.
- ¹⁴ Dunkel, R.; Mentzel, M.; Hoffmann, H.M.R. Tetrahedron 1997, 53, 14929.

- ¹⁵ a) Pettit, G. R.; Cichacz, Z. A.; Gao, F.; Herald, C. L.; Boyd, M. R.; Schmidt, J. M.; Hooper, J. N. A. J. Org. Chem. 1993, 58, 130; b) Kobayashi, M.; Aoki, S.; Sakai, H.; Kawazoe, K.; Kihara, N.; Sasaki, T.; Kitagawa, I. Tetrahedron Lett. 1993, 34, 2795; c) Fusetani, N.; Shinoda, K.; Matsunaga, S. J. Am. Chem. Soc. 1993, 113, 3977; d) Kobayashi, M.; Aoki, S.; Kitagawa, I. Tetrahedron Lett. 1994, 35, 1243; e) Pettit, G. R.; Herald, C. L.; Cichacz, Z. A.; Gao, F.; Schmidt, J. M.; Boyd, M. R.; Christie, N. D.; Boettner, F. E. J. Chem. Soc., Chem. Commun. 1993, 1805; f) Pettit, G. R.; Cichacz, Z. A.; Herald, C. L.; Gao, F.; Boyd, M. R.; Schmidt, J. M.; Hamel, E.; Bai, R. J. Chem. Soc., Chem. Commun. 1994, 1605; g) Kobayashi, M.; Aoki, S.; Sakai, H.; Kihara, N.; Sasaki, T.; Kitagawa, I. Chem. Pharm. Bull. 1993, 41, 989; h) Pettit, G. R.; Herald, C. L.; Cichacz, Z. A.; Gao, F.; Boyd, M. R.; Christie, N. D.; Schmidt, J. M. Nat. Prod. Lett. 1993, 3, 239; i) Fusetani, N.; Shinoda, K.; Matsunaga, S. J. Am. Chem. Soc. 1993, 115, 3977; j) Pettit, G. R.; Cichacz, Z. A.; Gao, F.; Boyd, M. R.; Christie, N. D.; Schmidt, J. M. Nat. Prod. Lett. 1993, 3, 239; i) Fusetani, N.; Shinoda, K.; Matsunaga, S. J. Am. Chem. Soc. 1993, 115, 3977; j) Pettit, G. R.; Cichacz, Z. A.; Gao, F.; Boyd, M. R. J. Chem. Soc., Chem. Commun. 1993, 1166; k) Bai, R.; Taylor, G. F.; Cichacz, Z. A.; Herald, C. L.; Kepler, J. A.; Pettit, G. A.; Hamel, E. Biochemistry 1995, 34, 9714; l) Bai, R.; Cichacz, Z. A.; Herald, C. L.; Pettit, G. R.; Hamel, E. Mol. Pharmacol. 1993, 44, 757.
- Total synthesis: a) Evans, D. A.; Coleman, P. J.; Diaz, L. C. Angew. Chem. 1997, 109, 2951; Evans, D. A.; Trotter, B. W.; Côté, B.; Coleman, P. J. Angew. Chem. 1997, 109, 2954; Evans, D. A.; Trotter, B. W.; Côté, B.: Coleman, P. J.; Diaz, L. C.; Tyler, A. N. Angew. Chem. 1997, 109, 2957; b) Guo, J.; Duffy, K. J.; Stevens, K. L.; Dalko, P. I.; Roth, R. M.; Hayward, M. M.; Kishi, Y. Angew. Chem. 1998, 110, 198; Hayward, M. M.; Roth, R. M.; Duffy, K. J.; Dalko, P. I.; Stevens, K. L.; Guo, J.; Kishi, Y. Angew. Chem. 1998, 110, 202. Other synthetic efforts and fragment syntheses: c) Smith III, A. B.; Zhuang, L.; Brook, C. S.; Boldi, A. M.; McBriar, M. D.; Moser, W. H.; Murase, N.; Nakayama, K.; Verhoest, P. R.; Lin, Q. Tetrahedron Lett. 1997, 38, 8667; d) Smith III, A. B.; Zhuang, L.; Brook, C. S.; Lin, Q.; Moser, W. H.; Trout, R. E. L.; Boldi, A. M. Tetrahedron Lett. 1997, 38, 8671; e) Smith III, A. B.; Lin, Q.; Nakayama, K.; Boldi, A. M.; Brook, C. S.; McBriar, M. D.; Moser, W. H.; Sobukawa, M.; Zhuang, L. Tetrahedron Lett. 1997, 38, 8675; f) Claffey, M. M.; Heathcock, C. H. J. Org. Chem. 1996, 61, 7646; g) Paterson, I.; Oballa, R. M.; Norcross, R. D. Tetrahedron Lett. 1996, 37, 8581; h) Paquette, L. A.; Zuev, D. Tetrahedron Lett. 1997, 38, 5115; i) Paterson, I.; Keown, L. E. Tetrahedron Lett. 1997, 38, 5727; j) Hayes, C. J.; Heathcock, C. H. J. Org. Chem. 1997, 62, 2678; k) Paterson, I.; Oballa, R. M. Tetrahedron Lett. 1997, 38, 8241; l) Hermitage, S. A.; Roberts, S. M.; Watson, D. J. Tetrahedron Lett. 1998, 39, 3567; m) Lemaire-Audoire, S.; Vogel, P. Tetrahedron Lett. 1998, 39, 134; n) Zemribo, R.; Mead, K. T. Tetrahedron Lett. 1998, 39, 3895; o) Terauchi, T.; Nakata, M. Tetrahedron Lett. 1998, 39, 3795; p) Paterson, I.; Wallace, D. J.; Oballa, R. M. Tetrahedron Lett. 1998, 39, 8545; q) Fernandez-Megia, E.; Gourlaouen, N.; Ley, S. V.; Rowlands, G., J. Synlett 1998, 991.
- ¹⁷ For further development to the C28-C41 segment see: Wolbers, P.; Hoffmann, H. M. R. Synthesis 1999, 797.
- ¹⁸ a) Endo, A.; Kuroda, M.; Tsujita, Y. J. Antibiot. 1976, 29, 1346; b) Brown, A. G.; Smale, T. C.; King, T. J.;
 Hasenkamp, R.; Thompson, R. H. J. Chem. Soc., Perkin Trans. 1 1976, 1165.
- ¹⁹ Ley, S. V.; Lygo, B.; Organ, H. M.; Wonnacott, A. Tetrahedron 1985, 41, 3825.
- ²⁰ Mori, K.; Ikunuka, M. Tetrahedron 1987, 43, 45.
- ²¹ a) Ley, S. V.; Lygo, B.; Wonnacott, A. Tetrahedron Lett. 1985, 26, 535; b) Greck, C.; Grice, P.; Ley, S. V.;
 Wonnacott, A. Tetrahedron Lett. 1986, 27, 5277; c) Beau, J.-M.; Sinay, P. Tetrahedron Lett. 1985, 26, 6185
- ²² Ley, S. V.; Lygo, B.; Sternfeld, F.; Wonnacott, A. Tetrahedron 1986, 42, 4333.
- ²³ Urban, D.; Skrydstrup, T.; Riche, C.; Chiaroni, A.; Beau, J.-M. J. Chem. Soc., Chem. Commun. 1986, 1883.
- ²⁴ Further investigations have shown that conversion of acetals without terminal ester function (via reduction of the ester and protection) occurs at lower temperatures and thus removal of even primary benzyl groups is prevented.
- ²⁵ Paterson, I.; Wallace, D. J.; Oballa, R. M. Tetrahedron Lett. 1998, 39, 8545.
- ²⁶ For an exo-isomer the sequence is performed for the synthesis of the C29-C37 fragment of spongistatin. Dunkel, R.; Treu, J.; Hoffmann, H. M. R. Tetrahedron: Asymm. 1999, 10, 1539.
- ²⁷ Hoffmann, H. M. R.; Iqbal, M. N Tetrahedron Lett. 1975, 16, 4487; Kim, H.; Hoffmann, H. M. R. submitted for publication.