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Abstract: Relay catalysis for a ternary reaction sequence composed
of double-bond isomerization, protonation of the double bond, and
enantioselective Pictet–Spengler-type cyclization was accom-
plished using a binary catalytic system consisting of a ruthenium
hydride complex and a chiral phosphoric acid as the chiral Brønsted
acid catalyst.
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The combined use of a transition-metal catalyst and an or-
ganocatalyst has stimulated intensive interest in recent
years1 as it may potentially enable highly efficient and/or
unprecedented transformations in a one-pot operation. In-
deed, excellent approaches have been established by tak-
ing advantage of both of these catalytic approaches.
Meanwhile, two types of combinations have been devel-
oped in the binary catalytic system. One is the simultane-
ous activation of two reactants by their respective
catalysts; for instance, a metal catalyst is used to activate
a nucleophile while an organocatalyst is used to activate
an electrophile in a cooperative manner.2 The other is the
consecutive transformation using a binary catalytic sys-
tem, that is, relay catalysis for a multistep sequence in
which each catalyst promotes one type of reaction in a
one-pot sequential manner.3 Recently, we demonstrated
relay catalysis by a ruthenium complex–Brønsted acid bi-
nary system in a tandem isomerization and carbon–carbon
bond-forming sequence.3a The relay catalysis enables al-
lylamides to generate imines in situ for further transfor-
mations. However, to the best of our knowledge, the
enantioselective version of the analogous relay catalysis
has never been reported. In this communication, we report
a relay catalysis for a ternary reaction sequence composed
of double-bond isomerization, protonation of the double
bond, and enantioselective Pictet–Spengler-type cycliza-
tion using a binary catalytic system consisting of rutheni-
um hydride complex 1 and chiral phosphoric acid 2 as the
chiral Brønsted acid catalyst4,5 (Scheme 1). The ternary
reaction sequence accomplished by the proposed relay ca-
talysis involves: (i) isomerization of allylamide 3 by ru-
thenium hydride complex 1 to enamide 4;6 (ii) protonation

of enamide 4 by chiral phosphoric acid 2 to generate reac-
tive iminium ion intermediate A;7 and (iii) subsequent 6-
endo-trig cyclization under the influence of chiral conju-
gate base 2– to afford tetrahydroisoquinoline derivative 5
in an optically active form.8

Scheme 1  Ternary reaction sequence mediated by ruthenium com-
plex–chiral Brønsted acid binary catalytic system

The Pictet–Spengler reaction is a powerful and efficient
methodology to synthesize tetrahydroisoquinoline or β-
carboline derivatives and has been utilized as the key step
for the synthesis of natural and unnatural alkaloids.9 In the
past decade, tremendous progress has been made in or-
ganocatalytic approaches to the Pictet–Spengler reaction.
Indeed, excellent methods for the enantioselective version
have been realized by either chiral thiourea catalysts or
chiral phosphoric acid catalysts.10,11 In most cases, how-
ever, indole subunits have been employed as the highly
nucleophilic component.10d,11f To broaden the scope of
this fascinating transformation, we envisioned the devel-
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opment of the Pictet–Spengler-type cyclization of m-tyr-
amine derivative 4 having a phenol subunit as the
nucleophilic component, which has been scarcely em-
ployed in the catalytic enantioselective version of the
Pictet–Spengler reaction. It seems that the combined use
of chiral phosphoric acid 2 and ruthenium hydride com-
plex 1 for the isomerization of 3 would enable us to gen-
erate iminium ion intermediate A as the highly
electrophilic species via the isomerization–protonation
sequence in a one-pot operation.

To ascertain the feasibility of the proposed relay catal-
ysis, we initially attempted the reaction of N-Cbz-
protected m-tyramine derivative 3a using 2 mol% of
[RuClH(CO)(PPh3)3] (1) and 5 mol% of racemic phos-
phoric acid 6 in toluene at 50 °C for 12 hours (Scheme 2).
To our delight, the binary catalytic reaction proceeded
smoothly to afford the desired tetrahydroisoquinoline de-
rivative 5a in fairly good yield, where the intermediary
iminium ion underwent the cyclization at the para posi-
tion of the phenol moiety. Indeed, the ruthenium com-
plex–Brønsted acid binary catalytic system enabled us to
establish the present ternary reaction sequence. This pre-
liminary result prompted us to further develop the enan-
tioselective version of the present relay catalysis.

Scheme 2

Before demonstrating the enantioselective version of the
relay catalysis, we attempted the transformation of en-
amides 4 into tetrahydroisoquinoline derivatives 5 via the
protonation–Pictet–Spengler-type cyclization sequence
using chiral phosphoric acid 2. The reaction was conduct-
ed using 5 mol% of chiral phosphoric acid (R)-2 (G = 9-
anthryl) in toluene at room temperature. As expected, the
reaction proceeded smoothly to afford product 5a albeit
with low enantioselectivity (Table 1, entry 1). To enhance
the enantioselectivity, a range of N-protecting groups (R1)
were investigated. As shown in Table 1, N-Boc amide im-
proved both chemical yield and enantioselectivity (entry
2).12 Further screening for the N-protecting group, such as
phosphoryl groups, resulted in a subtle change in the ste-
reochemical outcome. Among the N-protecting groups
tested, diphenylphosphinamide 4f exhibited a slightly
higher chemical yield and enantioselectivity (Table 1, en-
try 6). In terms of the removability of the N-protecting
group, N-Boc amide and diphenylphosphinamide were
employed for subsequent investigation of the enantiose-
lective relay catalysis.

Having identified the last two steps of the ternary reaction
sequence, namely protonation and enantioselective cycli-
zation, in an effort to accomplish the enantioselective re-

lay catalysis, we combined the established process with
the first step of the ternary reaction sequence, that is, the
isomerization of 3 in a one-pot sequential manner. Table
2 summarizes experiments carried out to probe the scope
of the relay catalysis.13,14 In all cases, products 5 were ob-
tained in moderate to good yields. Investigation of the
substituent effect on the aromatic ring (R2) showed that
high chemical yield and enhanced enantioselectivity were
observed by the introduction of a methoxy group (Table 2,
entry 2).15

Scheme 3

Crotylamides 3h and 3i were also applicable to the present
reaction, although the enantioselectivities were reduced
presumably due to the high reaction temperature (Table 2,
entries 3 and 4). The reaction of 3j having dimethyl sub-
stituents at the terminal position of the double bond re-
quired harsh conditions for the isomerization, affording
the product in a modest chemical yield with low enantio-
selectivity (Table 2, entry 5). The introduction of diphe-
nylphosphinamide as the N-protective group resulted in
the formation of products 5 in good yields albeit with low-
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Table 1  Optimization of Pictet–Spengler-Type Cyclization: Screen-
ing for N-Protecting Groupsa

Entry 4 Time (h) 5 Yield (%)b ee (%)c

1 4a 12 5a 67 24

2 4b 12 5b 77 44

3 4c 24 5c 63 38

4 4d 24 5d 61 16

5d 4e 24 5e 58 14

6d 4f 24 5f 81 47

a Unless otherwise noted, all reactions were carried out using 0.0075 
mmol of (R)-2 (5 mol%) and 0.15 mmol of 4 in 0.75 mL of toluene.
b Isolated yield of 5.
c Determined by chiral stationary phase HPLC analysis. The absolute 
configuration at the C1 position of 5 was determined to be S by com-
paring the optical rotation with the reported data after derivatization.
d Isolated yields and ee were determined after derivatization of prod-
uct 5 to benzoate 7 (Scheme 3).
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er enantioselectivities than that observed using the N-Boc
group (Table 2, entries 6 and 7).

The distinct advantage of the present relay catalysis is
highlighted by comparison with a control experiment us-
ing amide 8 (Table 2, entry 6 vs. Scheme 4).16 The reac-
tion of propionaldehyde (9) with 8 in the presence of acid
2 resulted in a considerable amount of 8 that remained un-
changed. It can be considered that the condensation reac-
tion of aldehyde 9 with amide 8 does not favor the
generation of an iminium intermediate, because the nu-
cleophilicity of the nitrogen atom of 8 is considerably re-
duced by the introduction of the electron-withdrawing and
sterically demanding phosphinyl group.

Scheme 4

In conclusion, we have demonstrated a relay catalysis for
a ternary reaction sequence composed of double-bond
isomerization, protonation of the double bond, and enan-
tioselective Pictet–Spengler-type cyclization using a bina-
ry catalytic system consisting of a ruthenium hydride
complex and a chiral phosphoric acid as the chiral Brøn-
sted acid catalyst. The present relay catalysis enables effi-
cient access to tetrahydroisoquinoline derivatives in
moderate to good yields albeit with insufficient enantiose-
lectivities. Further studies on the improvement of the ste-

reochemical outcome and the development of other types
of enantioselective relay catalysis are in due course.
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12.5 min (37% ee); [α]D

26 +24.5 (c 1.1, CHCl3); rotamer 
(major/minor = 60:40) was observed. 1H NMR (500 MHz, 
CDCl3): δ = 0.95–0.97 (3 H, m), 1.48 (9 H, s), 1.68–1.80 (2 
H, m), 2.64–2.67 (1 H, m), 2.81–2.89 (1 H, m), 3.12–3.14 
(0.60 H, m), 3.26–3.30 (0.40 H, m), 3.89–3.91 (0.40 H, m), 
4.14–4.16 (0.60 H, m), 4.86–4.99 (2 H, m), 6.59 (1 H, s), 
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6.64–6.68 (1 H, m), 6.96–6.97 (1 H, m). 13C NMR (125.65 
MHz, CDCl3): δ = 10.88, 11.18, 28.44, 28.66, 29.73, 30.09, 
37.01, 38.48, 55.24, 56.08, 79.86, 80.19, 113.49, 114.98, 
115.10, 128.00, 128.30, 129.29, 129.51, 135.21, 135.46, 
154.73, 154.83, 155.38, 155.46. IR (ATR): 3330, 2971, 
2932, 2875, 1687, 1656, 1613, 1427, 1232, 1160, 918, 863 
cm–1. ESI-HRMS: m/z calcd for C16H23NO3Na [M + Na]+: 
300.1570; found: 300.1569. 

(14) The reaction of the product 5b with ruthenium complex 1 
and chiral phosphoric acid 2 under the same reaction 
conditions (50 °C, 12 h). 5b was recovered quantitatively, 
and no racemization of 5b was observed. 

(15) (a) The absolute configuration was determined to be S by 
optical rotation after derivatization to (S)-1-ethyl-6,7-
dimethoxy-1,2,3,4-tetrahydroisoquinoline: [α]D

24 –24.2 (c 
2.2, CH2Cl2); literature value of S-isomer [α]D

20 –51.9 (c 2.1, 
CH2Cl2). See: Polniaszek, R. P.; Kaufman, C. R. J. Am. 
Chem. Soc. 1989, 111, 4859. (b) Compound 5g: white solid; 
Rf = 0.45 (hexane–EtOAc = 2:1). HPLC analysis Chiralpak 
IA (hexane–EtOH = 96:4, 1.0 mL/min, 254 nm, 30 °C): tR 
(minor) = 11.3 min; tR (major) = 21.9 min (53% ee); [α]D

25 

+49.7 (c 1.2, CHCl3); rotamer (major/minor = 55:45) was 
observed. 1H NMR (500 MHz, CDCl3): δ = 0.98–0.99 (3 H, 
m), 1.48 (9 H, s), 1.71–1.80 (2 H, m), 2.57–2.61 (1 H, m), 
2.74–2.86 (1 H, m), 3.09–3.13 (0.55 H, m), 3.23–3.27 (0.45 
H, m), 3.85–3.92 (3.45 H, m), 4.16–4.18 (0.55 H, m), 4.84–
4.86 (0.55 H, m), 4.96–4.98 (0.45 H, m), 5.53 (1 H, brs), 6.57 
(1 H, s), 6.65–6.66 (1 H, m). 13C NMR (125.65 MHz, 
CDCl3): δ = 10.85, 11.09, 27.64, 27.78, 28.31, 29.57, 29.96, 
36.62, 38.33, 55.06, 55.84, 79.22, 79.51, 109.29, 109.63, 
114.21, 114.46, 126.52, 126.81, 129.15, 129.51, 144.06, 
144.16, 144.95, 145.03, 154.92, 155.04; IR (ATR): 3369, 
2969, 2932, 2842, 1683, 1515, 1420, 1364, 1271, 1241, 
1111, 932, 863 cm–1. ESI-HRMS: m/z calcd for 
C17H25NO4Na [M + Na]+: 330.1676; found: 330.1675.

(16) Kobayashi and co-workers showed that the Pictet–Spengler 
reaction of benzaldehyde with m-tyramine using Brønsted 
acids, such as sulfonic acid and carboxylic acid, gave the 
corresponding product in low yield, see: Manabe, K.; 
Nobutou, D.; Kobayashi, S. Bioorg. Med. Chem. 2005, 13, 
5154.
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