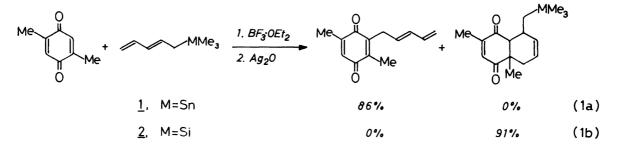
CHEMISTRY LETTERS, pp. 1683-1686, 1983.

HIGHLY SELECTIVE INTRODUCTION OF CONJUGATED DIENES TO GOOD DIENOPHILES, α,β -UNSATURATED CARBONYL COMPOUNDS AND p-QUINONES, WITHOUT FORMATION OF DIELS-ALDER ADDUCT


Yoshinori NARUTA, Naoshi NAGAI, Yoshihiro ARITA, and Kazuhiro MARUYAMA^{*} Department of Chemistry, Faculty of Science, Kyoto University, Sakyo-ku, Kyoto 606

The reaction of 2,4-pentadienyltrimethylstannane with α , β -unsaturated carbonyl compounds and p-quinones in the presence of Lewis acid affords the corresponding pentadienylated products in fair to good yield without formation of any Diels-Alder adduct.

Introduction of conjugated dienes to organic molecules is very important for their versatile utility in organic synthesis.¹⁾ However, α , β -unsaturated carbonyl compounds, especially quinones, are excellent dienophiles, to which selective dienylation is generally difficult because of preferable formation of Diels-Alder adducts.²⁾ In the course of total synthesis of naturally occurring quinones, e.g. anthracyclinones³⁾ and mitomycins,⁴⁾ increasing demand for direct 2,4-pentadienylation to the above good dienophiles made us develop a new methodology, which overcomes the expected difficulty and is of wide applicability to organic synthesis.

We report here a successful 2,4-pentadienylation of quinones and α,β -unsaturated carbonyl compounds with 2,4-pentadienyltrimethylstannane in excellent selectivity.

In our previous papers,⁵⁾ quinones were suitably allylated with allyltrialkylstannanes. This methodology was extended to the present reaction. Typical example of 2,4-pentadienylation of p-quinones was performed as follows. To a CH_2Cl_2 solution of 2,5-dimethylbenzoquinone (1.0 mmol), BF_3 ·OEt₂ (2.0 mmol) was added at -78 °C followed by the addition of 2,4-pentadienyltrimethylstannane⁶⁾ (<u>1</u>)(1.2 mmol) to afford the corresponding dienylated hydroquinone, which was oxidized with Ag_2O to give 2,5-dimethyl-3-(2',4'-pentadienyl)benzoquinone in an 86% isolated yield (Eq. 1a). Any Diels-Alder adduct was not detected in the reaction mixture by means of TLC and ¹H-NMR. Marked contrast was observed in the reactions used the corresponding silyl derivative (<u>2</u>), which gave only an apparent Diels-Alder adduct under the simi-

lar conditions (Eq. 1b). The remarkable difference may be attributed to the high ionizing ability of Me₃Sn group. The generality of the present reaction is obvious from Table 1.⁷⁾ In the reaction of 2,4-hexadienyltrimethylstannane $(\underline{3})$,⁸⁾Me₃Sn- \tilde{C} H₂CH=CHCH= \tilde{C} HCH₃, with quinones, regioselectivity concerning hexadienyl moiety depends on the substituents on p-quinones: in the case of p-benzoquinone, " ε adduct" was predominant product (Table 1, entry 2). On the other hand, when ortho position of p-benzoquinones was substituted, " α adduct" was exclusively obtained (Table 1, entry 4).⁹

The generality observed in the dienylation of quinones is also realized in the reaction of α,β -unsaturated carbonyl compounds. Crotonaldehyde was successfully converted to 1,3,7-nonatrien-6-ol in a 70% isolated yield (<u>1/BF₃OEt₂/-78 °C/0.5 h</u>) (Eq. 2a). When the silyl derivative <u>2</u> was utilized, only the cyclic adduct was reported to be obtained (Eq. 2b).^{2a)} Remarkable difference between the stannanes and the silanes was also observed. Other α,β - and $\alpha,\beta,\gamma,\delta$ -unsaturated aldehydes react-

Entry	Quinone	Stannane	Product ^b)	Isolated yield/%	Entry	Quinone	Stannane	Product ^{b)}	Isolated yield/%
1		<u>1</u>	OAc OAc	c,d) 67(94)	6	Me	le <u>1</u> Me	Me Me	₃₈ e)
2		<u>3</u>	(15 part	s)	7		e 1 Me	Me 0	75 ^{e)}
	0		(85 part. 0	s)	8				61 ^{e)}
3		Ме. <u>1</u> е		82(86) ^{e)}	9		<u>1</u>	ļ~~	∕ 43(58) ^{c,e)}
4	Me 0	Ме- <u>3</u> е	Me 0	≻ ₅₂ e)	10		1		∕ 23(39) ^{c,e)}
5	Me He	<u>]</u> Mer	Ļ~~~	76 ^{.e)}		I II OH O	I OH	n O	

Table 1. 2,4-Penta- and Hexadienylation of p-Quinones with Stannyl Reagents^{a)}

^{a)}All reactions were performed as follows; to 10 ml of anhydrous CH_2Cl_2 solution of p-quinone (1.0 mmol), $BF_3 \cdot OEt_2$ (2.0 mmol) was added at -78 °C. After successive addition of the organostannane (1.2 mmol), the reaction mixture was stirred for 1 h. ^{b)}Satisfactory IR, NMR, and mass spectral data were obtained. ^{c)} Yield in parentheses was determined by ¹H-NMR. ^{d)}Product was isolated after esterification with acetic anhydride-pyridine for the sake of the instability of the corresponding hydroquinone. ^{e)} Product was isolated after mild oxidation with silver oxide.

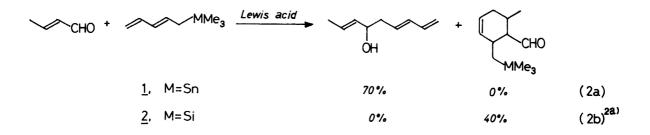


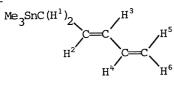
Table 2. 2,4-Penta- and Hexadienylation of α,β -Unsaturated Carbonyl Compounds with Stannyl Reagents

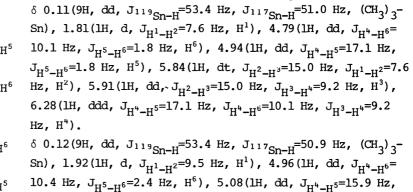
Entry	Substrate St	annanes	a) Conditions	Products ^{b)}	Isolated yield/%
1	CH0 (I)	<u>1</u>	А	ОН	70
2	I	<u>3</u>	A	OH	51 ^{c)}
3	СНО	1	В	OH OH	50
4	СНО	1	В	OH	36
5	Ph CHO(II)	<u>1</u>	С	Ph	73
6	II	<u>3</u>	С	Ph-	32 ^d)
7	PhCHO	<u>1</u>	С	Ph-	54
8	Ph Ph ^(III)	<u>1</u>	D	Ph 0 Ph 0 Ph 0 Ph 0	70 ^{f)}
9	III	<u>3</u>	D	Ph	₅₈ e)

^{a)}Every dienylation was performed in 1.0 mmol scale according to the similar method shown in Table 1. Reaction conditions, A:BF₃OEt₂;-78 °C;0.5 h. B: BF₃OEt₂; -78 °C - -50 °C; 0.5 h. C: BF₃OEt₂; -78 °C --10 °C; 1 h. D: AlCl₃ (as 2 M ether solution); -78 °C --10 °C; 1 h. ^{b)}Satisfactory IR, NMR, and mass spectral data were obtained. ^{d)}Ery-thro:threo=82:18. ^{e)}The starting ketone was recovered in 43% yield. ^{f)}Several ketones reacted similarly.

ed in the 1,2 fashion to afford the corresponding unsaturated alcohol in fair to good yield (Table 2). α,β -Unsaturated ketone afforded the corresponding 1,4 adducts in the reaction with <u>1</u> or <u>3</u>. High erythro selectivity was attained in the

reaction of 3 with aldehydes (Table 2, entries 2 and 6).¹⁰⁾


This work was supported by funds from Yamada Science Foundation and by Grant-in-Aid for Scientific Research from the Ministry of Education.

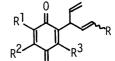

References

- For reviews of intramolecular [4+2] cycloaddition, see W.Oppolzer, Angew. Chem., Int. Ed. Engl., <u>16</u>, 10 (1977), Heterocycles, <u>14</u>, 1615 (1980); G.Brieger and J.N.Bennett, Chem. Rev., <u>80</u>, 63 (1980).
- Recently the reaction of <u>2</u> with α,β-unsaturated carbonyl compounds under the presence^{2a)} or absence^{2b)} of Lewis acid was reported to give preferentially Diels-Alder adducts, see a) D. Seyferth, J.Pornet, and R.M.Weinstein, Organometallics, <u>1</u>, 1651 (1982); b) H.Hosomi, M.Saito, and H.Sakurai, Tetrahedron Lett., <u>21</u>, 3783 (1980).
- 3) Y.Naruta, M.Kashiwagi, Y.Nishigaichi, H.Uno, and K.Maruyama, Chem. Lett., the following paper.
- 4) Y.Naruta, Y.Arita, N.Nagai, H.Uno, and K.Maruyama, Chem. Lett., 1982, 1859.
- 5) Y.Naruta, J. Am. Chem. Soc., <u>102</u>, 3774 (1980); Y.Naruta, J. Org. Chem., <u>45</u>, 4097 (1980); K.Maruyama, A.Takuwa, Y.Naruta, K.Satao, and O.Soga, Chem. Lett., <u>1981</u>, 47; Y.Naruta, J. Chem. Soc., Chem. Commun., 1981, 1227.
- 6) 2,4-Pentadienylstannane was prepared by the reaction of pentadienyl lithium with chlorotrimethylstannane and has a boiling point of 105 °C/1.6 kPa (Kugelrohr) and is the mixture of the stereoisomers (trans:cis=69:31), according to its 400 MHz ¹H-NMR spectrum in CDCl₃.

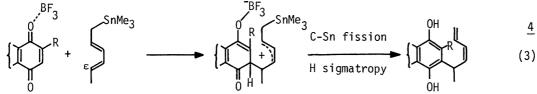
trans-1:

cis-l

 $J_{H^5-H^6}=2.4 \text{ Hz}, H^5$), 5.64(1H, dt, $J_{H^2-H^3}=10.7 \text{ Hz}, J_{H^1-H^2}=10.7 \text{ Hz}$


9.5 Hz, H²), 6.58(lH, ddd,
$$J_{H^4-H^5}=15.9$$
 Hz, $J_{H^3-H^4}=11.0$ Hz, $J_{H^4-H^6}=10.4$ Hz, H⁴).

- 7) The possible γ adduct 4 was not obtained except in the entry 6 (19% isolated yield).
- 8) Stereoisomeric mixture was used.


 H^2

Me,SnC(H¹)

9) If a polar, stepwise process shown in Eq.3 were taking place in the reaction of quinone with 3, ε adducts would be exclusively obtained in every case.

R=H or Me

10) Similar excellent stereoselectivity was reported in the reaction of crotylstannane with aldehyde, see Y.Yamamoto, H.Yatagai, Y.Naruta, and K.Maruyama, J. Am. Chem. Soc., <u>102</u>, 7107 (1980).

(Received July 22, 1983)