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Abstract

The peracetate of t®-methylnorbergenii6 as well as theis-fused epimer 016, which constitutes the coe
aryl glycosidic fragment of castacrenin B, were prepared by way of the IDCP-mediated intramolzemdation
of a pentenyl -D-glucopyranoside carrying, at O-2, a 3,4,5-trimethoxybenzyl substituent. © 2000 Elsevier Science
Ltd. All rights reserved.

Bergeninl! and its derivatives norbergen® and tri-<0O-methylnorbergeni3® are gallotannin-related
natural products having the unusual structure of inte@alyl glycosides (Fig. 1§.Bergenin and its
congeners occur widely in a number of plants and have been found as ingredients in plant extracts used in
Indian folk medicine to treat veneral diseasd®ecently, thesis-fused epimer of norbergenin was found
to occur as a fragment of an ellagitannin metabolite, namely castacrenin B, isolated from the Japanese
chestnut tre@. The structures of bergenin and of castacrenin B are inviting targets for a synthesis by
way of an intramolecula€-glycosylation procedure. However, attempts to prepare bergenin by such a
strategy have failed so far.

1 Bergenin: R, =H, R,=Me
2 Norbergenin: R, =R, =H 4 Castacrenin B
3 Tri-O-methylnorbergenin: R,= R, = Me

Fig. 1.
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Bergenin itself has been obtained in very low yield by the reaction of acetobromoglucose with methyl
4-O-methyl gallate!, and its dimethyl etheB by a multistep synthesis by way of@glucopyranosyl
benzene derivativé.In preliminary studie$, we have established that the interi@blycosylation of
gluco- and mannopyranose derivatives carrying, at O-2, a 3,4,5-trimethoxybenzoyl substituent could not
be achieved, in spite of promising results in the furanose séresa consequence, we examined a
synthetic approach to these natural products by way of a two-step strategy, namely tarylaltion of
2-O-benzylated pyranosides, followed by oxidation of the benzylic position to form the lactone function.

While the intramolecular alkylation of the benzyl group took place readily in sugars carrying, at O-
2, a 3-methoxybenzyl or a 3,5-dimethoxybenzyl substitéérthe conditions of the reaction (Sngl
BF3; Et;0, etc.) were not compatible with a 3,4,5-trimethoxybenzyl group as they promoted raPid de-
benzylation of the substrate. A solution was found to this problem by using, as the anomeric activator, a
pentenyl glycosidé® a function that can be activated selectively using a soft Lewis acid. We report herein
the first synthesis of tf®-methylnorbergenin and of the coBeglycosidic structure of castacrenin B by
way of an internalC-glycosylation reaction.

The required precursor, partially protected pentengtglucopyranosid&, was prepared in 59% over-
all yield from tetra©-acetyl- -D-glucopyranosyl bromidb by the orthoester proceddte'?(Scheme 1):
O-pentenyl orthoested was obtained frons under Lemieux—Morgan conditiort$ the acetyl groups of
6 were replaced by benzyl groups, and the orthoésteas rearranged into the corresponding pentenyl
glycosides by treatment with trimethylsilyl triflate® followed by de©-acetylation at O-2. Benzylation of
8 with highly reactive 3,4,5-trimethoxybenzyl chloride (from 3,4,5-trimethoxybenzyl alcohol and-3OCI
provided substrat@ (80%).
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Scheme 1. Reagents and conditions. (a) 4-Penten-1-ol (3 equiu\NBr, collidine; 83%. (b) KOH, BnBr, THF, ; 84%. (c)
(i) TMSOTf (cat.), CHCl, 0°C, 2 h; (i) MeONa, MeOH; 84%. (d) ArC4CI, NaH, DMF; 80%

The treatment 09 with iodonium dicollidine perchlorate (IDCP) promoted the desired internal C-
arylation reaction in excellent yield and without premature cleavage of the benzyl group at O-2 (Scheme
2). The resulting product was exclusively the kinetically favotedis-fused tricyclic systemiO (* -
linked’). It is also noteworthy that iodination of the activated aromatic ring did not compete with
the internal alkylatiot® Selective removal of the benzyl groups 19 was realized by brief catalytic
hydrogenation and the resulting product was acetylated to affbr@ihe benzylic position 011 could
then be oxidized using catalytic ruthenium tetroxide® give compoundl2 (39% yield), a protected
form of the coreC-aryl glycoside of castacrenin B.

The NMR data ofL. 218 were found to be in excellent agreement with those reported for the correspond-
ing derivative of castacrenin BDeacetylation ofl.2 gave the triO-methyl analog, compount3.®

It is of interest to note that th&)4 4 coupling constants in the pyranose ring of bathand 12 are
all small (3 >=3Hz, other3JH,H=3.8—5 Hz) which indicate that the conformation with an inverted chair
(1Cy4-type, sed in Fig. 2) is much more favorable for these compounds than the altéf@atehair form
in which theC-aryl substituent would be axial.

The synthesis of bergenin and congeners required an epimerization at the newly created benzylic
position (C-1). This inversion of configuration was deemed possible on the basis of the expected greater
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Scheme 2. Reagents and conditions. (a) IDCP (2 equiv.)QGH3 h, rt; 83%. (b) (i) H, Pd/C, MeOH; (ii) AgO, pyridine;
98%. (c) RuC} (cat.), NalQ, CCl,/MeCN/H,0, 18 h; 39%. (d) MeONa, MeOH; quant.

stability of the transfused ( -linked) bicyclic system I() with respect to thecis-fused ( -linked)
structure [, Fig. 2) and of the likely sensitivity of the endocyclic benzylic-Os bond to Lewis acids.
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Fig. 2.

The treatment o0 with an oxophilic Lewis acid promoted indeed the desired epimerization, albeit
in a yield not exceeding 50%. The best results were obtained usindBP. The resulting product,4
(Scheme 3), was deprotected by hydrogenolysis and reacetylated tbbgmed the remaining primary
benzylic position oxidized under the same conditiond h$o give lactonel6 (68%). The'H and3C
NMR data of this producl6?® were found to match those reported for the triacetate aDmiethyl-
norbergeniné:’

OMe OMe

OMe OMe

Scheme 3. Reagents and conditions. (a} B&O (cat.), CHCI,, 2 h, 0°C to rt; 48%. (b) (i) H, Pd/C, MeOH; (ii) AcO,
pyridine; 95%. (c) RuGl(cat.), NalQ, CCl,/MeCN/H,0, 18 h; 68%
In conclusion, we have achieved the first synthesis oDtrirethylnorbergenin triacetate, as well
as of the coreC-aryl glycoside of castacrenin B by way of an intramoleculaglycosylation. This
work demonstrates that pentenyl glycosides constitute very convenient substrates for the internal alkyl-
ation/glycosylation of highly Lewis-acid sensitive benzyl groups.
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