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Cationic pincer platinum(II) complexes bearing secondary
thioamide units showed aggregation-induced emission (AIE)
activity in chloroform/hexane and methanol/water mixtures.

Introduction

The emission of conventional luminophores such as per-
ylene and rhodamine is often quenched if their molecules
are aggregated (aggregation-caused quenching, ACQ).[1]

However, recently, Tang and co-workers and other research-
ers reported luminophores exhibiting efficient emission in
the aggregate and solid states.[1–4] This unusual luminescent
phenomenon is termed aggregation-induced emission
(AIE). AIE-active compounds have received considerable
attention because of their potential applications in organic
light-emitting diodes and sensors.[5] Studies have revealed
that the main cause of AIE activity is the restriction of mo-
lecular motion in the aggregate state.[2,3a] In some AIE-
active compounds, hydrogen-bonding interactions also in-
duce suppression of the molecular motion.[3b,3c] Yam and
Che reported AIE-active platinum(II) complexes.[6] The
emission color and intensity of the PtII complexes depend
on the extent of the Pt···Pt and π–π interactions, that is,
metal–metal-to-ligand charge transfer (MMLCT) in the ag-
gregate and the solid states.[6,7]

In previous work, we found that the emission intensity
of a neutral PtII complex bearing secondary thioamide units
[Pt(BnS∧C∧S)Cl] (1, BnS∧C∧S = N,N�-dibenzyl-1,3-
benzenedicarbothioamide, Figure 1) increased upon adding
tetra-n-butylammonium chloride to the solution.[8] Efficient
emission was caused by the suppression of molecular mo-
tion resulting from hydrogen-bonding interactions between
the N–H moiety in the secondary thioamide group and the
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Hydrogen bonding of the thioamide units and interionic in-
teractions contributed to the AIE activities.

chloride anion. This result suggested that hydrogen-bond-
ing interactions of thioamide contribute to AIE activity. In
addition to hydrogen bonding, the introduction of ionic in-
teractions into thioamide-based complexes should effec-
tively suppress the molecular motion. Therefore, it is ex-
pected that secondary thioamide-based cationic PtII com-
plexes should exhibit AIE activity because of the restriction
of the molecular motion owing to intermolecular hydrogen-
bonding and ionic interactions with the counteranions.
Herein, we report AIE-active cationic PtII complexes having
secondary thioamide units and the effects of hydrogen-
bonding and ionic interactions on the AIE activities.

Figure 1. Structures of complexes 1–3.

Results and Discussion

[Pt(BnS∧C∧S)(PPh3)]Cl (2-Cl, Figure 1) was synthesized
to investigate the effects of hydrogen bonding of the second-
ary thioamide sites and the ionic interactions on AIE. In
addition, complex 1[8] (Figure 1), which is neutral, and
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[Pt(PiS∧C∧S)(PPh3)]Cl {3-Cl, PiS∧C∧S = 1,3-bis(1-piperid-
inothiocarbonyl)benzene} with tertiary thioamide units
were prepared[9] as control samples to compare the emission
behavior in the aggregate states.

Complexes 2-Cl and 3-Cl exhibited good solubility in
chloroform. To examine the emission behavior of 2-Cl and
3-Cl in the aggregate state, aggregates were prepared by
adding hexane (a poor solvent) into the respective chloro-
form solutions. Because aggregate states are usually pre-
pared by use of a poor solvent,[1a,2a] hexane was used to
induce the formation of nanoparticles of 2-Cl and 3-Cl. Ag-
gregation was confirmed by dynamic light scattering (DLS).
DLS measurements in 90 vol.-% hexane showed the forma-
tion of aggregates with particle sizes of 518 and 573 nm for
2-Cl and 3-Cl, respectively (Figure S1, Supporting Infor-
mation). The absorption and emission spectra were ob-
tained immediately after preparing the aggregates because
the nanoparticles began to precipitate within 15 min.

The absorption spectra of 2-Cl and 3-Cl in chloroform
solution and as chloroform/hexane mixtures are shown in
Figure S2. Tailing was apparent in the long-wavelength re-
gion of the absorption spectra of the chloroform/hexane
mixtures. These tails were attributed to light scattering by
the nanoparticles of the complex molecules.[2b] As shown in
Table S1 and Figure 2, 2-Cl (λem = 589 nm) and 3-Cl (λem

= 663 nm) exhibited weak luminescence in the chloroform
solutions. However, a significant enhancement in the emis-
sion of 2-Cl and 3-Cl was observed if their hexane fractions
were above 80 and 85%, respectively, in the chloroform/
hexane mixtures. If the volume fraction of hexane was 90 %,
the corresponding emission intensities of 2-Cl (λem =
577 nm) and 3-Cl (λem = 660 nm) were approximately 46
and 9 times higher than those in the chloroform solution,

Figure 2. Emission spectra of (a) 2-Cl (λex = 384 nm) and (b) 3-Cl
(λex = 404 nm) in chloroform/hexane mixtures (5�10–5 m).
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respectively. These results indicate that 2-Cl and 3-Cl are
AIE active in the chloroform/hexane mixtures. In addition,
the emission wavelength of 2-Cl in the chloroform/hexane
(90 vol.-%) shifted to higher energy (12 nm) relative to that
in the chloroform solution.

To examine the effects of solvents on the AIE properties
of the complexes, water was used as a poor solvent in com-
bination with dimethylformamide (DMF) for 1 or methanol
for 2-Cl and 3-Cl as good solvents. These good solvents
were selected by considering the solubility of each complex
and their compatibility with water. DLS measurements in
90 vol.-% water showed the formation of aggregates with
particle sizes of 91, 63, and 73 nm for 1, 2-Cl, and 3-Cl,
respectively (Figure S3, Supporting Information). As shown
in Figure 3 (a), the addition of water (�50 vol.-%) into a
methanol solution of 2-Cl led to a redshift in the absorption
bands. The emission spectrum of 2-Cl exhibited an increase
in the emission intensity accompanied by a redshift (from
585 to 640 nm) upon increasing the proportion of water in
the methanol/water mixtures (Figure 3, b). The emission in-
tensity of the mixture with 70 % water fraction was approxi-
mately 11 times higher than that in the methanol solution,
whereas negligible AIE activity of 1 and 3-Cl was observed
in the aggregate states with water (Figures S4 and S5, Sup-
porting Information). The absorption and emission wave-
length shift of 3-Cl were small in comparison with those of
2-Cl. Notably, the AIE activities of the complexes depended
on the solvent systems; complexes 2-Cl and 3-Cl were AIE
active in the chloroform/hexane systems, whereas only com-
plex 2-Cl showed AIE activity in the methanol/water sys-
tem. The luminescence decay time (τ) of 2-Cl in the solution
(τchloroform = 3.1 μs, τmethanol = 3.1 μs) and aggregate states
(τchloroform/hexane = 6.3 μs, τmethanol/water = 3.3 μs) were exam-

Figure 3. (a) Absorption and (b) emission spectra of 2-Cl in meth-
anol/water mixtures (5�10–5 m, λex = 400 nm).
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ined (Table S2 and Figure S6, Supporting Information).
The long emission life time indicates that 2-Cl exhibited
phosphorescent emissions.

One of the factors of AIE-active PtII complexes is
MMLCT[6] and their emission shift to lower energies upon
cooling (77 K) because of the enhancement in the metal–
metal interactions.[6b] To determine the main cause of the
AIE activities of 2-Cl and 3-Cl, the photoluminescence
spectra of 2-Cl and 3-Cl were obtained in CH2Cl2/THF
(3:2 v/v) solution at room temperature and at 77 K. Because
CH2Cl2 and THF are good solvents for 2-Cl and 3-Cl, the
formation of aggregates was not observed. The emission
bands of 2-Cl and 3-Cl in solution shifted to higher energies
at 77 K (glass matrix) relative to those obtained at room
temperature (Figure S7, Supporting Information); emission
originating from MMLCT was not observed. X-ray crystal-
lographic analysis of 2-Cl[10] was consistent with the photo-
luminescence data, which indicated the absence of d8–d8

metal–metal interactions because the Pt–Pt distance be-
tween adjacent complexes was 9.66 Å. Thus, it is postulated
that the AIE activities of 2-Cl and 3-Cl originate primarily
from the suppression of molecular motion in the aggregate
state, as proposed by Tang and other researchers.[1–3] Elec-
trostatic interactions promote the tendency to aggregate
and enhance the AIE activity.[11] X-ray crystallographic
analysis of 2-Cl revealed that the thioamide group of 2-Cl
forms hydrogen-bonding interactions with the counteranion
(N–H···Cl–, 2.45 Å, Figure 4, a). The results suggest that
the AIE activity of 2-Cl is induced by these hydrogen-bond-
ing interactions.

As mentioned above, in the water system only complex
2-Cl showed AIE activity. These results indicate that water
molecules interrupt the ionic interactions but that the hy-
drogen-bonding interactions in 2-Cl remain. The hydrogen-
bonding interactions in 2-Cl in the presence of water were
evaluated from a crystal structure of 2-BF4 instead of 2-
Cl, because the crystals of the latter could not be obtained
(Figure 4, b).[12] The thioamide groups of 2-BF4 have
hydrogen-bonding interactions with the counteranion
(N–H···F, 1.95 Å) and the water molecule (N–H···O,
2.06 Å). Because 2-BF4 also exhibited AIE activity in the
methanol/water system (Figure S8, Supporting Infor-
mation), it was deduced that the hydrogen-bonding interac-
tions of the secondary thioamide contribute to the AIE ac-
tivities of 2-Cl.

To consider the blue- and redshifts in the emission spec-
tra of 2-Cl in the chloroform/hexane and methanol/water
mixtures relative to the pure solutions, we focused on the
origin of absorption in the long-wavelength region and on
the emission of 2-Cl. Time-dependent DFT calculations of
2+, which was used as a model complex for 2-Cl, revealed
that the absorption band in the long-wavelength region
(380–500 nm) was assigned as metal-to-ligand charge trans-
fer (MLCT) and ligand-centered (LC) transitions (Fig-
ure S9 and Table S3, Supporting Information). This assign-
ment is consistent with the thioamide-based pincer com-
plexes reported previously.[8,13] These results suggested that
MLCT excited states were involved in the emission of 2-Cl.
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Figure 4. Hydrogen-bonding networks of (a) 2-Cl·CHCl3 and (b) 2-
BF4·H2O·MeOH. Chloroform, methanol, and hydrogen atoms ex-
cept for N–H are omitted for clarity.

In addition, the origin of emission of 2-Cl in the aggregate
state was also supposed to be MLCT, because the decay
lifetime curves of 2-Cl in the solution state (methanol) were
similar to those in the aggregate state (methanol/water; see
Figure S6, Supporting Information). It was reported that
the wavelength of emission through MLCT excited states
depends on solvent polarity.[14] Because the emission wave-
length of 2-Cl shifted to lower energy with an increase in
the solvent polarity (positive solvatochromism; Figure S10,
Supporting Information),[14] a blueshift or redshift in the
emission spectra of 2-Cl in the aggregate states could be
induced by changes in the solvent polarities around the
complex molecules. To confirm the effect of the hydrogen-
bonding interactions on the emission wavelength, the emis-
sion behavior of 2-BF4 in the crystal state was examined,
because the crystal structure exhibited the presence of hy-
drogen-bonding interactions with water molecules (Fig-
ure 4, b). The emission wavelength of 2-BF4 in the crystal
state was much shorter (588 nm) than that of 2-Cl in the
aggregate state in methanol/water (640 nm) and was almost
the same as that of 2-Cl in chloroform solution (589 nm;
see Figure S11, Supporting Information). Therefore, the ef-
fect of hydrogen bonding on the emission wavelength is neg-
ligible. These results suggested that the redshift in the aggre-
gate state in methanol/water was due to positive solvato-
chromism induced by the solvent polarity around the com-
plex.
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Conclusions

In summary, cationic complex 2-Cl bearing secondary
thioamide units exhibited AIE activity induced by hydro-
gen-bonding and interionic interactions. The origin of the
AIE in the pincer platinum(II) complexes differs from that
of conventional AIE-active platinum(II) complexes, which
occurs by metal–metal interactions. These results should
provide valuable information for the design of AIE-active
complexes by exploiting hydrogen-bonding and ionic inter-
actions with counteranions.

Experimental Section
General Procedures: All NMR spectra were obtained with a Bruker
Avance-400S with tetramethylsilane or [D3]phosphoric acid solu-
tion as an internal standard. MALDI-MS spectra were recorded
with a Kratos-Shimadzu AXIMA-CFR plus MALDI-TOF MS.
Elemental analyses were performed with a Perkin–Elmer 2400
CHN Elemental Analyzer. Average particle sizes of the aggregates
were measured by dynamic light scattering (FDLS3000, Otsuka
Electronics). Absorption spectra were recorded with a JASCO V-
630 spectrometer. The emission spectra at room temperature were
measured with a JASCO FP-6200 spectrophotometer. The emission
spectra at room temperature and 77 K were measured with a Hita-
chi F-2700 spectrophotometer. The temporal profiles of the lumi-
nescence decay were recorded by using a microchannel plate photo-
multiplier (Hamamatsu, R3809U) equipped with a TCSPC com-
puter board module (Becker and Hickl, SPC630).

Synthetic Methods: Complex 1[8] and 1,3-bis(1-piperidinothio-
carbonyl)phenyl{C2,S,S�}chloroplatinum(II)[9] were synthesized ac-
cording to methods reported in the literature.

Synthesis of Complex 2-Cl: A mixture of complex 1 (151.5 mg,
0.25 mmol) and triphenylphosphine (78.7 mg, 0.30 mmol) was
stirred by ultrasound in acetone (100 mL) for 1 h at 40 °C. The
solvent was evaporated under reduced pressure. The residue was
washed with hexane and extracted with chloroform. Recrystall-
ization from chloroform/hexane gave complex 2-Cl (204.7 mg,
94%). 1H NMR (400 MHz, [D6]DMSO): δ = 12.17 (s, 2 H), 8.32
(dd, J = 8.0, 2.0 Hz, 2 H), 7.62–7.53 (m, 9 H), 7.49–7.44 (m, 7 H),
7.39–7.29 (m, 10 H), 4.89 (s, 4 H) ppm. 31P{1H} NMR (162 MHz,
[D6]DMSO): δ = 19.64 [J(Pt,P) = 2227.9 Hz] ppm. MALDI-TOF-
MS: calcd. for C40H34N2PPtS2 [M – Cl + H]2+ 833.2; found 833.1.
C40H34ClN2PPtS2 (868.4): calcd. C 55.33, H 3.95, N 3.23; found C
54.94, H 4.04, N 3.27.

Synthesis of Complex 3-Cl: Synthesized in the same manner as
complex 2-Cl, except that 3-bis(1-piperidinothiocarbonyl)phen-
yl{C2,S,S�}chloroplatinum(II) was used instead of complex 1, yield
31.6 mg, 70 %. 1H NMR (400 MHz, [D6]DMSO): δ = 7.65 (dd, J

= 8.0, 2.0 Hz, 2 H), 7.56–7.58 (m, 9 H), 7.45–7.50 (m, 6 H), 7.34
(t, J = 8.0 Hz, 1 H), 4.24 (br. s, 4 H), 4.06 (br. s, 4 H), 1.79 (br. m,
12 H) ppm. 31P{1H} NMR (162 MHz, [D6]DMSO): δ = 18.95
[J(Pt,P) = 1135.8 Hz] ppm. MALDI-TOF-MS: calcd. for
C36H38N2PPtS2 [M – Cl]+ 788.2; found 788.1. C36H38ClN2PPtS2·
1.5H2O (851.4): calcd. C 50.79, H 4.85, N 3.29; found C 50.73, H
4.82, N 3.19.

Crystal Structure Determination: Intensity data were collected with
a Rigaku R-AXIS RAPID and a Bruker APEX-II CCD dif-
fractometer with Mo-Kα radiation. A full-matrix least-squares re-
finement was used for non-hydrogen atoms with anisotropic ther-
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mal parameters method by the SHELXL-97 program. Hydrogen
atoms except for H1 and H2 were placed at the calculated positions
and were included in the structure calculation without further re-
finement of the parameters. H1 and H2 of 2-Cl and 2-BF4 were
determined by difference Fourier map and refined isotropically.

CCDC-957173 (for 2-Cl) and -957174 (for 2-BF4) contain the sup-
plementary crystallographic data for this paper. These data can be
obtained free of charge from The Cambridge Crystallographic
Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

Computational Details: The geometrical structures were optimized
at the B3LYP level for 2+ with the LANL2DZ basis set im-
plemented in the Gaussian 09 program suite.[15] By using the opti-
mized geometries, time-dependent DFT calculations were per-
formed at the B3LYP level for 2+ to predict their absorptions.

Supporting Information (see footnote on the first page of this arti-
cle): Size distribution, absorption spectra, and emission spectra of
1–3; luminescence decay time of 2-Cl; and DFT calculations for
2+.
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