Contents lists available at ScienceDirect

Inorganic Chemistry Communications

journal homepage: www.elsevier.com/locate/inoche

Short communication

Reduction of CO₂ to methanol using aluminum ester FLPs

Nathan C. Smythe ^{a,*}, David A. Dixon ^b, Edward B. Garner III ^b, Meredith M. Rickard ^b, Mariano Mendéz ^b, Brian L. Scott ^c, Barbara Zelenay ^a, Andrew D. Sutton ^{a,*}

^a Chemistry Division, Los Alamos National Laboratory, Los Alamos 87545, NM, United States

^b Department of Chemistry, The University of Alabama, Tuscaloosa, AL 35487-0336, United States

^c Materials Physics and Applications Division, Los Alamos National Laboratory, Los Alamos, NM 87545, United States

ARTICLE INFO

Article history: Received 9 September 2015 Accepted 6 October 2015 Available online 9 October 2015

Keywords: Frustrated Lewis pair; CO₂; MeOH; Ammonia borane

ABSTRACT

Herein we report the synthesis of Al-based esters containing halogenated benzene rings. These Lewis acids were paired with phosphines to form frustrated Lewis pairs (FLPs) which could subsequently bind CO_2 . While these FLPs were not sufficiently water-stable to catalyze the reduction of CO_2 to MeOH using NH₃BH₃ as the reductant, we examine the effect of varying Lewis acid strength.

Frustrated Lewis pairs (FLPs) are combinations of Lewis acids and Lewis bases where the acid and base are either sterically or geometrically restricted from interacting as strongly as their electronic structures would allow. This effect leads to enhanced reactivity towards small molecules and, consequently, interest in their potential as metal-free catalysts [1–5]. To-date, the biggest success has been based around the ability of a myriad of systems to heterolytically cleave H_2 and perform catalytic hydrogenations [2,3].

Published by Elsevier B.V.

CrossMark

A variety of FLPs have been shown to bind CO₂, but relatively few FLPs support the conversion of CO₂ into useful reduction products such as MeOH [6,7] or CH₄ [8,9]. In particular, PMes₃/AlCl₃ and PMes₃/ AlBr₃ react with CO₂ and ammonia borane (NH₃BH₃) to form MeOH upon quenching with H₂O [10]. However, the stability of the resulting Al-O bonds formed precludes catalytic reactivity. The pathway for this reaction is not clear, with computational results arguing for a stepwise mechanism [11], while further experimental results support the possibility of a more complicated pathway involving dissociation of components from the $PR_3(CO_2)(AIX_3)_2$ adduct [12]. More recently, using the concept of enhancing FLP reactivity through geometric constraint (preorganization) [13,14], a vicinal P–B was found to catalyze the formation of methoxyborates from CO₂ and various borane-based reducing agents [15,16]. As with PMes/AlX₃, MeOH is released upon quenching with H₂O, albeit with the formation of boric acid (a thermodynamic sink).

One of the limiting factors in this chemistry is the oxophilicity of B and Al. Not only does this cause an issue with concomitant H_2O formation during CO₂ conversion to MeOH (assuming hydrogenation as the model), but it also necessitates high temperatures if thermal extrusion of MeOH is attempted [6]. Our hypothesis at the outset of this work was that the use of B- and Al-esters [17] may decrease the H_2O -sensitivity of this class of complexes. While complexes of the type A(OR)₃ (A = B, Al, R = Me, *i*Pr, *t*Bu, Ph) are available commercially, they do not exhibit reactivity with CO₂ when paired with PCy₃ or PPh₃.

With the exception of $Al(OPh)_3$ (Table 2), this is consistent with a relatively lower Lewis acidity of the esters. Thus we turned towards esters bearing more electron-withdrawing substituents.

Al $(OC_6F_5)_3$ (**F-5**) is a dimeric complex in the solid state $([Al(OC_6F_5)_3]_2)$ that can be synthesized by addition of AlEt₃ to a toluene solution of HOC₆F₅ [18,19]. Similar reaction conditions using HOC₆Cl₅ and HO-2,4,6-Cl₃Ph can be used to synthesize [Al $(OC_6Cl_5)_3$]₂ ((**Cl-5**)₂) and [Al $(O-C_6H_2Cl_3)_3$]₂ ((**Cl-3**)₂) respectively. (**Cl-5**)₂ is insoluble in toluene, and so precipitates from solution as a white solid during synthesis. In contrast, (**Cl3**)₂ is slightly soluble in toluene. While we did not obtain a solid-state structure of (**Cl-5**)₂, based upon (**F-5**)₂ and (**Cl-3**)₂ as well as other complexes such as [Al $(OtBu)_3$]₂ [20], [Al $(O-2,6-Me_2Ph)_3$]₂ [21], and [Al $(OCH(CF_3)_2)_3$]₂ [22], it is reasonable to believe that it also adopts a dimeric structure.

Addition of PPh₃ to (**Cl-3**)₂ allowed for the isolation of (PPh₃)**Cl-3** from toluene and its structural determination (Fig. 1). The Al–P bond length is 2.438 [4] Å. To the best of our knowledge PPh₃ adducts of aryl Al esters of this type have not been previously structurally characterized. A few PPh₃-Al adducts are available in the Cambridge Structural Database for comparison. The Al–P bond lengths of (PPh₃)AlEt₃ [23] and (PPh₃)AlMe₃ [24] are 2.5413 [4] Å and 2.535 [1] Å respectively. For (PPh₃)AlCl₃ [25] and (PPh₃)Al(OC(CF₃)₃)₃ [26], this distance is 2.4296 [15] Å and 2.447 [2] Å. The longest Al–P bond lengths being in the alkyl aluminum complexes is consistent with the concept that they are the most electron rich and thus least Lewis acidic (see Table 2). It is also reasonable that PPh₃-AlCl₃ would exhibit a shorter Al–P distance. The increased Al–P distance within (PPh₃)Al(OC(CF₃)₃)₃ [27] does not follow this trend, but it could be due to more favorable hydrogen

^{*} Corresponding authors. E-mail addresses: nsmythe@lanl.gov (N.C. Smythe), adsutton@lanl.gov (A.D. Sutton).

Fig. 1. X-ray crystal structure of PPh₃-(Cl-3) with hydrogen atoms omitted and 50% thermal ellipsoids.

bonding interactions [25]. Attempts to quantify the Lewis Acidity trend via the [31]P NMR shift of OPEt₃ were ambiguous due lack of clear 1:1 OPEt₃-AlOR₃ adduct formation.

Density functional theory (B3LYP/DZVP2) [28–30] and G3MP2 [31] electronic structure calculations of the bond dissociation free energies of AlX₃/PR₃ (X = H,F,Cl,Br,CH₃; R = H, CH₃) adducts (Table 1) are not consistent with a clear trend along the halogens (which agrees with the varied rankings available in the literature), but it is clear that more electron-rich phosphines bind more tightly (PH₃ vs. PMe₃) and that more electron-rich alanes bind more loosely (AlH₃ vs. AlMe₃ vs. AlX₃, X = F, Cl, Br).

The negativity of the fluoride affinity (FA = Δ H(298) for the reaction A + F⁻ \rightarrow AF⁻) of a compound has been shown to be a good measure of its Lewis acidity [34,35]. The fluoride affinities of the types of AlR₃ compounds being discussed have been calculated at the density functional theory B3LYP/DZVP2 + +//B3LYP/DZVP2 (for Br and I, the aug-cc-pVDZ-PP basis sets were used) level with the values for AlR₃, R = H, F, Cl, Br, I, benchmarked at the CCSD(T) FPD level (Table 2). The computational details are given in the Supporting Information. The CCSD(T) FPD results show that the DFT B3LYP results are semi-quantitative. The aluminum esters have FA's that range from moderately strong ~90 kcal/mol (O-tBu, O-i-Pr) to very strong ~120–130 kcal/mol (O-C₆Cl₅, O-C(CF₃)₃). The latter are stronger Lewis acids than SbF₅ [34]. The calculations were done with the Gaussian and MOLPRO program systems [36,37],

Similar to PPh3-Al(OC(CF3))3 [26], we did not observe splitting of H2 with PPh3-**F-5**, but the PPh3 adduct did bind CO₂. However, these early experiments displayed indications of aryl C–H activation and so

Table 1

B3LYP/GZVP2 and G3MP2 gas-phase dissociation energies (kcal/mol) of AlX_3/PR_3 adducts $^{\rm a}.$

Lewis acid-base adduct	B3LYP (ΔG(298 K))	G3MP2 (\(\Delta G(298 K)))
AlH ₃ PH ₃	-0.2	4.8 ^a
AlH ₃ PMe ₃	7.1	17.3
AlMe ₃ PH ₃	-4.8	-0.1
AlMe ₃ PMe ₃	1.2	10.6
AlF ₃ PH ₃	11.6	9.8
AlF ₃ PMe ₃	26.7	25.5
AlCl ₃ PH ₃	6.2	8.8
AlCl ₃ PMe ₃	21.0	27.0
AlBr ₃ PH ₃	4.5	8.8
AlBr ₃ PMe ₃	18.7	27.8

^a A highly accurate calculated value [32] for ΔH_{298} obtained at the Feller–Peterson– Dixon (FPD) level [33] is 14.7 kcal/mol as compared to the G3MP2 value of 13.2 kcal/mol and the B3LYP value of 10.8 kcal/mol.

Table 2

Negative of the fluoride affinity of AlR₃ calculated at the density functional theory level. FPD benchmark values in parentheses.

R	FA (kcal/mol)	R	FA (kcal/mol)
Н	84.8 (90.3)	$O-C(CF_3)_3$	129.5
F	112.0 (113.9)	0-C ₆ Cl ₅	121.4
Cl	116.3 (118.8)	0-C ₆ H ₂ Cl ₃	114.2
Br	110.4 (119.4)	0-C ₆ H ₅	111.4
Ι	110.7 (120.6)	0-i-C ₃ H ₇	91.3
CH ₃	79.5	O-t-C ₄ H ₉	87.8
C ₂ H ₅	81.5	O-Et	90.7
O-Me	89.4	O-C6F5	128.7

further work was conducted using PCy3 despite the expected higher binding energy (more electron-rich phosphine). PCy3-(**Cl-3**) shows slow C–H activation of CH_2Cl_2 , with the appearance of [HPCy3] + in the 31P NMR spectrum. This was verified using CD_2Cl_2 (see supporting information).

Testing for CO₂ reactivity was accomplished by exposing a degassed solution or mixture of PCy3 and Lewis acid to ca. 1 atm. of 13 CO₂ and then examining the 13 C(1 H) and 31 P(1 H) NMR spectra. In contrast to Al(OiPr)₃, Al(OtBu)₃, and Al(OPh)₃, **F-5**, **Cl-3**, and **Cl-5** all bind CO₂ with diagnostic 31 P– 13 C coupling when paired with PCy₃ (see Fig. 2 as an example).

The Al systems structurally characterized by Stephen et al. show a 2:1:1 Al:CO₂:P ratio [10,12]. In contrast, reports of known B-based Lewis acid FLP-CO₂ complexes predominantly have a 1:1:1 B:CO₂:P ratio [1]. This difference likely arises from the decreased Lewis acidity and oxophilicity of B relative to Al. This would also be consistent with known pre-organized P-Al complexes lacking electron-withdrawing groups binding CO₂ through only one aluminum center. While we were unable to obtain a solid-state structure of a CO₂ adduct, the solution ¹³C{¹H} and ³¹P{¹H} NMR spectra of our Al:CO₂:P adducts are consistent with a mixture consisting of mostly the 1:1:1 complex when ¹³CO₂ is added to a 1:2 PCy₃:Cl-3 mixture (Est. 5–9% bis). It would be expected that the CO₂ carbon atom would have less electron density when two Lewis acids are coordinated to the CO₂ moiety rather than one. This is consistent with the observed shift in the NMR spectra where the carbon atom is effectively deshielded. Taking this view, this Al ester is more akin to Lewis acids such as $B(C_6F_5)_3$ than AlX₃ in terms of FLP reactivity. As the aryl substituent is adjusted going to **Cl-5** (Est. ca. 1:1 *bis:mono*) and then F5 (Est. 23–26% mono), this balance changes and the mixture becomes more biased towards bis coordination. This is a trend that tracks with what one may predict based on trends in substituent electron-withdrawing ability. The stronger the Lewis acid, the greater the average number of acids there are per CO_2 .

Regardless of the ratio, addition of NH₃BH₃ to PCy₃/CO₂/Al(OR)₃ (**F-5**, **Cl-5**, **Cl-3**) systems resulted in complete conversion of PCy₃ to $[HPCy_3]^+$ as determined by ${}^{31}P{}^{1}H$ and ${}^{31}P$ NMR spectra. ${}^{13}C{}^{1}H$ } NMR spectra show a methoxy group (presumably coordinated to Al(OR)₃) along with formate in the case of **F-5** and **Cl-3**. Addition of H₂O to these mixtures releases MeOH, but also results in the decomposition of the aluminum esters.

Aluminum esters derived from halogenated aromatic alcohols were synthesized and tested as Lewis acids for the FLP-mediated reduction of CO_2 using NH₃BH₃. While **F-5, Cl-5**, and **Cl-3** were competent in this regard when paired with PCy₃, the reaction could not be made catalytic due to the need to quench the resulting complex with H₂O in order to release MeOH. It may be possible to use stoichiometric quantities of H₂O to preserve these esters [26], however, the FLP would still need to be regenerated from the resulting H₂O adduct. These results reinforce the need to develop systems that can release MeOH under mild thermolysis rather than form Al (and B) oxides and hydroxides which require much more energy to regenerate into usable FLPs. This is a limitation that even catalytic FLP-mediated CO_2 reduction to MeOH suffers

Fig. 2. ¹³C{¹H} and ³¹P{¹H} NMR spectra (inset) of ¹³CO₂ addition to a 1:1 mixture of PCy₃:Al(OC₆H₂Cl₃)₃ in CH₂Cl₂ showing ³¹P⁻¹³C coupling.

[15]. We have also examined the effect of tuning Lewis acid strength within an analogous class of complexes.

Acknowledgments

We are grateful to the Los Alamos National Laboratory LDRD program for the financial support (LDRD 20120197ER). DAD thanks the Robert Ramsay Chair Endowment, The University of Alabama, for support.

Appendix A. Supplementary data

Experimental procedures, spectroscopic data, X-ray crystallographic data in the CIF format and computational details with full references. Crystal structure data has also been deposited with the CCDC (http:// www.ccdc.cam.ac.uk). (Cl-3)₂: 1,047,472, PPh₃-Cl-3: 1,047,471. Supplementary data associated with this article can be found in the online version, at http://dx.doi.org/10.1016/j.inoche.2015.10.009

References

- [1] F.-G. Fontaine, M.-A. Courtemanche, Legare, M.-A. Chem, Eur. J 20 (2014) 2990.
- [2] L.J. Hounjet, D.W. Stephan, Org. Process. Res. Dev. 18 (2014) 385.
- [3] J. Paradies, Angew. Chem. Int. Ed. 53 (2014) 3552.
- [4] D.W. Stephan, G. Erker, Angew, Chem. Int. Ed. 49 (2010) 46.
- [5] D.W. Stephan, Acc. Chem. Res. 48 (2015) 306.
- [6] A.E. Ashley, A.L. Thompson, D. O'Hare, Angew. Chem. Int. Ed. 48 (2009) 9839.
- [7] M.-A. Courtemanche, A.P. Pulis, E. Rochette, M.-A. Legare, D.W. Stephan, F.-G. Fontaine, Chem. Commun. (Cambridge, U. K.) 51 (2015) 9797.
- [8] A. Berkefeld, W.E. Piers, M. Parvez, J. Am. Chem. Soc. 132 (2010) 10660.
- [9] R.J. Wehmschulte, M. Saleh, D.R. Powell, Organometallics 32 (2013) 6812.
- [10] G. Menard, D.W. Stephan, J. Am. Chem. Soc. 132 (2010) 1796.
- [11] L. Roy, P.M. Zimmerman, a. Paul, Chem. Eur. J. 17 (2011) 435.
- [12] G. Menard, D.W. Stephan, Dalton Trans, 42 (2013) 5447.

- [13] F. Bertini, et al., J. Am. Chem. Soc. 134 (2012) 201.
- C. Appelt, H. Westenberg, F. Bertini, A.W. Ehlers, J.C. Slootweg, K. Lammertsma, W. [14] Uhl, Angew. Chem. Int. Ed. 50 (2011) 3925.
- [15] M.-A. Courtemanche, M.-A. Legare, L. Maron, F.-G. Fontaine, J. Am. Chem. Soc. 135 (2013) 9326.
- [16] M.-A. Courtemanche, J. Larouche, M.-A. Legare, W. Bi, L. Maron, F.-G. Fontaine, Organometallics 32 (2013) 6804.
- [17] G. Menard, T.M. Gilbert, J.A. Hatnean, A. Kraft, I. Krossing, D.W. Stephan, Organometallics 32 (2013) 4416.
- [18] D. Chakraborty, E.Y.X. Chen, Macromolecules 35 (2002) 13.
- D.S. McGuinness, A.J. Rucklidge, R.P. Tooze, A.M.Z. Slawin, Organometallics 26 [19] (2007) 2561
- [20] R.H. Cayton, M.H. Chisholm, E.R. Davidson, V.F. DiStasi, P. Du, J.C. Huffman, Inorg. Chem. 30 (1991) 1020.
- [21] R. Benn, et al., J. Organomet. Chem. 411 (1991) 37.
- [22] M. Kuprat, R. Kuzora, M. Lehmann, A. Schulz, A. Villinger, R. Wustrack, J. Organomet. Chem 695 (2010) 1006
- V.V. Shatunov, A.A. Korlyukov, A.V. Lebedev, V.D. Sheludyakov, B.I. Kozyrkin, V.Y. [23] Orlov, J. Organomet. Chem. 696 (2011) 2238.
- [24] D.A. Wierda, A.R. Barron, Polyhedron 8 (1989) 831.
- [25] A.Y. Timoshkin, et al., Inorg. Chem. 51 (2012) 11602.
- A. Kraft, J. Possart, H. Scherer, J. Beck, D. Himmel, I. Krossing, Eur. J. Inorg. Chem. [26] (2013) 3054.
- [27] A. Kraft, N. Trapp, D. Himmel, H. Boehrer, P. Schlueter, H. Scherer, I. Krossing, Chem. Eur. J. 18 (2012) 9371.
- A.D. Becke, J. Chem. Phys. 98 (1993) 5648. [28]
- C. Lee, W. Yang, R.G. Parr, Phys. Rev. B 37 (1988) 785. [29]
- N. Godbout, D.R. Salahub, J. Andzelm, E. Wimmer, Can. J. Chem. 70 (1992) 560. [30]
- L.A. Curtiss, P.C. Redfern, K. Raghavachari, V. Rassolov, J.A. Pople, J. Chem. Phys. 110 [31] (1999) 4703.
- [32] K. Peterson, D. Feller, D. Dixon, Theor. Chem. Accounts 131 (2012) 1.
- [33] D.J. Grant, D.A. Dixon, D. Camaioni, R.G. Potter, K.O. Christe, Inorg. Chem. 48 (2009)
- 8811 K.O. Christe, D.A. Dixon, D. McLemore, W.W. Wilson, J.A. Sheehy, J.A. Boatz, J. Fluor. [34]
- Chem. 101 (2000) 151. [35] K.A. Peterson, B.C. Shepler, D. Figgen, H. Stoll, J. Phys. Chem. A 110 (2006) 13877.
- M.J. Frisch, et al., Gaussian 09, Revision C.01, Gaussian, Inc, Wallingford CT, 2010. [36]
- [37] Werner, H.-J.et al. MOLPRO Version 2012.1 a Package of Ab Initio Programs.