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Abstract: (–)-Isopulegol undergoes Prins cyclization reaction in
the presence of 20 wt% of acid-treated montmorillonite K10 to pro-
duce octahydro-2H-chromen-4-ols in good yields and with high cis
selectivities under solvent-free conditions. The solid-acid catalyst
can be reused without loss of its activity.
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Saturated six-membered heterocycles bearing oxygen are
a common structural motif of many biologically active
natural products such as avermectins, aplysiatoxin, oscil-
latoxins, latrunculins, talaromycins, acutiphycins, apicu-
larens, phorboxazoles, and bryostatins.1 The construction
of six-membered oxygen heterocycles in a single-step
chemical reaction is of particular interest to synthetic or-
ganic chemists, and among all existing methods the Prins
cyclization2 has emerged as a powerful single-step reac-
tion for the synthesis of this type of heterocycle. There
have been many reports in the literature where the Prins
cyclization reaction was employed in the key step of sev-
eral total syntheses of natural products.3 Generally, Lewis
acids and Brønsted acids promote this important consecu-
tive C–O and C–C bond-forming coupling reaction of ho-
moallylic alcohols with aldehydes and ketones to produce
a wide range of tetrahydropyran derivatives under mild
conditions.4,5 Although there have been many methods re-

ported in the literature on this important reaction, most of
them possess at least one drawback; among these are the
need for stoichiometric excess of the promoting acid cat-
alysts, use of an additive such as TMSCl, requirement for
the homoallylic alcohol or the aldehyde to be used in ex-
cess, need for anhydrous reaction conditions and/or inert
atmosphere, and limitation to aldehydes as the carbonyl
component. The synthesis of octahydro-2H-chromen-4-
ols from isopulegol via Prins cyclization reaction is limit-
ed to one example reported by Silva Jr. et al. where they
used molecular iodine as a homogeneous catalyst to cata-
lyze the Prins cyclization of (–)-isopulegol with p-
anisaldehyde6 (Scheme 1). Recently, Yadav et al. also de-
scribed an efficient method for the synthesis of octahydro-
2H-chromen-4-ol from (R)-citronellal and aldehydes via
direct ene-Prins reaction using a catalytic amount of
Sc(OTf)3 under mild conditions (Scheme 2).7 In the for-
mer case the authors only reported one example; whereas
in the latter they used Sc(OTf)3 as catalyst at low temper-
ature. The increasing demand for environmentally friend-
ly and sustainable chemical processes prompted us to
develop a novel catalytic system for the Prins cyclization
to synthesize a variety of octahydro-2H-chromen-4-ols.

Recently, modified montmorillonite K10 solid-acid cata-
lysts have received much attention in organic synthesis
due to their unique properties including their ability to ex-
change cations in the interlayers, expandable interlayer

Scheme 1  Prins cyclization of (–)-isopulegol with p-anisaldehyde using I2
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Scheme 2  Ene-Prins cyclization of (R)-citronellal with aldehydes using Sc(OTf)3
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space, and tunable acidity.8 Ease of catalyst separation
and reutilization properties of modified montmorillonite
K10 solid-acid catalysts make the chemical process very
simple and also environmentally benign. Recent reports
by Wang et al.9 and Wallis et al.10 have established the ef-
ficacy of acid-treated montmorillonite K10 (H-K10
mont).

As an alternative to classical heating conditions, research-
ers have used microwave irradiation under solvent-free
conditions to carry out a range of chemical processes.11,12

To the best our knowledge, there have been no reports in
the literature on the use of H-K10 mont as catalyst under
solvent-free and microwave-irradiation conditions for this
important cylization reaction. We report herein the first
example of H-K10 mont catalyzed Prins cylization of (–)-
isopulegol to produce octahydro-2H-chromen-4-ol deriv-
atives (Scheme 3).

Scheme 3  Prins cyclization of (–)-isopulgol with aldehydes using H-
K10 mont under microwave irradiation and solvent-free conditions

Our initial studies began with the search for optimal reac-
tion conditions for the synthesis of octahydro-2H-chro-
men-4-ol derivatives. Initially, we performed the reaction
of isopulegol (1) and p-anisaldehyde (2c) in the presence
of 10 wt% of H-K10 mont under solvent-free conditions
at room temperature for six hours. These conditions led to

a 42% yield of a diastereomeric mixture of octahydro-2H-
chromen-4-ols 3c and 4c (Table 1, entry 1). Repeating the
reaction at 80 °C for three hours failed to enhance the
yield of the product (Table 1, entry 2). However, when the
same mixture was irradiated with microwaves for three
minutes (Table 1, entry 3), a significant acceleration of the
reaction rate was observed leading to a 70% yield of the
corresponding cyclized product with excellent diastere-
oselectivity (20:1). In search of further improvement, we
found that 20 wt% of H-K10 mont smoothly catalyzed the
reaction to give 86% yield under microwave irradiation.
Finally, the reaction was also performed at different pow-
ers. Thus, we performed the Prins cyclization reaction of
(–)-isopulegol (1, 1.0 mmol) and p-anisaldehyde (2c, 1.2
mmol) at 180 W, 360 W, and 500 W power for three min-
utes using 20 wt% of H-K10 mont (Table 1, entries 4–6).
However, the products were obtained with almost similar
diastereomeric ratios, although the reaction performed at
180 W afforded the product in comparatively lower yield.
Thus, the optimal reaction conditions involved the use of
20 wt% of H-K10 mont catalyst, isopulegol (1, 1.0 mmol)
and aldehyde 2 (1.2 mmol) under microwave irradiation
(360 W) and solvent-free conditions.

After optimization of the reaction conditions, the general
applicability of this protocol was explored with various
aromatic, heteroaromatic, and aliphatic aldehydes and
also with ketone to produce a variety of substituted octa-
hydro-2H-chromen-4-ol. The results of this protocol are
summarized in Table 2. Initially, we explored the Prins
cyclization reaction of (–)-isopulegol with various aro-
matic aldehydes. It was observed that yields and diastereo-
selectivities of products were strongly variable according
to the nature of the substituent present in the arene ring.
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Table 1 Reaction Conditions Optimization Studies Using (–)-Isopulegol (1) and p-Anisaldehydea

Entry Catalyst (wt%)b Conditions Time Yield (%)c

1 10 25 °C 6 h 42

2 10 80 °C 3 h 46

3 10 MW (360 W) 3 min 70

4 20 MW (360 W) 3 min 86

5 20 MW (180 W) 3 min 60

6 20 MW (500 W) 3 min 65

7 0 MW (360 W) 3 min 0

a Reaction performed with 2c (1.2 mmol) and 1 (1 mmol).
b Solid-acid catalyst H-K10 mont prepared by reported method.9,13

c Isolated yield.
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Aldehydes with electron-donating substituents at the para
position gave very good yields and excellent diastereose-
lectivites of the corresponding Prins products (Table 2,
entries 3 and 5); whereas o-anisaldehyde afforded an in-
separable mixture of products 3d and 4d in a 6.5:1 diaste-
reomeric ratio as determined by 1HNMR spectroscopic
analysis (Table 2, entry 4). Aldehydes with electron-with-
drawing groups also underwent cyclization, but their cor-
responding octahydro-2H-chromen-4-ol derivatives were
obtained in lower yields and diastereoselectivities (Table
2, entries 6–13). Unsubstituted aromatic aldehydes such
as benzaldehyde and 2-napthaldehyde also underwent
smooth cyclization with the yield of the chromenol deriv-
ative for the latter being higher than the former (Table 2,
entries 1 and 2). Diastereoselectivities in both cases were
found to be very good. 

Next, we extended our studies to heteroaromatic alde-
hydes. When 2-furfuraldehyde and 2-thiophene carbalde-
hyde were reacted with (–)-isopulegol under the same
reaction conditions, the corresponding chromen deriva-
tives were obtained in good yields but with poor diastere-
oselectivities (Table 2, entries 14 and 15). Pyridine-2-
carbaldehyde and pyridine-3-carbaldehyde did not under-
go reaction (Table 2, entries 16 and 17).

To extend the utility of this protocol further, various ali-
phatic aldehydes were investigated. Propanal and 3-phen-
ylpropanal underwent smooth cyclization to give their
corresponding chromen derivatives in good yields and
good diastereoselectivities (Table 2 entries 18 and 19). 

Finally, the efficacy of the catalyst has also been tested
with cyclohexanone 5 under the same reaction conditions
to afford a 4:1 diasteromeric mixture of products 6 and 7
in 68% yield (Scheme 4).

Scheme 4  Prins cylization of (–)-isopulegol with cyclohexanone

Concerning the recovery and reuse of the catalyst we ob-
served that the catalyst can be reused up to five times
without loss of any significant catalytic activity. After
completion of the reaction of (–)-isopulegol with p-tolual-
dehyde the catalyst was recovered from the reaction mix-
ture by a simple filtration process. The solid residue was
washed with ethyl acetate, dried under vacuum, and kept
in oven at 100 °C before its use for another cycle. The
same method was applied for subsequent other three cy-
cles. The results are summarized in Table 3.

The efficiency of other solid-acid catalysts such as mont-
morillonite K10, amberlyst-15, PPA-silica, and silica sul-
furic acid was also examined, and the results are presented
in Table 4.

In summary, a variety of aldehydes with both electron-
donating and electron-withdrawing substituents undergo
H-K10 mont promoted Prins cyclization reaction with
(–)-isopulegol to generate a library of octahydro-2H-chro-
men-4-ols under microwave irradiation and solvent-free
conditions. (–)-Isopulegol also underwent Prins cycliza-
tion with cyclohexanone to afford a spiro chromenol de-
rivative under the same reaction conditions. This protocol
offers an environmentally benign synthesis of chromen
derivatives using reusable and eco-friendly clay catalyst
and it can also be utilized as an effective alternative meth-
od over the two existing classical methods.
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Table 2  Synthesis of Octahydro-2H-chromen-4-ols via Prins Cycli-
zation of (–)-Isopulegol with Different Aldehydesa

Entry R Product Ratio of 3/4a Yield (%)b

1 Ph 3a + 4a 9:1 76

2 2-naphthyl 3b + 4b 10:1 80

3 4-MeOC6H4 3c + 4c 20:1 86

4 2-MeOC6H4 3d + 4d 6.5:1c 76

5 4-MeC6H4 3e + 4e 25:1 82

6 4-ClC6H4 3f + 4f 5:1 78

7 2,4-Cl2C6H3 3g + 4g 4:1 72

8 4-BrC6H4 3h + 4h 9:1 78

9 3-BrC6H4 3i + 4i 3:1 65

10 2-BrC6H4 3j + 4j 2:1 70

11 4-FC6H4 3k + 4k 3:1 64

12 2,4,5-F3C6H3 3l + 4l 1:1 50

13 3-O2NC6H4 3m + 4m 3:1 64

14 2-furfuryl 3n + 4n 3:1 56

15 2-thiophenyl 3o + 4o 2:1 50

16 2-pyridinyl n.r. –

17 3-pyridinyl n.r. –

18 Pr 3r + 4r 5:1 70

19 3-phenylpropyl 3s + 4s 4:1 76

a Diastereomeric ratios obtained from the isolated yield of the prod-
ucts.
b Isolated yield.
c Determined by 1HNMR analysis; n.r.: no reaction.
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1H NMR (300 MHz, CDCl3): δ = 7.50 (d, 1 H, J = 8.4 Hz), 
7.31 (d 1 H, J = 2.0 Hz), 7.23 (d, 1 H, J = 1.9 Hz), 5.12 (dd, 
1 H, J = 1.7, 11.4 Hz), 3.59 (dt, 1 H, J = 4.0, 11.0 Hz), 1.99–
1.94 (m, 2 H), 1.85–1.65 (m, 2 H), 1.55 (br s, 1 H, OH), 
1.50–1.40 (m, 2 H), 1.25 (s, 3 H), 1.23–0.96 (m, 4 H), 0.94 
(d, 3 H, J = 6.5 Hz). 13C NMR (75 MHz, CDCl3): δ = 139.3, 
133.1, 132.0, 128.8, 128.3, 127.3, 75.8, 71.2, 69.4, 49.5, 
46.6, 41.3, 34.4, 31.2, 28.1, 22.5, 22.2. ESI-MS: m/z = 330 
[M + 1]+.
Compound 3i: white solid; mp 97 °C. IR (CHCl3): 3387, 
2923, 2867, 1597, 1569, 1454, 1376, 1354, 1321, 1206, 
1102, 1034, 781, 689 cm–1. 1H NMR (300 MHz, CDCl3): δ 
= 7.45 (s, 1 H), 7.32 (dd, 1 H, J = 1.4, 3.1 Hz), 7.18 (d, 1 H, 
J = 1.5 Hz), 7.10 (d, 1 H, J = 7.7 Hz), 4.33 (dd, 1 H, J = 2.0, 
11.7 Hz), 3.53 (dt, 1 H, J = 4.2, 10.5 Hz), 1.84–1.96 (m, 1 
H), 1.82 (dd, 1 H, J = 2.3, 12.8 Hz), 1.20–1.76 (m, 5 H), 1.23 
(s, 3 H), 0.95–1.19 (m, 3 H), 0.87 (d, 3 H, J = 6.5 Hz). 13C 
NMR (75 MHz, CDCl3): δ = 145.3, 130.2, 129.8, 129.0, 
124.6, 122.5, 75.6, 74.0, 69.4, 49.3, 48.1, 41.2, 34.4, 31.3, 
28.2, 22.5, 22.2. ESI-MS: m/z = 362 [M + Na]+. Anal. Calcd 
for C17H23BrO2: C, 60.18; H, 6.83. Found: C, 60.14; H, 6.81.
Compound 4i: semi-solid. IR (CHCl3): 3455, 2927, 2869, 
1597, 1570, 1476, 1455, 1424, 1375, 1327, 1253, 1162, 
1097, 1063, 1036, 901, 782, 757 cm–1. 1H NMR (300 MHz, 
CDCl3): δ = 7.53 (s, 1 H), 7.38 (dd, 1 H, J = 1.2, 2.9 Hz), 7.32 
(d, 1 H, J = 1.5 Hz), 7.15 (d, 1 H, J = 7.7 Hz), 4.75 (dd, 1 H, 
J = 2.1, 11.6 Hz), 3.53 (dt, 1 H, J = 4.1, 11.0 Hz), 1.98 (m, 1 
H), 1.70–1.80 (m, 1 H), 1.35–1.76 (m, 3 H), 1.24 (s, 3 H), 
1.05–1.19 (m, 3 H), 0.96 (d, 3 H, J = 6.5 Hz). 13C NMR (75 
MHz, CDCl3): δ = 145.3, 130.2, 129.8, 129.0, 124.6, 122.5, 
75.6, 74.0, 69.4, 49.3, 48.1, 41.2, 34.4, 31.3, 28.2, 22.5, 22.2. 
ESI-MS: m/z = 362 [M + Na].
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