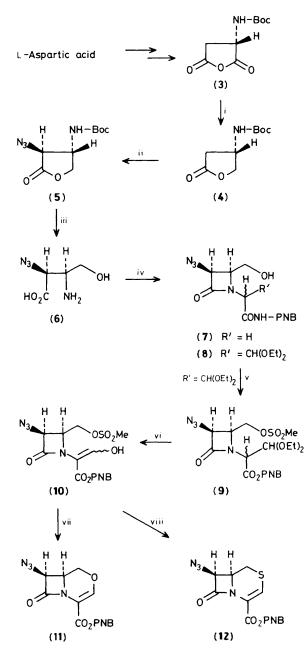

An Enantioselective Synthesis of 2-Isocephem and 2-Iso-oxacephem Nuclei

Hajime Nitta, Minoru Hatanaka,* and Toshiyasu Ishimaru

The Institute of Scientific and Industrial Research, Osaka University, Mihogaoka, Ibaraki, Osaka 567, Japan


A stereocontrolled synthesis of optically active 2-isocephem and 2-iso-oxacephem nuclei is described starting from L-aspartic acid.

2-Isocephems and 2-iso-oxacephems have been reported to have potent antibacterial activity.^{1,2} However, most previous syntheses have led to racemic compounds and could not give optically active derivatives without resolution.^{2c,3} Herein we report a stereocontrolled synthesis of optically active 2-isocephalosporin (1) and its oxa analogue (2) starting from L-aspartic acid. The key step is the stereoselective introduction of the azide group into L-aspartic acid leading to the amino acid (6), which can be converted *via* a four-component condensation into chiral *cis*-3-azidoazetidinones.

The anhydride (3) was reduced with NaBH₄ in tetrahydrofuran (THF) at -20 to 0 °C to afford the lactone (4) {92% yield, m.p. 106–108 °C, $[\alpha]_D^{25}$ -61° (*c* 1.0, EtOH)}. The dianion of (4), [lithium di-isopropylamide (LDA; 2 equiv.), -67 °C] was treated with toluene-*p*-sulphonyl azide followed by an excess of chlorotrimethylsilane to give exclusively the expected *trans*-azide (5)⁴† in 58% yield. Attempted opening

⁺ The spectral properties of all new compounds were in accord with the proposed structure. Selected physical data: (**5**): m.p. 110–111 °C; $[\alpha]_D^{25}$ -69° (*c* 1.0, EtOH); i.r. (KBr) 2100, 1780, and 1680 cm⁻¹. (**11**): m.p. 149–150 °C; $[\alpha]_D^{25}$ -34.2° (*c* 1.0, EtOH); λ_{max} . (EtOH) 269 nm (log ε 4.22); ¹H n.m.r. (CDCl₃) δ 3.79 (1H, m), 3.94 (1H, dd, *J* 9.5, 11.3 Hz), 4.60 (1H, dd, *J* 3.7, 11.3 Hz), 5.27 (1H, d, *J* 5.2 Hz), 5.28 (1H, d, *J* 13.5 Hz), 5.43 (1H, d, *J* 13.5 Hz), 7.40 (1H, s), 7.60 (2H, *J* 8.9 Hz), and 8.23 (2H, d, *J* 8.9 Hz). (**12**): m.p. 147–148 °C; $[\alpha]_D^{25}$ -46.6° (*c* 0.5, dioxane); i.r. (KBr) 2100, 1760, and 1700 cm⁻¹; λ_{max} . (EtOH) 302 nm (log ε 4.12); ¹H n.m.r. (CDCl₃) δ 3.03–3.16 (2H, m), 3.94 (1H, m), 5.22 (1H, d, *J* 5.1 Hz), 5.29 (1H, d, *J* 13.3 Hz), 5.11 (1H, d, *J* 13.3 Hz), 7.13 (1H, s), 7.60 (2H, d, *J* 8.8 Hz), and 8.24 (2H, d, *J* 8.8 Hz).

Scheme 1. PNB = p-nitrobenzyl, Boc = t-butoxycarbonyl. Reagents: i, NaBH₄ (1 equiv.), THF, -20 to 0 °C, 2 h, followed by benzene, reflux, 3 h; ii, LDA (2.1 equiv.), THF, -78 to -20 °C, 1 h, then $p-MeC_6H_4SO_2N_3$ (1.2 equiv.), THF, -78 °C, 1 h, followed by Me_3SiCl , -78 to 0 °C; iii, CF₃CO₂H, then Amberlite IRA-45, MeOH-H₂O, 0 °C; iv, (a) for preparation of (7): 30% aqueous HCHO, p-O₂NC₆H₄NC, MeOH, room temp., 10 h; (b) for preparation of (8): (EtO)₂CHCHO, p-O₂NC₆H₄NC, MeOH, room temp., 10 h; v, MeSO₂Cl, Et₃N, THF, room temp., 10 h, then N₂O₄, CHCl₃, AcONa, 0 °C, 1 h, followed by CCl₄, reflux, 3 h; vi, CF₃CO₂H; vii, Et₃N, CH₂Cl₂, reflux, 3 h; viii, MeSO₂Cl, Et₃N, THF, then H₂S, CH₂Cl₂, Et₃N, 0 °C.

of the lactone ring of (5) with aqueous alkali led to elimination of t-butoxyformamide. However, after removal of the t-butoxycarbonyl group with trifluoroacetic acid, neutralization of the resulting trifluoroacetate with Amberlite IRA-45 in aqueous methanol also effected opening of the lactone ring to give the crystalline amino acid (6) {m.p. 135–137 °C (decomp.), $[\alpha]_D^{25} - 149^\circ$ (c 1.0, H₂O)} in 76% yield.

The amino acid (6) was subjected to four-component condensation for constructing the azetidinone ring using *p*-nitrobenzyl isocyanide⁵ as the isonitrile. An equimolar mixture of the amino acid (6), formaldehyde, and *p*-nitrobenzyl isocyanide was stirred in methanol at room temperature for 10 h to give the *cis*-azetidinone (7) in 95% yield. When 2,2-diethoxyacetaldehyde was used instead of formaldehyde, the *cis*-azetidinone (8) was obtained in 93% yield as a *ca*. 1:1 diastereoisomeric mixture. The resulting monocyclic azetidinones can serve as versatile intermediates for synthesis of a variety of bicyclic β -lactam compounds. For example, compound (8) could be readily transformed into 2-isocephalosporin and 2-iso-oxacephalosporin.

Methanesulphonylation of the hydroxy group of (8) followed by conversion of the *p*-nitrobenzylamide group into the p-nitrobenzyl ester via N-nitrosation gave compound (9) in 57% yield, which corresponded to the key intermediate in the synthesis of 2-iso-oxacephalosporins and 2-isocephalosporins reported by Doyle et al.^{2a,b} Thus, according to the Doyle's procedure, compound (9) was converted into the 7-azido-2iso-oxacephem (11) via (10) by treatment with trifluoroacetic acid followed by triethylamine. On the other hand, methanesulphonylation of (10) followed by treatment with hydrogen sulphide gave the 7-azido-2-isocephem (12). Compounds (12) and (11) can be converted into the 2-isocephalosporin and 2-iso-oxacephalosporin derivatives (1) and (2) having a variety of substituents R by standard sequences consisting of reduction of the azide group, acylation, and removal of the protective groups.

Received, 8th September 1986; Com. 1282

References

- 1 For a review see: F. A. Jung, W. R. Pilgrim, J. P. Poyser, and P. J. Siret, in 'Topics in Antibiotic Chemistry,' Vol. 4, ed. P. G. Sammes, Ellis Horwood, Chichester, 1980, p. 93.
- (a) T. W. Doyle, B. Belleau, B-Y. Luh, T. T. Conway, M. Menard, J. L. Douglas, D. T-W. Chu, G. Lim, L. R. Morris, P. Rivest, and M. Casey, Can. J. Chem., 1977, 55, 484; (b) T. W. Doyle, J. L. Douglas, B. Belleau, J. Meunier, and B-Y. Luh, *ibid.*, 1977, 55, 2873; (c) T. T. Conway, G. Lim, J. L. Douglas, M. Menard, T. W. Doyle, P. Rivest, D. Horning, L. R. Morris, and D. Cimon, *ibid.*, 1978, 56, 1335; (d) D. B. Bryan, R. F. Hall, K. G. Holden, W. F. Huffman, and J. G. Gleason, J. Am. Chem. Soc., 1977, 99, 2354.
- 3 An approach to optically active 2-iso-oxacephalosporin has been reported: A. K. Bose, J. E. Vincent, I. F. Fernandez, K. Gala, and M. S. Manhas in 'Recent Advances in the Chemistry of β-Lactam Antibiotics' (Proceedings of the 2nd International Symposium), ed. G. I. Gregory, The Royal Society of Chemistry, Special Publications No. 38, 1980, p. 80.
- 4 Alkylation of lactones of type (4) gave mainly *trans*-alkylated products together with significant amounts of the *cis*-isomers: G. J. McGarvey, R. N. Hiner, Y. Matsubara, and T. Oh, *Tetrahedron Lett.*, 1983, 24, 2733.
- 5 M. Hatanaka, H. Nitta, and T. Ishimaru, *Tetrahedron Lett.*, 1984, **25**, 2387.