Pyrimidine-pyrimidine base pairs stabilized by silver(I) ions⁺

Hidehito Urata,* Eriko Yamaguchi, Yasunari Nakamura and Shun-ichi Wada

Received 27th September 2010, Accepted 26th October 2010 DOI: 10.1039/c0cc04091f

In the presence of Ag^{I} ions, the C–T and $m^{5}iC$ (5-methylisocytosine)–T base pairs showed comparable stability to the C– Ag^{I} –C base pair, and the $m^{5}iC$ –C base pair was highly stabilized by the synergetic effect of Ag^{I} coordination and possible hydrogen bonding.

DNA forms a double-stranded structure through the formation of A-T and G-C Watson-Crick base pairs.¹ The selectivity of the hydrogen bonding between bases is essential for the replication and expression of genetic information. Recently, several types of artificial base pairing systems formed by non-Watson-Crick type hydrogen bonding,² hydrophobic interaction based on shape complementarity,³ and metal coordination⁴ have been reported. These nonnatural artificial bases form base pairs to stabilize duplex structures. Among them, base pairs of the metal coordination type can be used as a functional switching device that is dependent on the presence or absence of metal ions. It has been reported that T-T, U-U and C-C mismatch base pairs are effectively stabilized by the addition of Hg^{II} and Ag^I ions, respectively (Fig. 1).5-7 Ono and Togashi applied the metalion-mediated base pairing system to detect Hg^{II} ions.⁸

In T-Hg^{II}-T and C-Ag^I-C base pairs, hydrogen bonding cannot take place due to the non-complementarity of the T-T and C-C base pairs. Recently, Müller and Polonius, however, reported a novel type of base pair involving both hydrogen bonding and metal coordination through the Hoogsteen edge.⁹ Silver(1) ion has the ability to deprotonate thymine in oligonucleotides and binds to the N³ atom of deprotonated thymine to afford an Ag^I-thymine complex without any charge, and this complex binds to the N⁷ position of 1-deazaadenine.⁹ This suggests that the Ag^I-thymine complex has affinity toward an aromatic tertiary nitrogen atom. Here, we describe the effects of Ag^I ions on the stability of oligodeoxynucleotides (ODNs) containing a pyrimidine–pyrimidine mismatch base pair consisting of cytosine, thymine, and 5-methylisocytosine (m⁵iC) (Fig. 2).

2'-Deoxy-5-methylisocytidine, a more stable derivative of 2'-deoxyisocytidine, was synthesized from thymidine according to the literature procedure,¹⁰ with slight modifications. 2'-Deoxy-5-methylisocytidine was protected with di(*n*-butyl)-formamidine (dbf)¹¹ for the 2-amino group and with 4,4'-dimethoxytrityl group (DMT) for the 5'-hydroxyl group, and then converted into the phosphoramidite derivative.¹¹

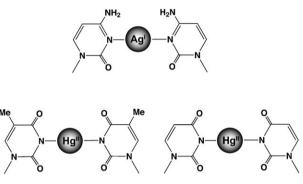


Fig. 1 Structures of C–Ag^I–C, T–Hg^{II}–T and U–Hg^{II}–U base pairs.

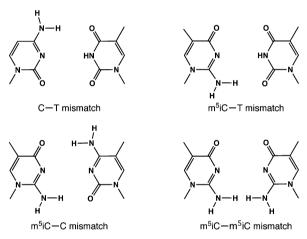
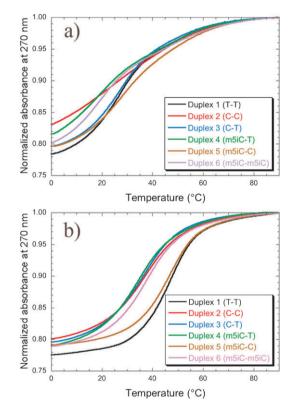


Fig. 2 Structures of pyrimidine-pyrimidine mismatch base pairs.

The ODNs used in this study were synthesized on an automated DNA synthesizer (Table 1).

Fig. 3 shows the UV melting curves of oligonucleotide duplexes in the absence and presence of metal ions. In the absence of metal ions (Fig. 3a), some of the curves are non-sigmoidal and the $T_{\rm m}$ values were calculated by curve fitting with the Meltwin program.¹² Duplexes other than duplexes 2 and 4 showed similar $T_{\rm m}$ values (Table 1). The exceptional $T_{\rm m}$ values for duplexes 2 and 4 may be attributed to their non-sigmoidal transitions.


As reported by Ono and coworkers,^{5,7} the T–T and C–C mismatch base pairs (duplexes 1 and 2) showed significant stabilization when 1 equivalent of Hg^{II} and Ag^{I} ions, respectively, was added (Fig. 3b, Table 1). It has been reported that although Ag^{I} ion is able to deprotonate thymine to form an Ag^{I} -thymine complex,⁹ it does not stabilize a T–T mismatch base pair.^{5,13} To examine the binding affinity of the Ag^{I} -thymine complex to cytosine, the effects of Ag^{I} ions on the stability of the C–T mismatch base pair (duplex 3) were evaluated. As shown in Fig. 3 and Table 1, the addition of Ag^{I}

Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan. E-mail: urata@gly.oups.ac.jp; Fax: +81 72-690-1089; Tel: +81 72-690-1089

 $[\]dagger$ Electronic supplementary information (ESI) available: Synthetic details of the duplexes containing m^5iC and supplementary melting curves. See DOI: 10.1039/c0cc04091f

d(GA CGT X CTA CG)			
Y GAT GC)d			
Х–Ү	$T_{\rm m}/^{\circ}{\rm C}$	$T_{\rm m}/^{\circ}{\rm C}$ (+ metal ion)	$\Delta T_{ m m}/^{\circ}{ m C}$
T–T C–C	27.6 31.7	45.7^b 36.5 ^c	18.1 4.8
C-T m ⁵ iC-T m ⁵ iC-C	27.9 19.7 26.6	37.3^{c} 32.2^{c} 45.5^{c}	9.4 12.5 18.9 9.6
	X GAT GC)d X-Y T-T C-C C-T m ⁵ iC-T	$\begin{array}{c} T_{m}^{\circ}C \\ T_{m}^{\circ}C $	Y GAT GC)d $T_m/^\circ C$ $T_m/^\circ C$ X-Y $T_m/^\circ C$ $(+ \text{ metal ion})$ T-T 27.6 45.7 ^b C-C 31.7 36.5 ^c C-T 27.9 37.3 ^c m ⁵ iC-T 19.7 32.2 ^c m ⁵ iC-C 26.6 45.5 ^c

^{*a*} Samples contained 5 μ M duplex, 1 M NaClO₄, and 10 mM MOPS, pH 7.1. $T_{\rm m}$ values were calculated by using the Meltwin program.¹² ^{*b*} $T_{\rm m}$ value in the presence of 1 equivalent of Hg^{II} ions. ^{*c*} $T_{\rm m}$ value in the presence of 1 equivalent of Ag^I ions.

Fig. 3 UV melting curves of duplexes 1-6 in the absence (a) and presence (b) of 1 equivalent of HgClO₄ (duplex 1) or AgNO₃ (duplexes 2–6). Samples contained 5 μ M duplex, 1 M NaClO₄, and 10 mM MOPS, pH 7.1.

ion resulted in a significant stabilization of the C–T mismatch base pair ($\Delta T_{\rm m} = 9.4$ °C), and the $T_{\rm m}$ value of duplex 3 is comparable to that of duplex 2 in the presence of Ag^I ions, although the $\Delta T_{\rm m}$ value of the C–T mismatch pair ($\Delta T_{\rm m} =$ 9.4 °C) was higher than that for the C–C mismatch pair ($\Delta T_{\rm m} = 4.8$ °C). It should be noted that 1 equivalent of Ag^I ions stabilized the C–T base pair and an excess of Ag^I ions did not result in further stabilization (Fig. S1, ESI†).

Artificial base m⁵iC is a structural isoform of cytosine. Duplex 4 containing the m⁵iC–T base pair was effectively stabilized by the addition of Ag^I ions ($\Delta T_{\rm m} = 12.5$ °C) and the effects were slightly larger than those of duplex 3, although duplex 3 was more stable than duplex 4 in the presence of Ag^I ions. The m⁵iC-m⁵iC mismatch base pair is a structural isoform of the C-C mismatch base pair and duplex 6 showed thermal stability (36.2 °C) that was analogous to that of duplex 2 (36.5 °C) in the presence of Ag^I ions. The relatively large difference between the $\Delta T_{\rm m}$ values of duplexes 2 and 6 may be due to the non-sigmoidal transition in the melting process of duplex 2 in the absence of Ag^I ions.

The m⁵iC–C base pair has two hydrogen bond donoracceptor pairs. In the presence of Ag^I ions, duplex 5 showed a much higher $T_{\rm m}$ value (45.5 °C) than duplexes containing the other Ag^I-mediated base pairs (32–37 °C). Notably, this $T_{\rm m}$ value is comparable to that of the Hg^{II}-mediated T–T base pair (45.7 °C) and is higher than that of the A–T full-match sequence (X = A and Y = T, 45.0 °C) (not shown). This result suggests the possibility that the Ag^I coordination and hydrogen bonding synergistically contribute to the stabilization of the m⁵iC–C mismatch base pair. As usual Ag–N bond length is 2.1–2.2 Å, the N³ to N³ distance of the m⁵iC–Ag–C complex is approximately 4.2 Å when the N³–Ag–N³ bond angle is 180°. Thus, some deformation in the m⁵iC–C base pair such as buckle or opening¹⁴ may be caused to form the hydrogen bond.

We have found that the Ag^I-thymine complex is able to coordinate to cytosine and 5-methylisocytosine in ODNs. These C-AgI-T and m5iC-AgI-T base pairs have roughly comparable thermal stability to the C-AgI-C base pair. Thus, the coordination of Ag^I ion would not be selective for the C-C mismatch base pair. In addition, we have found that the m⁵iC-Ag^I-C base pair is highly stable compared to the C-AgI-C and C-AgI-T base pairs. This result demonstrated the synergetic effect of metal coordination and possible hydrogen bonding on the mismatch stabilization. These novel silver(1)-mediated base pairs described here were stabilized sufficiently by 1 equivalent of Ag^I ions (Fig. S1-S4, ESI[†]) and thus the K_d values for the binding of Ag^I ions to these base pairs would be less than 10 µM. Thus, Ag^I-coordinated thymine and Ag^I-coordinated 5-methylisocytosine may be useful as a recognition device for cytosine in ODNs. In particular, the m⁵iC-Ag^I-C base pair may be a promising device for sensing Ag^I ions.

We thank Professor D. H. Turner and Dr J. A. McDowell who generously provided the Meltwin program for calculation of $T_{\rm m}$ values.

Notes and references

- 1 J. D. Watson and F. H. Crick, Nature, 1953, 171, 737-738.
- 2 (a) C. Roberts, R. Bandaru and C. Switzer, *Tetrahedron Lett.*, 1995, 36, 3601–3604; (b) J. J. Voegel and S. A. Benner, *J. Am. Chem. Soc.*, 1994, 116, 6929–6930; (c) J. A. Piccirilli, T. Krauch, S. E. Moroney and S. A. Benner, *Nature*, 1990, 343, 33–37; (d) C. Switzer, S. E. Moroney and S. A. Benner, *J. Am. Chem. Soc.*, 1989, 111, 8322–8323.
- 3 (a) S. Moran, R. X.-F. Ren, S. Rumney IV and E. T. Kool, J. Am. Chem. Soc., 1997, 119, 2056–2057; (b) K. M. Guckian and E. T. Kool, Angew. Chem., Int. Ed., 1998, 36, 2825–2828; (c) K. M. Guckian, T. R. Krugh and E. T. Kool, Nat. Struct. Biol., 1998, 5, 954–959.
- 4 (a) S. Johannsen, N. Megger, D. Böhme, R. K. O. Sigel and J. Müller, *Nat. Chem.*, 2010, 2, 229–234; (b) G. H. Clever, C. Kaul and T. Carell, *Angew. Chem.*, *Int. Ed.*, 2007, 46, 6226–6236;

(c) G. H. Clever and T. Carell, Angew. Chem., Int. Ed., 2007, 46, 250–253; (d) C. Switzer, S. Sinha, P. H. Kim and B. D. Heuberger, Angew. Chem., Int. Ed., 2005, 44, 1529–1532; (e) G. H. Clever, K. Polborn and T. Carell, Angew. Chem., Int. Ed., 2005, 44, 7204–7208; (f) K. Tanaka, A. Tengeiji, T. Kato, N. Toyama and M. Shionoya, Science, 2003, 299, 1212–1213; (g) K. Tanaka, A. Tengeiji, T. Kato, N. Toyama, M. Shiro and M. Shionoya, J. Am. Chem. Soc., 2002, 124, 12494–12498; (h) S. Atwell, E. Meggers, G. Spraggon and P. G. Schultz, J. Am. Chem. Soc., 2001, 123, 12364–12367; (i) Eric. Meggers, P. L. Holland, W. B. Tolman, F. E. Romesberg and P. G. Schultz, J. Am. Chem. Soc., 2000, 122, 10714–10715.

5 Y. Miyake, H. Togashi, M. Tashiro, H. Yamaguchi, S. Oda, M. Kudo, Y. Tanaka, Y. Kondo, R. Sawa, T. Fujimoto, T. Machinami and A. Ono, J. Am. Chem. Soc., 2006, 128, 2172–2173.

- 6 S. Johannsen, S. Paulus, N. Düpre, J. Müller and R. K. O. Sigel, J. Inorg. Biochem., 2008, 102, 1141–1151.
- 7 A. Ono, S. Cao, H. Togashi, M. Tashiro, T. Fujimoto, T. Machinami, S. Oda, Y. Miyake, I. Okamoto and Y. Tanaka, *Chem. Commun.*, 2008, 4825–4827.
- 8 A. Ono and H. Togashi, Angew. Chem., Int. Ed., 2004, 43, 4300-4302.
- 9 F.-A. Polonius and J. Müller, Angew. Chem., Int. Ed., 2007, 46, 5602–5604.
- 10 Y. Tor and P. B. Dervan, J. Am. Chem. Soc., 1993, 115, 4461-4467.
- 11 F. Seela, Y. He and C. Wei, Tetrahedron, 1999, 55, 9481-9500.
- 12 J. A. McDowell and D. H. Turner, *Biochemistry*, 1996, 35, 14077–14089.
- 13 I. Okamoto, K. Iwamoto, Y. Watanabe, Y. Miyake and A. Ono, *Angew. Chem.*, Int. Ed., 2009, 48, 1648–1651.
- 14 R. E. Dickerson, Nucleic Acids Res., 1989, 17, 1797-1803.