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Abstract: A four-steps synthesis (32% overall yield) of marine al-
kaloid almazole C isolated from the red seaweed Haraldiophylum
sp. is described. The key step, construction of the central 2,5-disub-
stituted oxazole ring is based on the aza-Wittig reaction of the imi-
nophosphorane derived from the a-azidoacetyl indole and (S)-N-
phthaloylphenylalanyl chloride.
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The oxazole heterocycle is a fundamental structural motif
found in many compounds such as natural products,1

unnatural biologically active compounds,2 and molecular
sensors.3 Naturally occurring oxazoles are usually found
with a 2,4-substitution pattern, although 2,5-disubstituted
oxazole natural products are known. They comprise the
2,5-diaryloxazoles halfordinol,4 balnoxin,5 and
annuloline6 and the 5-(3-indolyl)oxazoles pimprinine
alkaloids7 and martefragin A,8 which is a strong inhibitor
of lipid peroxidation.

In 1994, the 2,5-disubstituted oxadiazole alkaloid alma-
zole C (1, Figure 1), which showed antibacterial activity
against Gram-negative pathogens, was isolated from a red
seaweed of family Delesseriaceae of genus Haraldio-
phylum sp. on the north of Dakar.9 From the structural
point of view almazole C (1) represents slight variations
on 5-(3-indolyl)oxazole alkaloids that have been isolated
previously. As can be seen in Figure 1, the oxazole ring of
the almazole C (1) is substituted at 2-position by a N,N-
dimethylphenylalanine fragment.

Figure 1

Both inter- and intramolecular versions of the aza-Wittig
reaction have assumed increasing importance for the con-
struction of a wide variety of nitrogen-containing hetero-
cyclic ring systems.10 Several methodologies based on the
intermolecular aza-Wittig reaction followed by either

electrocyclization, intramolecular cycloaddition, or het-
erocumulene-mediated annelation have been used for the
preparation of a wide variety of nitrogen-containing
natural products.11

In conjunction with our synthetic efforts on the synthesis
of a number of nitrogen-containing alkaloids from marine
origin,12 we have devised a reliable synthesis of almazole
C, which is based on the iminophosphorane-based forma-
tion of the appropriately 2,5-disubstituted, central, five-
membered ring. The three-component reaction between
an a-azidoketone, a tertiary phosphine and an acyl halide
has been employed for the preparation of the central
oxazole derivative ring.13 The reaction takes place
through an initially formed iminophosphorane which
undergoes acylation and further elimination of the corre-
sponding phosphine oxide to give an imidoyl chloride as
intermediate which gives the five-membered ring after
cyclization. Recently, two slight modifications of this
protocol have been applied successfully to the synthesis
of 2,5-disubstituted imidazole alkaloids from marine
origin.14

We initially required an N-protected 3-acetylindole as
starting material and the protecting group of choice was
the MOM group. To this end N-methoxymethyl-3-azi-
doacetylindole (5) was prepared in a three-step sequence:
(a) N-protection of 3-acetylindole with chloromethyl-
methyl ether in DMF in the presence of NaH (89% yield),
(b) selective a-chlorination of 3-acetylindole 3 with
benzyltrimethyl-ammonium dichloroiodate15 to give the
a-chloroacetyl derivative 4 (90%), and (c) halogen–azide
exchange with sodium azide in acetone–water to afford
the a-azido ketone 5 (77%, Scheme 1).

The formation of the central oxazole ring was achieved
using the iminophosphorane methodology. Previous stud-
ies on the reactivity of a-azido ketones derived from the
indole ring revealed that the Staudinger reaction with
triphenylphosphine is very slow13b and in some cases
products derived from the double intermolecular aza-
Wittig reaction were isolated. For this reason the more re-
active n-tributylphoshine has been employed. Thus, the
key intermediate 7 was prepared in 70% yield by reaction
of a-azido ketone 5 with n-tributylphosphine in THF at
0 °C and subsequent addition of (S)-N-phthaloylphenyl-
alanyl chloride16 (6) followed by treatment with Et3N.17

Attempts to improve the yield of compound 7 using the
triazaphosphadiene pathway18 (in this case the reaction is
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carried out with the acyl chloride present before the addi-
tion of the phosphine) failed.

The N-phthaloyl group of compound 7 was smoothly re-
moved with hydrazine in EtOH at room temperature to
give amine 8 in 90% yield. The best results to prepare the
N-dimethylated amine was realized by reductive amina-
tion with hydrogen in the presence of formaldehyde and
palladium as catalysis,19 to give compound 9 in 90% yield.
Also, another N-methylating agent was used: first the re-
ductive amination by Leuckart reaction was realized in the
presence of formaldehyde/formic acid in CH2Cl2 at room
temperature for four days to give N-dimethylated com-
pound 9 in 43% yield. When methyl iodide was used in
THF at reflux temperature for five days or in DMF in the
presence of NaH at room temperature for three days, vinyl
compound 10 was obtained in 21% and 53% yield, respec-
tively.

Compound 9 was converted into almazole C (1) by depro-
tection of the N-methoxymethyl substituent with formic
acid in THF at reflux temperature for 30 hours in 55%
yield.20 Compound 1 was identical in all aspects {IR, MS,
1H NMR, 13C NMR and [a]D

20} with the natural product.1
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