This article was downloaded by: [University of Newcastle, Australia] On: 31 December 2014, At: 00:57 Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Nucleosides and Nucleotides

Publication details, including instructions for authors and subscription information: http://www.tandfonline.com/loi/lncn19

Incorporation of 2'-Deoxysangivamycin in DNA Duplexes: The Conversion of a Pyrrolo[2, 3-d]Pyrimidine Nitrile to a Carboxamide upon Oligonucleotide Deprotection

Frank Seela^a & Matthias Zulauf^a

^a Laboratorium für Organische und Bioorganische Chemie, Institut für Chemie, Universität Osnabrück, Barbarastr. 7, D-49069, Osnabrück, Germany Published online: 04 Oct 2006.

To cite this article: Frank Seela & Matthias Zulauf (1999) Incorporation of 2'-Deoxysangivamycin in DNA Duplexes: The Conversion of a Pyrrolo[2, 3-d]Pyrimidine Nitrile to a Carboxamide upon Oligonucleotide Deprotection, Nucleosides and Nucleotides, 18:11-12, 2697-2709, DOI: 10.1080/07328319908044635

To link to this article: <u>http://dx.doi.org/10.1080/07328319908044635</u>

PLEASE SCROLL DOWN FOR ARTICLE

Taylor & Francis makes every effort to ensure the accuracy of all the information (the "Content") contained in the publications on our platform. However, Taylor & Francis, our agents, and our licensors make no representations or warranties whatsoever as to the accuracy, completeness, or suitability for any purpose of the Content. Any opinions and views expressed in this publication are the opinions and views of the authors, and are not the views of or endorsed by Taylor & Francis. The accuracy of the Content should not be relied upon and should be independently verified with primary sources of information. Taylor and Francis shall not be liable for any losses, actions, claims, proceedings, demands, costs, expenses, damages, and other liabilities whatsoever or howsoever caused arising directly or indirectly in connection with, in relation to or arising out of the use of the Content.

This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden. Terms &

Conditions of access and use can be found at <u>http://www.tandfonline.com/page/terms-and-conditions</u>

INCORPORATION OF 2'-DEOXYSANGIVAMYCIN IN DNA DUPLEXES: THE CONVERSION OF A PYRROLO[2,3-d]PYRIMIDINE NITRILE TO A CARBOXAMIDE UPON OLIGONUCLEOTIDE DEPROTECTION

Frank Seela* and Matthias Zulauf

Laboratorium für Organische und Bioorganische Chemie, Institut für Chemie, Universität Osnabrück, Barbarastr. 7, D-49069 Osnabrück, Germany

ABSTRACT: Oligonucleotides containing 2'-deoxysangivamycin are described. The phosphoramidite of 2'-deoxytoyocamycin was prepared and used in solid-phase synthesis. Upon deprotection the pyrrolo[2,3-d]pyrimidine nitrile residues were converted to carboxamides. According to the T_m -measurements the 7-carboxamido group of the 7-deazaadenine moiety stabilizes the DNA duplex significantly.

Introduction

The 7-deazapurine (pyrrolo[2,3-*d*]pyrimidine) nucleosides (purine numbering is used throughout the general section) are a class of compounds with diversified biological activity.¹⁻⁴ They include the nucleoside antibiotics tubercidin (1a), toyocamycin (1b) and sangivamycin (1c) as well as the 2'-deoxyribonucleosides **2a-d**.⁵⁻⁷ The chemical syntheses of the 7-deazapurine β -D-ribonucleosides as well as of the 2'-deoxyribonucleosides are well established.⁸⁻²²

Earlier, 7-substituted 7-deazapurine nucleosides have been incorporated into oligonucleotides.²³⁻²⁹ The 7-halogeno substituents, as well as the 7-alkyl or 7-alkynyl groups have been found to enhance the DNA-duplex stability compared to the unmodified counterparts.²³⁻²⁹ This effect has been attributed to increased stacking interactions of the nucleobase as well as to the hydrophobicity of the substituents. As a 7-cyano group is expected to have the same favorable influence on the oligonucleotide duplex structure^{27,29} the incorporation of 2'-deoxytoyocamycin (**2c**) into oligonucleotides was

performed. The phosphoramidite 3 was prepared as building block for the solid-phase synthesis.

Results and discussion

1. Monomers.- The already reported synthesis of 2'-deoxytoyocamycin (2c) is laborious as the nitrile function was introduced in an early step of the synthetic route which started with a pyrrole derivative.^{4,9,10} Therefore, the palladium(0)-catalyzed reaction of 7-iodo-7-deaza-2'-deoxyadenosine (2b) $(c^7I^7A_d)^{30}$ with tri-*n*-butyltincyanide was employed. The reaction which was performed in DMF resulted in the formation of 7-cyano-7-deaza-2'-deoxyadenosine (2'-deoxytoyocamycin) (2c) (21% yield) together with the formation of 7-deaza-2'-deoxyadenosine (2'-deoxytubercidin) (2a) (41% yield). The formation of 2a is the result of a Pd-catalyzed reduction of the iodo compound 2b. Because of the low yield of compound 2c, another reaction protocol was employed. Previously, 6-cyanopurine nucleosides have been synthesized from 6-iodo compounds using copper cyanide in pyridine.³¹ This reaction had already been employed on the 7iodinated 7-deaza-2'-deoxyguanosine.²⁰ It was now performed on compound

Previously, 6-cyanopurine nucleosides have been synthesized from 6-iodo compounds using copper cyanide in pyridine.³¹ This reaction had already been employed on the 7-iodinated 7-deaza-2'-deoxyguanosine.²⁰ It was now performed on compound 2'-Deoxysangivamycin (2d) was prepared from 2c upon treatment with 0.1 N NaOH (61% yield).

Previously, 6-cyanopurine nucleosides have been synthesized from 6-iodo compounds using copper cyanide in pyridine.³¹ This reaction had already been employed on the 7iodinated 7-deaza-2'-deoxyguanosine.²⁰ It was now performed on compound 2'-Deoxysangivamycin (2d) was prepared from 2c upon treatment with 0.1 N NaOH (61% yield). Next, the oligonucleotide building block 3 was synthesized. The dimethylamino-methylidene residue was chosen as the amino protecting group to give compound 4. The half-life for deprotection of this derivative was determined UVspectrophotometrically (320 nm) at 40°C in 25% aq. ammonia. The $t_{1/2}$ value of 42 min indicates the suitability of this protecting group for further transformations. Subsequent tritylation with 4,4'-dimethoxytriphenylmethyl chloride yielded the 5'-protected nucleoside 5. Phosphitylation with chloro(2-cyanoethoxy)-N,N-diisopropylaminophosphine in THF furnished the phosphoramidite 3.

All compounds were characterized by ¹H-, ¹³C-, and ³¹P-NMR spectra (Table 1 and Exp. Part) as well as by mass spectra. On the basis of the ¹H-NMR- and ¹H/¹³C-NMR correlation spectra, an unambiguous assignment for the protons H-2 and H-6 of 2c,d was made, which was found to be different from already reported assignments (see Experimental Section).⁸⁻¹⁰ For this purpose gated-decoupled ¹³C-NMR- and hetero-nuclear correlation spectra were recorded for the derivatives 2c,d and 4,5. The exchange of the 7-iodo substituent by the cyano residue (\rightarrow 2c) leads to a downfield shift of carbon C-6 (31 ppm). Conversion to the carboxamido group (\rightarrow 2d) resulted once more in a downfield shift (18 ppm). The amidine protecting group (\rightarrow 4) has an influence on the electronic properties of the base which results in a significant shift of the C-4 signal. The 5'-OH-tritylation (\rightarrow 5) is indicated by an upfield shift of C-4' and a downfield shift of C-5'.

2. Oligonucleotide Synthesis.- Earlier, the 7-halogenated 7-deaza-2'-deoxyadenosines have been incorporated in oligonucleotides and their physicochemical properties have been studied.^{23,24} In order to investigate the influence of the 7-cyano group of 2c on the oligonucleotide duplex structure and stability, the oligonucleotides shown in Table 3 were prepared using the phosphoramidite **3**. The oligonucleotides were recovered, deprotected and purified using oligonucleotide purification cartridges.³² Their homogeneity was checked by reverse phase HPLC. The nucleoside composition was determined by *MALDI-TOF* mass spectra (Table 2) and by enzymatic hydrolysis (Fig. 1b,c).

Recently, the synthesis of oligonucleotides containing 2-amino-7-cyano-7-deazaadenines was reported.^{27,29} However, the mass spectra as well as the enzymatic digestion

a	C(2)	C(6)	C(5)	C(7)	C(8)	C(4)	C≡N	C(1')	C(3')	C(4')	C(5')
b	C(2)	C(4)	C(4a)	C(5)	C(6)	C(7a)					
2a	151.6	157.5	102.9	99.6	121.6	149.6		83.3	71.1	87.3	62.1
2b ³⁰	152.0	157.3	103.2	51.9	126.9	149.8		83.0	71.0	87.5	62.0
2c	153.5	157.0	101.2	82.9	132.1	149.7	115.4	83.8	70.6	87.8	61.6
2d	152.8	158.0	100.9	110.9	125.0	150.5	166.4 ^c	82.9	7 0. 8	87.5	62.1
4	153.0	160.4	109.3	84.7	133.0	150.6	115.4	83.7	70.6	87.8	61.6
5	153.0	160.3	109.4	84.8	132.9	150.8	115.3	83.4	70.2	85.4	63.8
	OMe		(Me) ₂ H		HC	=N					
4	34.5, <i>d</i> 156.8							<u> </u>			
5	54.9		34.5, 38.2 156.8								

TABLE 1. ¹³C-NMR Chemical Shifts of 7-Cyano-7-deazaadenine 2'-Deoxyribofuranosides; Measured in $(CD_3)_2SO$ at 25°C.

^a Purine numbering. ^b Systematic numbering. ^c C=N is replaced by CONH₂.

^d Superimposed by DMSO; C(2') is superimposed by DMSO.

TABLE 2. Molecular Weights of Oligonucleotides Containing 2'-Deoxysangivamycin (2d); Determined by *MALDI-TOF* Mass Spectra.

	M^{+} (calcd) [Da]	M^{\dagger} (found) [Da]
5'-d(GTAG(2d) ₂ TTCTAC) (7)	3728.5	3728.3
5'-d(T2dGGTCAAT2dCT) (11)	3728.5	3722.9
3'-d(ATCC 2d GTT 2d TGA) (12)	3728.5	3727.4

FIG. 1. HPLC-Profiles of the oligonucleotide 11, (a) after oligonucleotide synthesis and work-up, (b) after enzymatic hydrolysis with snake-venom phosphodiesterase followed by alkaline phosphatase in 1M Tris-HCl buffer (pH 8.3), (c) enzymatic digestion in the presence of 2c and 2d (c); for a) gradient *I*, for b) and c) gradient *II*; details see Exp. Part.

pattern of the oligomers obtained from **3** indicated, that the cyano group was no longer present in the molecule. The new peak arising in the composition analysis was identified as 2'-deoxysangivamycin (**2d**). This was confirmed by the addition of 2'-deoxytoyocamycin (**2c**) and 2'-deoxysangivamycin (**2d**) to the enzymatic digest (Fig. 1c).

A complete conversion of the nucleoside 2'-deoxytoyocamycin (2c) in 2'-deoxysangivamycin (2d) was observed under the conditions of the oligonucleotide deprotection $(33\% \text{ aq. ammonia}, 60^{\circ}\text{C})$ within 6 h. The determination of the protecting group stability is accompanied by a 30% conversion of the nucleoside within 2 h. The reactions were monitored by HPLC.

3. Oligonucleotide Properties.- The influence of the carboxamido function on the duplex structure and stability was studied. The self-complementary oligonucleotide 5'-d(GTAGAATTCTAC) (6) containing the recognition site of the endodeoxyribo-nuclease Eco RI^{31} was modified with 2d. The two central dA-residues were replaced by

	T _m [°C] ^a () ^b	∆ <i>H</i> [kcal/mol]	ΔS [cal/mol.K]	∆G ⁰ [kcal/mol]
5'-d[(GTAGAATTCTAC)] ₂ (6•6)	46(43)	-79(-84)	-226(-225)	-9.2(-8.6)
5'-d[(GTAG(2d)2TTCTAC)]2 (7•7)	51	-68	-187	-9.8
5'-d[($GTAG(c^{7}I^{7}A)_{2}TTCTAC$)] ₂ (8•8)	52	-78	-215	-10.8
5'-d(TAGGTCAATACT) (9)	50(47)	-90(-82)	-252(-230)	-11.8(-10.4)
3'-d(ATCCAGTTATGA) (10)				
5'-d(T2dGGTCAAT2dCT) (11)	55(52)	-75(-73)	-205(-201)	-11.7(-11.1)
3'-d(ATCC2dGTT2dTGA) (12)				
5'-d(Tc ⁷ I ⁷ AGGTCAATc ⁷ I ⁷ ACT) (13) 3'-d(ATTCCc ⁷ I ⁷ AGTTc ⁷ I ⁷ ATGA) (14)	57(52)	-94(-82)	-261(-228)	-13.4(-11.5)
5'-d(TAGGTCAATACT) (9) 3'-d(ATCC 2d GTT 2d TGA) (12)	52(48)	-85(-81)	-236(-225)	-11.7(-10.7)
5'-d(TAGGTCAATACT) (9) 3'-d(ATCCc ⁷ I ⁷ AGTTc ⁷ I ⁷ ATGA) (14)	54	-85	-236	-12.3
5'-d(T2dGGTCAAT2dCT) (11) 3'-d(ATCCAGTTATGA) (10)	53	-90	-249	-12.4
5'-d(Tc ⁷ I ⁷ AGGTCAATc ⁷ I ⁷ ACT) (13) 3'-d(ATCCAGTTATGA) (10)	53	-86	-238	-12.1

TABLE 3. T_m -Values and Thermodynamic Data of Oligonucleotides Containing 2'-Deoxysangivamycin (2d).

^a Measured at 270 nm in 1M NaCl, 100 mM MgCl₂, and 60 mM Na-cacodylate (pH = 7.0) with 5 μ M single strand concentration. ^b Measured at 270 nm in 0.1M NaCl, 10 mM MgCl₂, and 10 mM Na-cacodylate (pH = 7.0) with 5 μ M single strand concentration. 2d = 2'-Deoxysangivamycin.

2'-deoxysangivamycin (2d). This results in an enhanced duplex stability compared to the parent hybrid $6 \cdot 6$ (Table 3).

Also non-self-complementary duplexes derived from 5'-d(TAGGTCAATACT) (9) and 3'-d(ATCCAGTTATGA) (10) were studied. When 2'-deoxysangivamycin (2d) was replacing 2'-deoxyadenosine residues the stability of these duplexes was also increased

FIG. 2. CD spectra of the heteroduplexes 7•7, 9•10 and 11•12, measured at 10°C in 1 M NaCl, 100 mM MgCl₂, and 60 mM Na-cacodylate (pH = 7.0) with 10 μ M oligomer concentration; for sequences see Table 3.

(Table 3). The enhanced thermal stability amounts to 1-2°C per one 7-carboxamido residue which derives from a more favorable entropy induced by the modified base. These effects are in the range caused by a modification with 7-iodo-7-deazaadenine residues (Table 3).²⁴

According to the CD-spectra (Figure 2) the base-modified duplexes form a B-type DNA structure.

Conclusion

Attempts to incorporate 2'-deoxytoyocamycin (2c) instead of 2'-deoxyadenosine into oligonucleotides failed. Instead of this, oligonucleotides were formed which contain 2'-deoxysangivamycin (2d). The conversion of the pyrrolo[2,3-d]pyrimidine cyano group to a carboxamide group (\rightarrow 2d) is occurring on the oligonucleotide level during the deprotection with ammonia. This reaction can be used for the post-modification of DNA.³⁴ Ammonia has to be replaced by diaminoalkanes. The new primary amino group is ready to accept reporter groups with an activated side chain. Furthermore, the 2'-deoxy-sangivamycin (2d) residue was found to stabilize DNA duplexes significantly in a similar manner as 7-iodo-7-deaza-2'-deoxyadenosine (2b).²⁴

Experimental

Monomers. Chemicals were supplied by Aldrich, Sigma or Fluka. Solvents were of laboratory grade, except those used for the HPLC which were of HPLC grade. FAB mass spectra were provided by Dr. M. Sauer, University of Heidelberg. NMR Spectra were measured on Avance DPX or AMX 500 spectrometers (Bruker, Germany) operating at proton resonance frequencies of 250.13 MHz (125.13 MHz for ¹³C and 101.3 MHz for ³¹P, respectively). Chemical shifts are in ppm relative to TMS as internal standard or external 85% H₃PO₄. UV-spectra were recorded on a U 3200 spectrometer (Hitachi, Japan). Thin-layer chromatography (TLC) was performed on aluminium sheets, silica gel 60 F₂₅₄, 0.2 mm layer (Merck, Germany) at 0.4 bar (4×10^4 Pa) using the following solvent systems: (A) CH₂Cl₂-MeOH (9:1, v/v), (B) petroleum ether (boiling range 40-60°C)-acetone (1:1, v/v). Samples were collected with an UltroRac II fractions collector (LKB Instruments, Sweden).

Oligonucleotides. Oligonucleotide synthesis was performed on a ABI 392-08 DNA synthesizer (Applied Biosystems, Weiterstadt, Germany) using a standard protocol. The oligonucleotides were recovered, deprotected (33% aq. ammonia, 60°C, 24 h) and purified using oligonucleotide purification cartridges.³² *MALDI-TOF* mass spectra were provided by Dr. J. Gross (University of Heidelberg, Germany). The enzymatic hydrolysis of the oligomers was performed as described in ref. [35]. Quantification of the constituents was made on the basis of the peak areas, which were divided by the extinction coefficients of the nucleoside (ε_{260} values: dA 15400, dC 7300, dG 11400, dT 8800, c⁷CONH₂⁷A_d 8000). Snake-venom phophodiesterase (EC 3.1.15.1, *Crotallus durissus*) and alkaline phosphatase (EC 3.1.3.1, *E. coli*) were generous gifts of Roche Diagnostics (Mannheim, Germany). RP-18 HPLC: 250 x 4 mm RP-18 column; Merck-Hitachi HPLC; gradients of 0.1M (Et₃NH)OAc (pH 7.0)/MeCN 95:5 (*A*) and MeCN (*B*); gradient *I*: 50 min 0-50% *B* in *A*, flow rate 1 mL/min; gradient *II*: 25 min 0-20% *B* in *A*, flow rate 0.7 mL/min.

Determination of T_m -values and thermodynamic data. Absorbance vs temperature profiles were measured on a Cary-1/1E UV/VIS spectrophotometer (Varian, Australia) equipped with a Cary thermoelectrical controller. The T_m -values were measured in the reference cell with a Pt-100 resistor and the thermodynamic data (ΔH , ΔS , ΔG^0) were

calculated using the program "MeltWin 3.0"³⁶. Circular dichroism spectra: The CD-spectra were recorded with a Jasco-600 (Jasco, Japan) spectropolarimeter with thermo-statically (Lauda-RCS-6 bath) controlled 1 cm cuvettes.

4-Amino-7-(2-deoxy-β-D-*erythro*-pentofuranosyl)-7*H*-pyrrolo[2,3-*d*]pyrimidine (2'-Deoxytubercidin) (2a)²¹ and 4-amino-5-cyano-7-(2-deoxy-β-D-*erythro*-pentofuranosyl)-7*H*-pyrrolo[2,3-*d*]pyrimidine (2'-Deoxytoyocamycin) (2e)⁸. *Method 1*: To a solution of $2b^{30}$ (1.0 g, 2.66 mmol) in DMF (70 mL) were added tetrakis(triphenylphosphine)palladium(0) (700 mg, 0.61 mmol) and tri-*n*-butyltincyanide (840 mg, 2.66 mmol). The mixture was stirred at 120°C for 24 h under argon. After adding a second portion of tetrakis(triphenyl)palladium(0) (700 mg, 0.61 mmol) and tri-*n*-butyltincyanide (420 mg, 1.33 mmol) stirring was continued for 32 h at 120°C (argon). The solvent was evaporated, and the residue was purified on a silica gel column [15 x 4 cm, solvent (A)]. From the faster migrating zone, compound 2c was isolated, the lower migrating zone afforded 2a. Both compounds were crystallised from MeOH to give 2a (273 mg, 41%) and 2c (153 mg, 21%) as colorless needles.

Method 2: To hot pyridine (90°C) CuCN (2 g, 22.3 mmol) and $2b^{30}$ (300 mg, 0.80 mmol) were added. The solution was heated at 110°C for 10 h. The mixture was cooled to r.t. and diluted with hot MeOH. After filtration and evaporation the residue was purified by FC [column 12 x 3 cm, solvent (A)]. Recrystallisation from MeOH furnished 2c as colorless crystals (114 mg, 52%).

Compound **2a**: Mp 214-215°C (Lit.²¹ 216°C). R_f 0.22 (A). ¹H-NMR (DMSO-d₆) δ : 2.13 (m, 1 H, H_{\alpha}-2'), 2.39 (m, 1 H, H_{\beta}-2'), 3.53 (m, 2 H, H_{\alpha,\beta}-5'), 3.80 (m, 1 H, H-4'), 4.33 (m, 1 H, H-3'), 5.15 (t, J = 5.6 Hz, 1 H, OH-5'), 5.24 (d, J = 3.9 Hz, 1 H, OH-3'), 6.47 (dd, J = 8.0 and 6.1 Hz, 1 H, H-1'), 6.56 (d, J = 3.5 Hz, 1 H, H-5), 7.02 (s, 2 H, NH₂), 7.33 (d, J = 3.5 Hz, 1 H, H-6), 8.03 (s, 1 H, H-2). Anal. Calcd for C₁₁H₁₄N₄O₃ (250.3): C 52.79, H 5.64, N 22.39; Found C 52.61, H 5.61, N 22.35.

Compound 2c: Mp 206-207°C (Lit.⁸ 208-209°C). R_f 0.42 (A). ¹H-NMR (DMSO-d₆) δ : 2.26 (m, 1 H, H_a-2'), 2.38 (m, 1 H, H_b-2'), 3.53 (m, 2 H, H_{a,b}-5'), 3.84 (m, 1 H, H-4'), 4.35 (m, 1 H, H-3'), 5.05 (t, J = 5.4 Hz, 1 H, 5'-OH), 5.30 (d, J = 4.0 Hz, 1 H, 3'-OH), 6.48 ('t', J = 6.7 Hz, 1 H, H-1'), 6.86 (br s, 2 H, NH₂), 8.21 (s, 1 H, H-2), 8.39 (s, 1 H, H-6). Anal. Calcd for C₁₂H₁₃N₅O₃ (275.3): C 52.36, H 4.76, N 25.44; Found C 52.26, H 4.89, N 25.30.

4-Amino-5-carboxamido-7-(2-deoxy-β-D-*erythro*-pentofuranosyl)-7*H*-pyrrolo-[2,3-*d*]pyrimidine (2'-Deoxysangivamycin) (2d)⁸. Compound 2c (100 mg, 0.36 mmol) was dissolved in MeOH/0.1 N NaOH (20 mL, 1:1) and heated at 70°C for 5 h. The solution was evaporated and the residue applied to a silica gel column [10 x 2 cm, solvent (A)]. Crystallisation from MeOH afforded 2d (65 mg, 61%) as colorless crystals. $R_{\rm f}$ 0.23 (A). $\lambda_{\rm max}$ (MeOH)/nm 231 (ε/dm³ mol⁻¹ cm⁻¹ 10500) and 280 (15200) [Lit.⁸ $\lambda_{\rm max}$ (MeOH)/ nm 231 (ε/dm³ mol⁻¹ cm⁻¹ 10200) and 279 (14800)]. ¹H-NMR (DMSO-d₆) δ : 2.26 (m, 1 H, H_α-2'), 2.40 (m, 1 H, H_β-2'), 3.55 (m, 2 H, H_{α,β}-5'), 3.84 (m, 1 H, H-4'), 4.37 (m, 1 H, H-3'), 4.95 (t, J = 4.7 Hz, 1 H, OH-5'), 5.30 (d, J = 3.8 Hz, 1 H, OH-3'), 6.51 ('t', J = 6.8 Hz, 1 H, H-1'), 7.33 (br s, 2 H, NH₂), 7.90 (br s, 2 H, CONH₂), 8.08 (s, 1 H, H-2), 8.13 (s, 1 H, H-6). Anal. Calcd for C₁₂H₁₅N₅O₄ (293.3): C 49.14, H 5.15, N 23.88; Found C 49.05, H 5.26, N 23.81.

5-Cyano-7-(2-deoxy-β-D-*erythro*-pentofuranosyl)-4-{[(dimethylamino)-methylidene]amino}-7*H*-pyrrolo[2,3-*d*]pyrimidine (4). A solution of 2'-deoxytoyoca-mycin (2c) (130 mg, 0.47 mmol) and N,N-dimethylformamide dimethylacetal (1.0 g, 8.4 mmol) in MeOH (10 mL) was stirred for 2 h at 40°C. After evaporation, the residue was applied to FC [column 12 x 3 cm, solvent (A)]. Compound 4 was isolated as colorless foam (119 mg, 76%). R_f 0.40 (A). λ_{max} (MeOH)/nm 230 (ϵ /dm³ mol⁻¹ cm⁻¹ 14000) and 320 (22900). ¹H-NMR (DMSO-d₆) δ: 2.29 (m, 1 H, H_α-2'), 2.51 (m, 1 H, H_β-2', super-imposed by DMSO), 3.18 and 3.21 (2 s, 6 H, Me₂N), 3.46 (m, 2 H, H_{α,β}-5'), 3.85 (m, 1 H, H-4'), 4.36 (m, 1 H, H-3'), 5.08 (t, J = 5.5 Hz, 1 H, OH-5'), 5.34 (d, 1 H, J = 4.1 Hz, OH-3'), 6.53 ('t', J = 6.3 Hz, 1 H, H-1'), 8.43 (s, 1 H, H-2), 8.45 (s, 1 H, H-6), 8.91 (s, 1 H, N=CH). FAB-MS: 331.2 [M+H]⁺; C₁₅H₁₈N₆O₃ requires [M⁺] 330.3.

5-Cyano-7-[2-deoxy-5-O-(4,4'-dimethoxytriphenylmethyl)-β-D-*erythro*-pentofuranosyl]-4-{[(dimethylamino)methylidene]amino}-7*H*-pyrrolo[2,3-*d*]pyrimidine (5). To a solution of compound 4 (100 mg, 0.30 mmol) in dry pyridine (0.5 mL) 4,4'-dimethoxytriphenylmethyl chloride (130 mg, 0.38 mmol) was added. After stirring for 1 h at 50°C the mixture was poured into an ice-cold 3% aq. NaHCO₃ soln. (10 mL) and extracted with CH₂Cl₂ (2 x 100 mL). The combined org. layers were dried over Na₂SO₄, filtered and evaporated. The residue was applied to FC [column 15 x 3 cm, solvent (A)]. Compound **5** was isolated as colorless foam (136 mg, 71%). R_f 0.61 (A). λ_{max} (MeOH)/ nm 232 (ϵ /dm³ mol⁻¹ cm⁻¹ 36400), 274 (9000) and 320 (27100). ¹H-NMR (DMSO-d₆) δ : 2.38 (m, 1 H, 2'-H_{α}), 2.70 (m, 1 H, 2'-H_b), 3.16 (m, 2 H, 5'-H_{α ,b}), 3.17 and 3.21 (2 s, 6 H, Me₂N), 3.72 (s, 6 H, 2 MeO), 3.95 (m, 1 H, 4'-H), 4.45 (m, 1 H, 3'-H), 5.39 (d, J = 4.7 Hz, 1 H, 3'-OH), 6.55 ('t', J = 6.2 Hz, 1 H, 1'-H), 6.82 (m, 4 H, ArH), 7.18-7.34 (m, 9 H, ArH), 8.33 (s, 1 H, 6-H), 8.43 (s, 1 H, 2-H), 8.90 (s, 1 H, N=CH). FAB-MS: 633.4 [M+H]⁺; C₃₆H₃₆N₆O₅ requires [M⁺] 632.7.

5-Cyano-1-[2-deoxy-5-O-(4,4'-dimethoxytriphenylmethyl)-β-D-erythro-pentofuranosyl]-4-{[(dimethylamino)methylidene]amino}-7H-pyrrolo[2,3-d]pyrimidine-3'-[(2-cyanoethyl)-N,N-diisopropyl-phosphoramidite] (3). To a stirred solution of the dry nucleoside 5 (120 mg, 0.19 mmol) and anh. N,N-diisopropylethylamine (73 mg, 0.57 mmol) in dry THF (1 mL) chloro-(2-cyano-ethoxy)-N,N-diisopropylaminophosphine (55 mg, 0.23 mmol) was added under an Ar atmosphere. The stirring was continued for 30 min and the solution was filtered. The filtrate was diluted with ethyl acetate (50 mL) and extracted (twice) with an ice-cold aq. 3% NaHCO₃ solution (2 x 10 mL) and H₂O (10 mL). The org. layer was dried over Na₂SO₄, filtered and evaporated to dryness. The residue was applied to FC [column 12 x 2 cm, solvent (B)]. Compound **3** was isolated as a colorless foam (109 mg, 69%). R_f 0.4 and 0.5 (B). ³¹P-NMR [101 MHz; CDCl₃] δ: 149.9 and 150.0.

Acknowledgment

We thank Dr. J. Gross, University of Heidelberg, for measuring the MALDI-TOF mass spectra.

REFERENCES

- 1. Suhadolnik, R. J. Nucleoside Antibiotics; Wiley: New York, 1970.
- Tolman, R. L.; Robins, R. K.; Townsend, L. B. J. Am. Chem. Soc., 1969 91, 2102-2108.
- Kazlauskas, R.; Murphy, P. T.; Wells, R. J.; Baird-Lambert, J. A.; Jamieson, D. D. Aust. J. Chem., 1983 36, 165-170.
- 4. Revankar, G. R.; Robins, R. K. Nucleosides Nucleotides, 1989 8, 709-724.

2'-DEOXYSANGIVAMYCIN IN DNA DUPLEXES

- 5. Cottam, B. H.; Wasson, D. B.; Shih, H. C.; Raychaudhuri, A.; Di Pasquale, G.; Carson, D. A. J. Med. Chem., 1993 36, 3424-3430.
- 6. Cook, A. F.; Holman, M. J. Nucleosides Nucleotides, 1984 3, 401-411.
- 7. Seela, F.; Zulauf, M.; Chen, S.-F. unpublished results.
- Robins, M. J.; Wilson, J. S.; Hanske, F. J. Am. Chem. Soc., 1983 105, 4059-4065.
- 9. Maruyama, T.; Wotring, L. L.; Townsend, L. B. J. Med. Chem., 1983 26, 25-29.
- Ramasamy, K.; Robins, R. K.; Revankar, G. R. Tetrahedron, 1986 42, 5869-5878.
- 11. Kazimierczuk, Z.; Revankar, G. R.; Robins, R. K. Nucleic Acids Res., 1984 12, 1179-1192.
- 12. Robins, M. J.; Muhs, W. H. J. Chem. Soc., Chem. Commun., 1976, 269.
- 13. Watanabe, S.; Ueda, T. Nucleosides Nucleotides, 1982 1, 191-203.
- 14. Watanabe, S.; Ueda, T. Nucleosides Nucleotides, 1983 2, 113-125.
- Cottam, H. B.; Kazimierczuk, Z.; Geary, S.; McKernan, P. A.; Revankar, G. R.; Robins, R. K. J. Med. Chem., 1985 28, 1461-1467.
- Cheng, C. S.; Hoops, G. C.; Earl, R. A.; Towensend, L. B. Nucleosides Nucleotides, 1997 16, 347-364.
- 17. Seela, F.; Kehne, A. Tetrahedron, 1985 41, 5387-5392.
- 18. Seela, F.; Thomas, H. Helv. Chim. Acta, 1994 77, 897-903.
- 19. Ramzaeva, N.; Seela, F. Helv. Chim. Acta, 1995 78, 1083-1090.
- 20. Ramzaeva, N.; Becher, G.; Seela, F. Synthesis, 1998, 1327-1330.
- 21. Seela, F.; Kehne, A. Liebigs Ann., 1983, 876-884.
- 22. Kazimierczuk, Z.; Cottam, H.; Revankar, G. R.; Robins, R. K. J. Am. Chem.Soc., 1984 106, 6379-6382.
- 23. Seela, F.; Thomas, H. Helv. Chim. Acta, 1995 78, 94-108.
- 24. Seela, F.; Zulauf, M. Chem. Eur. J., 1998 4, 1781-1790.
- 25. Ramzaeva, N.; Mittelbach, C.; Seela, F. Helv. Chim. Acta, 1997 80, 1809-1822.
- 26. Ramzaeva, N.; Seela, F. Helv. Chim. Acta, 1996 79, 1549-1558.
- Balow, G.; Brugger, J.; Lesnik, E. A.; Acevedo, O. L. Nucleosides Nucleotides, 1997 16, 941-944.
- Buhr, C. A.; Wagner, R. W.; Grant, D.; Froehler, B. C. Nucleic Acids Res., 1996 24, 2974-2980.
- Balow, G.; Mohan, V.; Lesnik, E. A.; Johnston, J. F.; Monia, B. P.; Acevedo, O. L. Nucleic Acids Res., 1998 26, 3350-3357.
- 30. Seela, F.; Zulauf, M. Synthesis, 1996, 726-730.
- Westhover, J. D.; Revankar, G. R.; Robins, R. K.; Madson, R. D.; Ogden, J. R.; North, J. A.; Mancuso, R. W.; Rousseau, R. J.; Stephen, E. L. *J. Med. Chem.*, 1981 24, 941-946.
- 32. Applied Biosystems, Oligonucleotide Purification Cartridges.
- 33. Seela, F.; Kehne, A. Biochemistry, 1987 26, 2232-2238.
- Haginoya, N.; Ono, A.; Nomura, Y.; Ueno, Y.; Matsuda, A. Bioconjugate Chem., 1997 8, 271-280.
- 35. Seela, F.; Lampe, S.; Helv. Chim. Acta, 1991 74, 1790-1800.
- 36. McDowell, J. A.; Turner, D. H. Biochemistry, 1996 35, 14077-14089.

Received : 1 / 10 / 99 Accepted : 6 / 1 / 99