A NEW EFFICIENT SYNTHESIS OF β -AMINOKETONES VIA Δ^4 -ISOXAZOLINES.

Vincent Mancuso and Claude Hootelé*

Université Libre de Bruxelles, Faculté des Sciences, CP 160,

Laboratoire de Chimie Organique, 50, Av. F.D. Roosevelt, B-1050 Bruxelles, Belgique.

Summary: β -aminoketones are prepared in good yield by hydrogenolysis (Pd/C) of the N-O bond of Δ^4 -isoxazolines obtained by 1,3-dipolar cycloaddition of nitrones with alkynes.

In recent years, the thermal [3+2] dipolar cycloadditions have been increasingly used to prepare precursors for the synthesis of a number of compounds⁽¹⁻⁷⁾. The cycloaddition of nitrones with alkenes affords isoxazolidines with predictable regio- and stereochemistry and constitutes a general methodology for the synthesis of alkaloids of various classes^(1,8).

On the other hand, the nitrone-alkyne cycloadditions are far less popular mainly because most of the resulting Δ^4 -isoxazolines are known to be thermally labile compounds(2,9,10); they are, however, attractive derivatives as they can be viewed as masked β -aminoketones. We have developed such a synthesis of β -aminoketones via the following sequence:

The condensations of nitrones <u>1</u> and <u>2</u> (Table 1) with a series of alkynes (R = phenyl, n-pentyl, chloromethyl, (E)-styryl) were performed in refluxing chloroform, benzene or 1,1,1-trichloroethane and afforded regiospecifically the expected $^{(6,11)}$ 5-substituted isoxazolines as evidenced by ¹H and ¹³C NMR measurements. The vinyl hydrogen at C4 appears as a doublet (J = 2 Hz) in the range 4.5-5.5 ppm, in agreement with expected values (2). As anticipated, 1-phenyl-1-buten-3-yne reacted specifically on the triple bond.

The reductive scission of the N-O bond in Δ^4 -isoxazolines is a poorly documented reaction(2). It was indeed found that the hydrogenolytic cleavage can be cleanly performed in the presence of Pd/C in ethanol; the anticipated β -aminoketones were obtained in good yield after column chromatography purification. In most cases, the corresponding cis-s-cis enaminone derivative(12) (10-20%) was also isolated from the reaction mixture.

This new, two-step procedure for the preparation of β -aminoketones offers an alternative pathway for the synthesis of members of this important class of compounds.

^{*} Research Associate of the National Fund for Scientific Research (Belgium).

Table 1. Synthesis of β -aminoketones via Δ^4 -isoxazolines from nitrones 1 and 2.

Nitrone	Isoxazoline (% yield) ^a	¹ H NMR ^b C4-H (δppm)	β-aminoketone (% yield) ^a
\(\frac{1}{\ho} \)	$ \begin{array}{c c} & (70)^{f} \\ & \Phi \end{array} $	5.06	$ \begin{array}{c} $
1	(76)°	4.82	Φ ₁₁ , (52) ^d
+N-0 2	(81) ^{c,e}	5.28	Ф (86)
۷	(70) ⁹	4.52	O (71) N n-pent
	NO CH ₂ CI	5.0	N CH ₃ (50)
	N (65)°	5.0	М (35) Нич

- a. Yields based on isolated, pure compounds with exception of the chloroderivative; the yield of the latter was determined by ¹H NMR spectroscopy on the crude reaction product; yields have not been systematically optimized. All compounds isolated gave satisfactory spectroscopic data (IR, ¹H NMR, ¹³C NMR and mass spectra).
- b. Recorded on a Bruker WM 250 in CDCl₃ with TMS as internal standard.
- c. m.p.: 66-67°C (pentane).
- d. m.p.: 74-75°C (hexane).
- e, f, g. The condensation was performed in refluxing CHCl₃(e), C₆H₆(f), CH₃CCl₃(g).

Acknowledgments: One of us (V.M.) thanks the "Institut pour l'Encouragement de la Recherche Scientifique dans l'Industrie et l'Agriculture" (IRSIA) for the award of a fellowship.

References

- 1. J.J. Tufariello in "1,3-Dipolar Cycloaddition Chemistry", A. Padwa Ed.; J. Wiley, N.Y., 1984; Vol. 2, p. 83.
- 2. J.P. Freeman, Chem. Rev. 83, 241 (1983).
- 3. V. Jäger and I. Müller, Lect. Heterocycl. Chem. <u>8</u>, 79 (1985).
- 4. A. Padwa, D.N. Kline and J. Perumattam, Tetrahedron Lett., 28, 913 (1987).
- A. Padwa, D.N. Kline, K.F. Koehler, M. Matzinger and MK. Venkatramanan, J. Org. Chem. <u>52</u>, 3909 (1987).
- 6. A. Liguori, R. Ottana', G. Romeo, G. Sindona and N. Uccella, Tetrahedron 44, 1247 (1988).
- 7. R. Annunziata, M. Cinquini, F. Cozzi, C. Gennari and L. Raimondi, J. Org. Chem. 52, 4674 (1987).
- 8. J.J. Tufariello, Acc. Chem. Res. 12, 396 (1979).
- 9. A. Liguori, R. Ottana', G. Romeo, G. Sindona and N. Uccella, Tetrahedron 44, 1255 (1988).
- 10. A. Padwa, G.S.K. Wong, J. Org. Chem., <u>51</u>, 3125 (1986).
- 11. K.N. Houk in "Pericyclic Reactions", A.P. Marchand and R.E. Lehr Ed.; Academic Press, N.Y., 1987; Vol. 11, p. 181.
- 12. J.V. Greenhill, Chem. Soc. Reviews, 6, 277 (1977).

(Received in France 4 July 1988)