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Abstract: Flash vacuum thermolysis (= 1000 °C110"3 hPa) of 1,2,34-tetrahydroquinoline, chroman, and
thiochroman, led upon loss of ethylene (retro-Diels-Alder reaction) to the o-quinonoids 1-3. These reactive
monomers were identified by IR-UV at -196 °C andlor MSIMS.

6-Methylene-2,4-cyclohexadien-1-imine 1, 6-methylene-2,4-cyclohexadien-1-one 2 (o-quinone
methide) and 6-methylene-2,4-cyclohexadien-1-thione 3 are important reactive intermediates. According to
EHT calculations!, all the compounds 1-3 should be more stable than their bicyclic isomers 4. Although no
direct experimental evidence of 1 has been hitherto reported, its formation was demonstrated by trapping with
phenyl sulfide in the thermolysis of o-aminobenzyl methyl ether? and dihydrobenzoxazines3.
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The quinone methide 2 is the most stable and best known amongst the compounds 1-3. Since the
papers? concerning its formation from o-hydroxybenzyl methyl ether and its oligomerization, direct
observations of monomeric 2, obtained by thermolysis of o-hydroxybenzyl alcohol, were rcponéd by low
temperature IR, and photoelectron spectroscopy®. Trapping by thiones? and new methods of obtaining 28
have been since published.

The compound 3 has been generated by photolysis of 3H-1,2-benzodithiole 2,3-dioxide?, as well as by
thermolysis or photolysis of benzothiete (4, X = $)10 and identified by trapping with dienophiles. Recently,
the IR and electronic spectra at 12 K of an Ar matrix of benzothiete irradiated at 280 nm showed the presence
of monomeric 311,

The synthetic usefulness of flash thermolytic retro-Diels-Alder (rDA) reactions!2, and particularly the
broad scope of ethylene cycloeliminations leading to o-quinonoid systems!3, prompted us to investigate the
flash vacuum thermolysis (FVT) of 1,2,3,4-tetrahydroquinoline 5, chroman 6, and thiochroman 7 as sources
for compounds 1-3. These precursors 5-7, already submitted to static and flow thermolyses, underwent no
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DA reaction under the conditions used!4, on the other hand, the FVT of chroman 6 at 800 °C gave, via a rDA
reaction, the trimer of 215 [the thermal cleavage of tetralin, a molecule closely related to 5-7, is known to
generally proceed unspecifically, most likely via a biradicalar intermediate!6].

Commercial tetrahydroquinoline 5 (Aldrich) was used, chroman 6 and thiochroman 7 were readily
prepared by the Clemmensen-Martin reduction of chroman-4-one and thiochroman-4-one (Aldrich)!7.

In our first FVT’s of compound 5, products were trapped in an optical I’ Air Liquide cryostat (-196 °C,
NaCl windows and sample carrier) but deceptive results were obtained owing to a too slow heat transfer
relative to the reactivity of the expected molecule 1. Also, we coupled for the following FVT/IR-UV
experiments the FVT oven with a home-made Pyrex cryostat* where the NaCl or Suprasil plates are most
efficiently cooled by indium sealing into an annular carrier containing liquid nitrogen [oven dimensions:
length 10 cm, i.d. 1.2 cm; spectrometers used: Perkin-Elmer 1420 (IR), Jobin-Yvon 201 (UV-visible) and
Varian MAT 311 MS/MS)].

The FVT of tetrahydroquinoline 5 (20 pul) was performed at 1050 °C under 10-5 hPa. No starting
material was recovered at this temperature and a bright yellow product deposited on the plate. IR analysis at -
196 °C led us to attribute to the imino-quinone methide 1 the following absorptions: 1629 (s), 1528 (s), 1352
(s), 1335 (s), 1281, 1095 cmrl; the characteristic bands of ethylene and of minor by-products (mainly
benzonitrile at 2215 cmr1) were also present. At ca -100 °C, all these absorptions disappeared with bleaching
of the plate and a new spectrum, already visible at -196 °C, as weaker absorptions besides 1, became
preponderant. Being unchanged between -80 °C and room temperature, it was attributed to the polymeric
white material remaining on the plate (1600, 1492, 1447, 1310, 755 cm!). FVT of 5 in the presence of
phenyl sulfide led to the expected adduct 82,3,

The o-aminobenzyl derivatives 9 and 10 (Aldrich), other potential precursors of I, were also
thermolysed with a view to confirming the above results. No more starting materials were present at FVT
temperatures of 850 (9) or 950 °C (10) and the sets of absorptions reported in the FVT of § for monomeric
and polymeric 1 were also observed, besides other bands, in both cases.
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The thermolysis of chroman 6, performed under the same conditions, was complete at 1000 °C. The IR
spectrum at -196 °C of the yellow product obtained showed, besides that of ethylene, only a set of bands
disappearing at -100 °C and attributable to monomeric quinone methide 2: 1657 (s), 1604 (s), 1560 (s), 1531,
1394 (s), 1350, 1191, 1138 (s), 1063, 859 (s), 798 (s), 714, 690 (s), 658 cm~! (previously reported>: 1656,
1565, 1539 cm1). At -100 °C the yellow compound quickly turned white and a new spectrum was obtained:
1672 (s), 1405, 1078 (s), 1008, 813, 682 cm! (s). These bands, again vanishing at -15 °C, belong most
likely to the transient [4 + 2] dimer 11 of 2*. A weaker band at 1683 cm-!, remaining until room temperature,
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can be attributed to the trimer of 2 [band reported at the same value (5.94 p)*]. At-15 °C, the spectrum of 11
was in turn réplaced by that of a new compound: 3040, 2940, 1729 (s), 1690 (s), 1580 (s), 1482 (s),
1451 (s), 1228 (s), 1110 cm! (s); the mass spectrum of which suggests a tetrameric structure (M+ my/z 424).

The dark red monomeric 31! was not observed here when thermolyzing thiochroman 7, owing to its too
great a reactivity. At a FVT temperature of 1000 °C, the cycloreversion was complete and the only products
present at -196 °C were ethylene and the compound 12, [4 + 4] dimer of 310: 3065, 3010, 2940, 1574 (s),
1440 (s), 1411, 1265, 1189 (s), 1111, 1041 (s), 995, 930, 738 (s), 705 cm™! (s); NMR and mass spectra
identical with those described!8.

O, +2
O trimer
YT 100 100 NG
—_—— L
(-C,Hy) CH,l [4+2]) x2

Te—

6 -15 °C tetramer

) o (I b
(02H4) CH, [4+41

The UV-visible spectra of compounds 1 and 2 were recorded in the same conditions unless 0.5 gl of
precursors 5 and 6 were thermolyzed. The imino-quinone methide 1 showed a first absorption band at
374 nm, disappearing at ca -100 °C (no absorption maximum was observed above this temperature). The
corresponding band was observed at 395 nm in the case of compound 2, in agreement with those reported for
substituted o-quinone methides!9. Upon warming up to -100 °C, the band at 395 nm was replaced by
absorption maxima at 299, 281 and 274 nm. The first of them (299 nm), disappearing at -15 °C, is attributable
to the dimer 11 (this band was found at about the same wavelength for other 2,4-cyclohexadienones20). The
bands at 281 and 274 nm, remaining until room temperature, correspond to those already described? for the
trimer of 2. The electronic spectrum of thio-quinone methide 3, reported in an Ar matrix11 [first band at
2.66 eV (466 nm)] was not observed here.

Owing to the lack of trapping monomeric 3 at -196 °C, the FVT of thiochroman 7 was investigated by
coupling the oven with a high resolution mass spectrometer, as described previously?!; all the species
produced by FVT of compound 7 at 950 °C have in this way been unambiguously characterized in real time
by MS/MS.

The spectrum obtained under these conditions (Fig. 2) is very different to that of the starting material 7
(Fig. 1). The rDA reaction of 7 led both to ethylene (m/z 28) and 3 (m/z 122) which represent the two most
significant peaks of the second spectrum (Fig. 2). The minor formation of radicalar cleavage products,
benzene (m/z 78) and benzothiophene (m/z 134), is also observable in this spectrum; the same compounds
were identified in the already reported thermolysis of 714,

The formation of benzene and benzothiophene can be minimized by lowering the FVT temperature to
850 °C, but with the counterpart of a less complete cycloreversion (relative intensity of m/z 150 iondue to 7 :
4.4 % at 950°C and 10 % at 850°C).
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Fig. 1: MS of 7 (150 °C) Fig. 2: MS of 3 (FVT of 7 at 950 °C)

The DA reaction of tetrahydroquinoline 5, also investigated at 950 °C by FVT-MS/MS coupling, gave a
significant peak of ethylene (m/z 28) and another one at m/z 105 (imine 1), the mass spectrum also being very
different to that obtained for the precursor 5. An important ion at m/z 103, also observed in the FVT of 5, was
identified as benzonitrile by comparison between the MS/MS of m/z 103 and the molecular ion of
this compound. Benzonitrile occured most probably by loss of ethylene from the intermediate
o-ethylbenzonitrile14.
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