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Abstract: Reactions of the title compounds with sodium methoxide and sodium
borodeuteride were found to proceed mainly via the Sy 2' mechanism;
nucleophiles selectively attacked the anomeric carbon atom from the same side
of the leaving acetoxyl group at C-3.

The Lewis acid or transition metal-catalyzed1 reactions of glycal

derivative52

have been studied intensively, in part because of their
versatility as synthetic intermediates, in which a nucleophile attacks the C-1
and/or C-3 positions. The product ratios frequently depend on the reaction
conditions, e.g., due to anomerization of product2a and/or [3,3) sigmatropic
rearrangement.3 These reactions are thought to proceed via a carbenium ion 1

stabilized by the ring oxygen atom.'?

In fact we have not been aware of
literature such an example as an approaching direction of a nucleophile is
controlled by the configuration of a leaving group at C-3.

In order to achieve the SN2' reaction in glycal derivatives, we took the
following two factors into consideration. Firstly introduction of an
electron-withdrawing group at C-2 should not only suppress the formation of
cation, but also activate the double bond towards a nucleophile. Secondly
4,6-0-benzylidene derivative seems to be suitable for the present purpose
based on the following reason. The most stable intermediary cation should be
an oxonium ion rather than a carbenium ion. If this is true, C-5 must move up
to the plane of 0-5, C-1, and C-2; the movement gives rise to a strain to the
1,3-dioxane ring. 1In fact semi-empirical molecular orbital calculations of
model compounds 2-5 with full optimization4 showed that C-5, 0-5, Cc-1, and C-2
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of cations 4 and 5 are almost in the same plane and that difference in the
heat of formation between 4,6-0-methylene derivative 2 and its cation 4 is
larger than that between 4,6-di-O-methyl derivative 3 and its cation 5 by 31.4
(MINDO/3), 20.1 (MNDO), and 16.7 kJ/mol (AM1), respectively.

If a reaction proceeds via the cation 1, the same results should be
obtained regardless of the configuration at C-3 of starting materials.
Therefore, 3-0-acetyl-1,5-anhydro-4,6-0-benzylidene-2-deoxy-2-C-p-
tolylsulfonyl-D-arabino-hex-1-enitol (6) and its 3—epimer5 10 were chosen as
substrates and subjected to the reactions with methanolic sodium methoxide and
sodium borodeuteride, respectively.

To a methanolic dispersion (2.5 mL) of 6 (21 mg) was added M sodium
methoxide (0.06 mL; ca. 1.2 equivalent amounts of 6) and the mixture was
stirred for 45 min at room temperature to give methyl 4,6-0O-benzylidene-2,3-
dideoxy—Z—Q—E-tolylsulfonyl—B-Q—erzthro—hex—z-enopyranoside6 (7) (36%) and
methyl 4,6-0-benzylidene-2-deoxy-3-0-methyl-2-C-p-tolylsulfonyl-g-D-
glucopyranoside6a (8) (44%), together with unreacted starting material 6 (20%
yeild). No evidence was obtained for formation of the corresponding methyl a-
D-anomers and 3-0O-methyl-p-glucal derivative 9. Although compound 8 was
likely to be formed via methyl 2-enopyranoside 7, the possibility is not
excluded that the 3-0-methyl derivative 9, formed via SN1' reaction, is a
precursor of 8. Therefore, the following reactions were performed. Treatment
of 7 with methanolic sodium methoxide under the same conditions afforded 8
almost quantitatively, whereas similar reaction of 9 gave a 1 : 3 mixture of 8
and 9, indicating that the reactivity of 9 is lower than that of the 1-enitol”?
6 and 7. In spite of the fact that more reactive 6 and 7 were partially
isolated, 9 was not detected in the reaction of 6 with methanolic sodium
methoxide, suggesting that 9 was not a precursor of 8. Similar treatment of
10 (3-epimer of 6) with methanolic sodium methoxide afforded the methyl a-D-2-
enopyranoside 11 (60% yield) as the major products, together with the
unreacted 10 (13%) and a 1 : 1 : 1.2 mixture (15%) of a-D-altro 12, a-D-allo
13, and B-D-gluco isomers 8. These products were identical with each of the
corresponding authentic samples by 1H NMR spectroscopy.s'8
Reduction of 6 with sodium borohydride gave the 2-enitol 14, identical

with an authentic sample6b

, as a primary product, however, the signals due to
the protons at C-1 were overlapped. Reduction of 14 with sodium borohydride
in acetonitrile gave the D-arabino 15 (24%) {m.p. 171-172°, [a13? 33° (c 0.8,
chloroform)} and D-ribo isomers 16 (73%) { m.p. 210-211°, [a]30 -18° (c 0.47,
chloroform)} ; these two products were readily separated by column
chromatography. Furthermore it was found that sodium borodeuteride almost
exclusively attacked C-3 from the axial side of 14, On the basis of these
results, the 3-0O-acetyl-D-arabino-1-enitol derivative 6 was subjected to the
reduction with excess of sodium borodeuteride in acetonitrile to afford the DP-
arabino 17, D-ribo isomers 18, and 3-deoxy-1-enitol derivative® 19 in 22, 46,
and 20% yields, respectively. The 1H NMR spectra of 17 and 18 revealed that



3751

OMe Ph
Ph — P{M +  Me Me
Ac < Ts . Ts

6 7 °
Ph
MeO PM
s Ts
9 14
’ R
Ph Ph
_—
OAc ] S Me "OMe
10 " 12R =Ts,R'=H

13R=H, R'=Ts

g—> Ph H R + H + Ts
R 18y D

R=H 19
17 R=D 18 R=D

Ts
Ph h H
10— 19 4+ H Hy H s
D
20 21

the signals due to the anomeric equatorial protons at 8§ 4.53 for 17 and 4.27
for 18 in CDCl; almost completely disappeared. Ratio of deuteration at the
axial and equatorial position at C-3 of 19 was ca. 1 : 2 according to its 'n
NMR spectroscopy, indicating that 19 was not a precursor of 17 and 18 because
the axial position at C-3 of the saturated products almost exclusively
deuterated. Similar reduction of the 3-0-acetyl-D-ribo-1-enitol derivative 10
afforded the 3-deoxy-1-enitol derivative 19, D-arabino 20, and D-ribo isomers
21 in 9, 29, and 62% yields, respectively. 1In contrast with the reaction of
its 3-epimer 6, the anomeric axial protons of 20 and 21 (8§ 3.73 and 3.64,
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respectively, in CDCl3) were almost completely deuterated and the axial
position at C-3 of 19 derived from 10 was predominantly deuterated (the ratio
of deuteration at the axial to equatorial positions was ca. 2 : 1).

Thus we have firstly shown that the stereoselectivity of nucleophilic
addition reaction to glycal derivatives was controlled by the configuration of
the leaving group at C-3, namely cis addition occurred as the main reaction
path. These results well demonstrate characteristics of the general SNZ’

mechanism.9
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