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Abstract: Reactions of the title compounds with sodium methoxide and sodium 
borodeuteride were found to proceed mainly via the SK2' mechanism; 
nucleophiles selectively attacked the anomeric carbon atom from the same side 
of the leaving acetoxyl group at C-3. 

The Lewis acid or transition metal-catalyzed' reactions of glycal 

derivatives2 have been studied intensively, in part because of their 

versatility as synthetic intermediates, in which a nucleophile attacks the C-1 

and/or C-3 positions. The product ratios frequently depend on the reaction 

conditions, e.g., due to anomerization of product2a and/or [3,31 sigmatropic 

rearrangement.3 These reactions are thought to proceed via a carbenium ion 1 

stabilized by the ring oxygen atom. la In fact we have not been aware of 

literature such an example as an approaching direction of a nucleophile is 

controlled by the configuration of a leaving group at C-3. 

In order to achieve the SR2' reaction in glycal derivatives, we took the 

following two factors into consideration. Firstly introduction of an 

electron-withdrawing group at C-2 should not only suppress the formation of 

cation, but also activate the double bond towards a nucleophile. Secondly 

4,6-e-benzylidene derivative seems to be suitable for the present purpose 

based on the following reason. The most stable intermediary cation should be 

an oxonium ion rather than a carbenium ion. If this is true , C-5 must move up 

to the plane of Q-5, C-1, and C-2; the movement gives rise to a strain to the 

1,3-dioxane ring. In fact semi-empirical molecular orbital calculations of 

model compounds 2-5 with full optimization4 showed that C-5, g-5, C-1, and C-2 

2 X,Y = 0CH20 4 X, Y = 0CH20 

3X=Y =OMe 5X=Y=OMe 
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of cations 4 and 5 are almost in the same plane and that difference in the 

heat of formation between 4,6-e-methylene derivative 2 and its cation 4 is 

larger than that between 4,6-di-Q-methyl derivative 3 and its cation S by 31.4 

(MIND0/3), 20.1 (MNDO), and 16.7 kJ/mol (AMl), respectively. 

If a reaction proceeds via the cation 1, the same results should be 

obtained regardless of the configuration at C-3 of starting materials. 

Therefore, 3-O-acetyl-1,5-anhydro-4,6-O-benzylidenzylidene-2-deoxy-2-~-~- 

tolylsulfonyl-Q-arabino-hex-1-enitol (6) and its 3-epimer5 10 were chosen as 

substrates and subjected to the reactions with methanolic sodium methoxide and 

sodium borodeuteride, respectively. 

To a methanolic dispersion (2.5 mL) of 6 (21 mg) was added M sodium 

methoxide (0.06 mL; a. 1.2 equivalent amounts of 6) and the mixture was 

stirred for 45 min at room temperature to give methyl 4,6-g-benzylidene-2,3- 

dideoxy-2-C-E-tolylsulfonyl-B_p-ervthro-hex-2-enopyranoside6 (7) (36%) and 

methyl 4,6-~-benzylidene-2-deoxy-3-O-methyl-2-~-~-tolylsulfonyl-~-~- 

glucopyranoside6a (8) (44%), together with unreacted starting material 6 (20% 

yeild). No evidence was obtained for formation of the corresponding methyl CL- 

Q-anomers and 3-Q-methyl-Q-glucal derivative 9. Although compound 8 was 

likely to be formed via methyl 2-enopyranoside 7, the possibility is not 

excluded that the 3-g-methyl derivative 9, formed via SN1' reaction, is a 

precursor of 8. Therefore, the following reactions were performed. Treatment 

of 7 with methanolic sodium methoxide under the same conditions afforded 8 

almost quantitatively, whereas similar reaction of 9 gave a 1 : 3 mixture of 8 

and 9, indicating that the reactivity of 9 is lower than that of the 1-enito17 

6 and 7. In spite of the fact that more reactive 6 and 7 were partially 

isolated, 9 was not detected in the reaction of 6 with methanolic sodium 

methoxide, suggesting that 9 was not a precursor of 8. Similar treatment of 

10 (3-epimer of 6) with methanolic sodium methoxide afforded the methyl e-Q-2- 

enopyranoside 11 (60% yield) as the major products, together with the 

unreacted 10 (13%) and a 1 : 1 : 1.2 mixture (15%) of cr-p-altro 12, c-p-all0 -- -- 
13, and S-p-gluco isomers 8. These products were identical with each of the 

corresponding authentic samples by 'Ii NMR spectroscopy.6r8 

Reduction of 6 with sodium borohydride gave the 2-enitol 14, identical 

with an authentic sample6b, as a primary product, however, the signals due to 

the protons at C-1 were overlapped. Reduction of 14 with sodium borohydride 

in acetonitrile gave the P-arabino 15 (24%) {m.p. 171-172O, [cr];' 33O (2 0.8, 

chloroform)1 and D-ribo isomers 16 (73%) {m.p. 210-211°, [cr];' -18O (c 0.47, -- 
chloroform)} ; these two products were readily separated by column 

chromatography. Furthermore it was found that sodium borodeuteride almost 

exclusively attacked C-3 from the axial side of 14. On the basis of these 

results, the 3-Q-acetyl-Q-arabino-1-enitol derivative 6 was subjected to the 

reduction with excess of sodium borodeuteride in acetonitrile to afford the p- 

arabino 17, p-ribo isomers 18, and 3-deoxy-1-enitol derivative5 19 in 22, 46, -- 
and 20% yields, respectively. The 'H NMR spectra of 17 and 18 revealed that 
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the signals due to the anomeric equatorial protons at 6 4.53 for 17 and 4.27 

for 18 in CDC13 almost completely disappeared. Ratio of deuteration at the 

axial and equatorial position at C-3 of 19 was ca. 1 : 2 according to its 'Ii - 
NMR spectroscopy, indicating that 19 was not a precursor of 17 and 18 because 

the axial position at C-3 of the saturated products almost exclusively 

deuterated. Similar reduction of the 3-O-acetyl-Q-ribo-1-enitol derivative 10 -- 
afforded the 3-deoxy-1-enitol derivative 19, p-arabino 20, and Q-ribo isomers -- 
21 in 9, 29, and 62% yields, respectively. In contrast with the reaction of 

its 3-epimer 6, the anomeric axial protons of 20 and 21 (6 3.73 and 3.64, 
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respectively, in CDCl3) were almost completely deuterated and the axial 

position at C-3 of 19 derived from 10 was predominantly deuterated (the ratio 

of deuteration at the axial to equatorial positions was ca. 2 : I). 

Thus we have firstly shown that the stereoselectivity of nucleophilic 

addition reaction to glycal derivatives was controlled by the configuration of 

the leaving group at C-3, namely cis addition occurred as the main reaction 

path. These results well demonstrate characteristics of the general SN2' 

mechanism. 9 
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