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Abstract: Some derivatives of (lRJR,3R,4S,W) and (1R,2R,3R,4R,5S)-5-amino-l,2,3,4-cyclohexanetetrol have 
been synthesized from acyclic carbohydrate intermediates via 6-exo free radical cyclization. 

5-Amino-1,2,3,4eyclohexanetetrols are valuable intermediates in the synthesis of aminocyclitols.1~2~” 

Methods for the synthesis of enantiomerically pure compounds of this type are limited to the 

transformation of 6-deoxy-5-enopyranosides,4 the intramolecular nitrone cycloaddition’ and the 

nitroalkane cyclization methodology.” In the last years the free radical7 route has proven to be an efficient 

method for the synthesis of carbocycles from carbohydrates. * To our knowledge the 6-exo free radical 

cyclization of acyclic carbohydrate intermediates has not been explored or has failed to yield cyclized 

products.’ 

In this communication we report a new and simple route to chiral derivatives of 

5-amino-1,2,3,4qclohexanetetrols via 6-exo free radical cyclization of acyclic carbohydrate derivatives. 

The strategy is shown in Scheme I; the protected lactol 1 undergoes bromination and oxime ether 

formation giving intermediate 2 ready for free radical cyclization mediated by tributyltin hydride.‘O 

The radical precursors 3 ‘r have been prepared from 6-bromo-6-deoxy-1,20isopropylidene 

ti -D-glucofuranose” and 3,5-di-O-benzyl-6-O-trityl~-D-glucofuranose.’3 The cyclization’4 of these 

intermediates gave compounds 4 and 5 (Scheme II) in moderate yield and good diastereoselectivity 

(see Table). The absolute stereochemistry at the new stereocenter in the major isomers 4 has been 

established by analysis of their ‘H-NMR spectra; for major 4a, for instance, sH, 3.25 (ddd, Jds= 10 Hz, 

J 5 bax = 12.4 Hz, is what we a substituent at C-5, 

is in a is reasonable in this of compounds. 

2,3-O-isopropylidenen-D-mannofuranose” 

in 50 % 

In the ‘H-NMR 7 showed 6Hti0 2.16 

J tiq,1= H 

appears at 3.19 ppm as a a vicinal coupling constant is consistent 

with at C-5, being in chair-like conformation. 
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Table. Tin Hvdride Mediated Cvclization of Oxime Ethers 

substrate (3) product ratios 

entry Rl R2 R r/sa(b) yield(%)c 

1 a AC AC Bn 83/17 (only p) 52 

2 b Bz BZ Bn 75/25 (80:20) 55 

3 c Bz Bz Me 73/27 (only 8) 50 

4 dBn H Bn 80/20 (94:6) 40 

5 e Bn AC Bn 78/22 (89:ll) 42 

(a) Product ratios computed from NMR analysis of crude mixtures. 

(b) Product ratios after purification, (c) Total yield of 

cyclized product. 

Scheme Ill 
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In Scheme IV we show a possible model for the stereochemical results obtained in the cyclization of 

substrates 3. Assuming a chair-like conformation for these carbon centered radicals,16 the steric 

interaction between the substituent at C-S and the oxime ether at C-l (sugar numbering) drives the 

equilibrium to conformer i leading to compounds 4 predominantly; in this picture we cannot exclude the 

influence of stereoelectronic effects of the atyl esters or ethers functional groups.8b 

Scheme IV 
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In summary, a stereoselective method for the preparation of enantiomerically pure 

5-amino-1,2,3,4cyclohexanetetrols derivatives has been achieved. These are useful chiral building blocks 

for further development. The moderate yields in the cyclization is overcomed by the good to excellent 

ratios of the cyclized products and the easy availability of the radical precursors. We are currently 

examining other carbohydrate precursors and will report these studies in due course. 
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