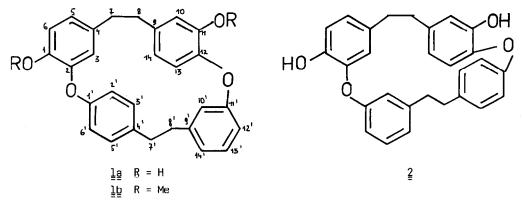
THE CONSTITUTION OF RICCARDIN B


M. NÓGRÁDI* and B. VERMES

Research Group for Alkaloid Chemistry of the Hungarian Academy of Sciences H-152l Budapest, P.O.B. 91 M. KAJIÁR-PEREDY

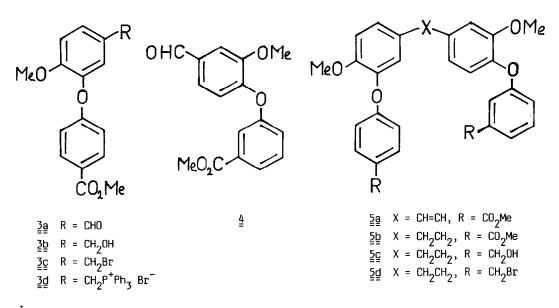
Central Institute for Chemistry of the Hungarian Academy of Sciences H-1525 Budapest, P.O.B. 17

<u>SUMMARY:</u> - The constitution of riccardin B, a macrocyclic bis(bibenzyl) isolated from <u>Riccardia</u> multifida was established by the unambigous synthesis of its di-O-methyl ether.

The cytotoxic macrocyclic bis(bibenzyl) riccardin B was isolated from the liverwort <u>Riccar-dia multifida</u> (L.) S. Gray by Asakawa et al. in 1983¹. Available evidence (¹H NMR, MS) did not permit decision between the isomeric constitutions <u>la</u> and <u>2</u>. The unambigous synthesis of the dimethylether <u>lb</u>, to be presented in this paper, proves that constitution <u>la</u> can be assigned to riccardin B.

A logical scheme for the synthesis of $\underline{l}\underline{b}$ offered itself by dissecting the molecule accross bonds C(7)-C(8) and C(7')-C(8') followed by that accross the ether bonds. The diphenyl ether intermediates had to be provided with different functionalities at both ends of the molecule as to permit a stepwise linking of rings A and B followed by that of C and D, or vice versa. This scheme was realized as follows:

Ullmann coupling of methyl 4-bromobenzoate and isovanilline dimethyl acetal in pyridine in the presence of CuO gave, after hydrolysis and chromatography, the diphenyl ether $\frac{3}{29}$ (32%, m.p. 117-119 ^OC from MeOH), while that of methyl 3-bromobenzoate and vanilline dimethyl acetal provided <u>4</u> (10%, m.p. 60-62 ^OC from hexane).


Reduction of the aldehyde $\underline{3}\underline{a}$ with NaBH₄ gave the alcohol $\underline{3}\underline{b}$ (78%, m.p. 77-79 ^OC from ether), treatment of a benzene solution of $\underline{3}\underline{b}$ with 48% aq. HBr afforded the benzyl bromide $\underline{3}\underline{c}$ (85%,

2899

m.p. 80-82 ^OC from acetone). Brief boiling of $\frac{3}{2}$ with Ph₃P in MeCN yielded the phosphonium bromide $\frac{3}{2}$ (95%, m.p. 218-219 ^OC (dec.) from benzene).

Wittig reaction of the key intermediates $\underline{3}\underline{4}$ and $\underline{4}$ was carried out in methanol with NaOMe as base and led, after separation from Ph_3PO and by-products by chromatography, to an 85:15 mixture of \underline{E} and \underline{Z} stilbenes ($\underline{5}\underline{a}$) (65%, oil, (\underline{E})-CH=CH: $\boldsymbol{\delta}$ = 6.26 ppm). The stilbenes were hydrogenated without separation over Pd/C in MeOH-EtOAc to give the bibenzyl $\underline{5}\underline{b}$ (100%, oil, CH_2CH_2 : $\boldsymbol{\delta}$ = 2.88 ppm). $\underline{5}\underline{b}$ was reduced with LiAlH₄ in THF to the diol $\underline{5}\underline{c}$ (87%, oil, CH_2OH : $\boldsymbol{\delta}$ = 4.62 ppm (4H)) and then treated with PBr₃ in benzene at 80 °C to give the dibromide $\underline{5}\underline{d}$ (95%, oil, CH_2Br : $\boldsymbol{\delta}$ = 4.42 and 4.48 ppm).

Intramolecular Wurtz reaction of $\frac{5}{2}d$ at high dilution in THF, using sodium and tetraphenylethene² gave a product in 28% yield which had the same m.p. (151-152 °C) and ¹H NMR spectrum (at 400 MHz) as riccardin B di-<u>O</u>-methyl ether.¹ Therefore constitution <u>la</u> has to be assigned to riccardin B.

¹H-NMR spectra of the new compounds described in this paper were in accordance with their assigned structures.

REFERENCES

Y. Asakawa, M. Toyota, Z. Taira, and T. Takemoto, J. Org. Chem. 1983, <u>48</u>, 2164.
W. S. Lindsay, P. Stokes, L. G. Humber, and V. Boekelheide, J. Am. Chem. Soc. 1961, <u>83</u>, 943.

(Received in UK 14 April 1987)