A Simple, Efficient Synthesis of Dibenzyl and Di-p-nitrobenzyl 1-Hydroxyalkanephosphonates

Maria Hoffmann

Department of Organic Chemistry, Technical University of Gdańsk, ul. Majakowskiego 11/12, PL-80-952 Gdańsk, Poland

Dibenzyl and di-p-nitrobenzyl 1-hydroxyalkanephosphonates $3\mathbf{a} - \mathbf{i}$ are prepared by alkylation of 1-hydroxyalkanephosphonic acids 1 with O-benzyl and O-(p-nitrobenzyl)-N,N'-dicyclohexylisoureas 2.

In connection with our studies on the synthesis of P-protected phosphonodidepsipeptides, we became interested in developing a method for the synthesis of dibenzyl and di-p-nitrobenzyl 1hydroxylalkanephosphonates. We hoped these esters would be crystalline and easily removable by catalytic hydrogenation. Dialkyl 1-hydroxyalkanephosphonates are accessible by condensation of aldehydes or ketones with dialkyl hydrogen phosphites, 1-4 but only a few examples of synthesis of dibenzyl 1hydroxyalkanephosphonates derived from ketones had been described⁴ and their yields were rather low. Also, preliminary experiments carried out in our laboratory using the reported methods to obtain dibenzyl 1-hydroxylalkanephosphonates derived from aldehydes gave poor yields. This may be the result of reported⁵ unstability of dibenzyl phosphite. Furthermore, the reported methods are not suitable for the synthesis of optically active esters.

Dialkyl 1-hydroxylalkanephosphonates can also be obtained by alkylation of acids with diazoalkanes. ^{6,7} The drawback of the method is the instability and explosion hazard associated with diazoalkanes. Taking this into account, we have now developed a new synthesis of dibenzyl and di-p-nitrobenzyl ½-hydroxyal-kanephosphonates, which involves the reaction of ½-hydroxyal-kanephosphonic acid with O-benzyl and O-(p-nitrobenzyl)-N,N'-dicyclohexylisoureas. O-Benzyl-N,N'-dicyclohexylisourea has been used as the alkylating agent for active hydrogen compounds⁸ such as carboxylic acids, ^{9,10} thiocarboxylic acids, ¹¹ thiols, ¹² and phosphorothioic acids. ¹¹

In this paper we report that O-benzyl and O-(p-nitrobenzyl)-N,N'-dicyclohexylisoureas are effective as alkylating agents for the synthesis of dibenzyl and di-p-nitrobenzyl t-hydroxyal-kanephosphonates (Scheme).

Table. Dibenzyl and Di-p-nitrobenzyl 1-Hydroxyalkanephosphonates 3

Prod- uct	Yield (%)	mp (°C) ^a (solvent)	Molecular Formula ^b or Lit. mp (°C)	IR (KBr) ^e ν(OH) (cm ⁻¹)	1 H-NMR (CDCl $_{3}$ /TMS) d δ , J (Hz)
3a	77	103-104 (ether)	C ₂₁ H ₂₁ PO ₄ (368.4)	3260	4.42 (s, 1H, OH); 4.79, 4.86 (td, 4H, $J = 8$, 2OCH ₂); 5.03 (d, 1H, $J = 12$, C ₆ H ₅ CH ₃); 7.27 (m, 15H _{arom})
3b	76	63-64 (ether/hexane)	C ₁₈ H ₂₃ PO ₄ (334.3)	3320	1.00 [d, 6H, $J = 6$, (CH ₃) ₂ CH]; 1.95 [m, 1H, (CH ₃) ₂ CH]; 2.70 (s, 1H, OH); 3.70 (dd, 1H, $J = 10$, 6, CHP); 5.05 (d, 4H, $J = 8$, 2OCH ₂); 7.30 (m, 10 H _{arom})
3c	76	71.5-72 (ether/hexane)	C ₁₉ H ₂₅ PO ₄ (348.4)	3300	$0.70, 0.86$ [td, $6H, J = 6, (CH_3)_2$ CH]; 1.55 (m, $3H, CH, CH_2$); 3.55 (s, $1H, OH$); 3.98 (m, $1H, CHP$); 5.15 (d, $4H, J = 8, 2OCH_2$); 7.40 (m, $10H_{aroun}$)
3d	75	81-82 (ether/hexane)	814	3380	1.33 [d, 6H, $J = 16$, (CH ₃) ₂ C]; 3.75 (s, 1H, OH); 5.00 (d, 4H, $J = 8$, 2OCH ₂); 7.21 (m, 10H _{arom})
3e	75	112–113 (ether)	C ₂₀ H ₂₅ PO ₄ (360.4)	3350	1.60 (m, 10H, C_6H_{10}); 3.10 (s, 1H, OH); 5.00 (d, 4H, $J = 8$, 2OCH ₂); 7.26 (m, 10H _{arom})
3f	70	132–134 (benzene)	$C_{15}H_{15}N_2O_8P$ (382.3)	3300	2.70 (s, 1H, OH); 4.00 (d, 2H, $J = 6$, CH ₂ P); 5.19 (d, 4H, $J = 8$, 2OCH ₂); 7.80 (m, 8 H _{arom})
3g	75	140-141 (benzene)	$C_{16}H_{17}N_2O_8P$ (396.3)	3280	1.42 (dd, 3H, $J = 16$, 6, CH ₃); 4.00 (m, 2H, CHP, OH); 5.16 (d, 4H, $J = 8$, 2OCH ₂); 7.78 (m, 8H _{arom})
3h	80	143–145 (benzene)	$C_{19}H_{23}N_2O_8P$ (438.4)	3280	0.80, 0.90 [td, 6H, $J = 6$, (C[$\frac{1}{3}$] ₂ CH]; 1.65 (m, 3H, CH ₂ CH); 3.50 (m, 1H, OH); 4.00 (m, 1H, CHP); 5.20 (d, 4H, $J = 8$, 2OCH ₂); 7.80
3i	80	146–147 (benzene)	$C_{20}H_{23}N_2O_8P$ (450.4)	3350	(m, $8H_{arom}$) 1.75 (m, $10H$, C_6H_{10}); 3.50 (s, $1H$, OH); 5.23 (d, $4H$, $J=8$, $2OCH_2$); 7.85 (m, $8H_{arom}$)

^a Melting points are uncorrected.

$$R^{2} \underset{OH}{ \begin{subarray}{l} R^{2} O \\ R^{1} \underset{OH}{ \begin{subarray}{l} P(OH)_{2} \\ OH \end{subarray}} + 2 c - C_{6}H_{11} \underset{N}{ \begin{subarray}{l} N \\ N \end{subarray}} C_{6}H_{11} - c \\ 1 & 2 \mathbf{a} \times \mathbf{a} + \mathbf{b} \\ \mathbf{b} \times \mathbf{a} \times \mathbf{b} \\ \mathbf{c} \times \mathbf{b} \\ \mathbf{c} \times \mathbf{b} \times \mathbf{b} \\ \mathbf{c} \times \mathbf{b} \times \mathbf{b} \\ \mathbf{c} \times \mathbf{b} \\ \mathbf{c} \times \mathbf{b} \times \mathbf{b} \\ \mathbf{c} \times \mathbf{b} \\ \mathbf{c}$$

3	R¹	R ²	X	3	R ¹	R ²	X
a b c d	C ₆ H ₅ i-C ₃ H ₇ i-C ₄ H ₉ CH ₃ -(CH ₂)	H H H CH ₃	H H H	f g h i	H CH ₃ i-C ₄ H ₉ –(CH ₂)	H H H	NO ₂ NO ₂ NO ₂ NO ₂

In a typical procedure 1-hydroxyalkanephosphonic acid 1 reacted with O-benzyl or O-(p-nitrobenzyl)-N,N-dicyclohexylisourea (2a or 2b) in refluxing benzene (mole ratio, 1:2). The reaction appeared to be complete within 4 hours (TLC). In all cases the desired dibenzyl or di-p-nitrobenzyl 1-hydroxyalkanephosphonates 3 were obtained in good yields.

The above procedure was also carried out using optically active (+)-hydroxy(phenyl)methanephosphonic acid. The dibenzyl ester thus obtained was subjected to hydrogenolysis. The specific rotation of the product was identical with that of the starting (+)-hydroxy(phenyl)methanephosphonic acid. This result indicates that the described method is racemization free and can be employed for the synthesis of optically active 1-hydroxyalkanephosphonates.

- Recorded on a Jena-Zeiss UR-10 spectrometer.
- ^d Recorded on a Varian EM-360A spectrometer.

O-Benzyl-N,N'-dicyclohexylisourea (2a) is prepared from N,N'-dicyclohexylcarbodiimide and benzyl alcohol according to a known procedure 13,14 and is used without further purification.

O-(p-Nitrobenzyl)-N,N-dicyclohexylisourea (2b):

p-Nitrobenzyl alcohol (1.53 g, 0.01 mol) is added to a mixture of copper(I) chloride (7 mg, 0.071 mmol) and N,N'-dicyclohexylcarbodiimide (2.06 g, 0.01 mol) in benzene (1 mL) at 40 °C. The mixture is stirred at room temperature for 48 h. The volume is then doubled with hexane, and the solution applied to a filter pad of neutral alumina in order to remove copper salts. The product is eluted with a total volume of 50 mL of hexane. The solvent is evaporated under reduced pressure, and the residue is crystallized from n-pentane to give 2b; yield: 3.4 g (94%); mp 65-66 °C.

 $C_{20}H_{29}N_3O_3$ calc. C 66.82 H 8.06 N 11.69 (359.5) found 66.84 8.20 11.64 IR (CCl₄): $\delta = 1670$ (C=N) cm⁻¹.

¹H-NMR (CDCl₃): $\delta = 0.67 - 2.20$ (m, 20 H, 2 c-C₆H₁₀); 2.50 – 3.00 (m, 1 H); 3.20 – 3.66 (m, 1 H); 5.20 (s, 2 H); 7.40 – 8.33 (m, 4 H_{aron}).

Dibenzyl and di-p-Nitrobenzyl 1-Hydroxyalkanephosphonates 3; General Procedure:

The appropriate 1-hydroxyalkanephosphonic acid ⁷ 1 (1 mmol) is added to a solution of O-benzyl-N,N-dicyclohexylisourea (2a; 0.629 g, 2 mmol) in benzene (10 mL) or O-(p-nitrobenzyl)-N,N-dicyclohexylisourea (2b; 0.719 g, 2 mmol) in a mixture of benzene (15 mL) and DMF (2 mL). The reaction mixture is then refluxed for 4 h, the reaction course being monitored by TLC (silica gel, i-PrOH/NH₃/H₂O, 8:1:1). The precipitated urea is filtered. The filtrate is evaporated under reduced pressure, and EtOAc (20 mL) is added to the residue. The solution is washed successively with a 3% aq. NaHCO₃ (2×15 mL) and water (15 mL), dried (MgSO₄), filtered and evaporated. The crude esters 3 are purified by recrystallization (see Table).

(R)-(+)-Hydroxy(phenyl)methanephosphonic acid:

Resolution of racemic acid with (–)-ephedrine according to the literature size the (R)-acid. The R-configuration of this compound is established by comparing the specific rotation of its dimethyl ester (obtained by alkylation of the acid with diazomethane), $[\alpha]_D^{20} + 46$ (c - 1, acetone), with that described in the literature as (S)-(–): Lit. (S)-(–)-dimethyl 1-hydroxy-1-phenylmethanephosphonate, $[\alpha]_D^{20} - 46$ (c = 1, acetone).

^b Satisfactory microanalyses obtained: $C \pm 0.27$, $H \pm 0.18$, $N \pm 0.11$.

(R)-(+)-Dibenzyl Hydroxy(phenyl)methanephosphonate:

The title compound is obtained according to the above general procedure from (R)-(+)-hydroxy(phenyl)methanephosphonic acid [0.188 g, 1 mmol, $[\alpha]_D^{20} + 36$ (c = 1, H_2O)] and O-benzyl-N,N-dicyclohexylisourea (0.629 g, 2 mmol); yield: 0.277 g (75%); mp 127–128°C (benzene/hexane); $[\alpha]_D^{20} + 16$ (c = 1, CH_3OH).

C₂₁H₂₁PO₄ calc. C 68.47 H 5.74 (368.3) found 68.20 5.77

(R)-(+)-Hydroxy(phenyl)methanephosphonic acid:

(R)-(+)-Dibenzyl hydroxy(phenyl)methanephosphonate (0.368 g, 1 mmol) is dissolved in CH₃OH (15 mL). Then 10 % Pd-C (0.05 g) is added and the mixture is hydrogenated at 20 °C for 2 h under 1 atm H₂. The catalyst is filtered, washed with CH₃OH and water, and the filtrate is evaporated to dryness under reduced pressure. The product crystallizes after addition of ether; yield: 170 mg (90 %); mp 144–146 °C; $[\alpha]_D^{20} + 36$ (c = 1, CH₃OH).

This research was supported by a grant from the Polish Academy of Sciences (CPBP 01.13).

Received: 1 April 1987; revised 24 July 1987

- (1) Texier-Boullet, F., Foucaud, A. Synthesis 1982, 165.
- (2) Texier-Boulett, F., Foucaud, A. Synthesis 1982, 916.
- (3) Villemin, D., Racha, R. Tetrahedron Lett. 1986, 27, 1789.
- (4) Texier-Boullet, F., Lequitte, M. Tetrahedron Lett. 1986, 27, 3315.
- (5) Kamber, M., Just, G. Can. J. Chem. 1985, 63, 823.
- (6) Brienne, M.J., Jacques, J. C. R. Acad. Sci. 1975, 280, 291.
- (7) Hoffmann, M. Pol. J. Chem. 1982, 56, 1191; C.A. 1984, 100, 174922.
- (8) Mathias, L.D. Synthesis 1979, 561.
- (9) Vowinkel, E. Chem. Ber. 1967, 100, 16.
- (10) Auterhoff, H., Oettmeier, R. Arch. Pharm. (Weinheim, Ger.) 1975, 308, 732.
- (11) Nowicki, T., Markowska, A. A., Kiełbasiński, P., Mikołajczyk, M. Synthesis 1986, 305.
- (12) Vowinkel, E. Synthesis 1974, 430.
- (13) Schmidt, E., Moosmuller, F. Liebigs Ann. Chem. 1955, 597, 235.
- (14) Vowinkel, E. Chem. Ber. 1966, 99, 1479.
- (15) Hoffmann, M. Pol. J. Chem. 1985, 59, 385; C.A. 1986, 105, 191579.
- (16) Smaardijk, Ab. A., Noorda, S., Bolhuis, F., Wynberg, H. Tetrahedron Lett. 1985, 26, 493.