266. Reaktionen mit ¹⁵N.

I. Zum Zersetzungsmechanismus des Phenylhydrazins

von Klaus Clusius und Michael Hoch.

(20. X. 50.)

Phenylhydrazin zersetzt sich beim langsamen Destillieren unter Atmosphärendruck¹), besonders leicht in Gegenwart von metallischem Kupfer oder seinen Verbindungen²). In den Mechanismus der nach der Bruttogleichung

$$2 C_6H_5NHNH_2 \rightarrow C_6H_5NH_2 + C_6H_6 + N_2 + NH_3$$

eintretenden Disproportionierung kann man einen Einblick erhalten, wenn eines der beiden Stickstoffatome des Hydrazins durch ¹⁵N markiert und dessen Verteilung auf die drei stickstoffhaltigen Zersetzungsprodukte quantitativ untersucht wird. Dazu sind notwendig:

- 1. Die Synthese eines entsprechenden Phenylhydrazins. Wir wählten dazu die Verbindung $C_6H_5NH^{15}NH_2$, die sich aus Anilin durch Diazotieren mit $Na^{15}NO_2$ und anschliessende Reduktion nach $V.\ Meyer$ einwandfrei erhalten liess.
- 2. Die Zersetzung dieser Verbindung mit anschliessender Isolierung der Reaktionsprodukte in reiner Form, die in einer Hochvakuumapparatur nach physikalisch-chemischen Gesichtspunkten erfolgte.
- 3. Die Überführung der Reaktionsprodukte in Stickstoff, um sie auf ihren ¹⁵N-Gehalt untersuchen zu können.

Die Isotopenanalyse geschah mit einer bandenspektroskopischen Mikromethode, über die in der folgenden Arbeit berichtet wird³). Selbstverständlich wurden die nachstehend beschriebenen Operationen zunächst mit gewöhnlichen Stickstoffverbindungen in allen Einzelheiten ausgearbeitet.

Synthese von C₆H₅NH¹⁵NH₂.

Für Synthesen organischer Stickstoffderivate mit ¹⁵N braucht man immer wieder markierte Salpetersäure H¹⁵NO₃ und ihre Salze, ausserdem Nitrite, z. B. Na¹⁵NO₂. Daher gehen wir auf den Weg zur Darstellung dieser Verbindungen etwas näher ein.

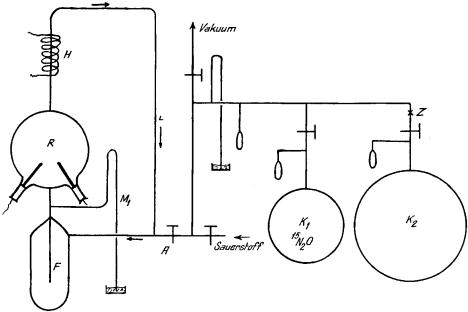
l. $\rm H^{15}NO_3$. Als Ausgangsmaterial diente Distickoxyd mit etwa 5% ^{15}N , das bei der Oxydation von $^{15}NH_4Cl$ mit Hypobromit zu Stickstoff als Nebenprodukt angefallen war⁴) und im Hochspannungslichtbogen nach

$$2 \text{ N}_2\text{O} + 3 \text{ O}_2 \rightarrow 2 \text{ N}_2\text{O}_4$$

F. D. Chattaway & M. Aldridge, Soc. 99, 404 (1911); R. Willstätter & C. Cramer,
 B. 43, 2981 (1911); A. G. Green & S. Wolff, B. 44, 2575 (1911).

²) A. E. Arbusow & W. M. Tichwinsky, B. 43, 2295 (1910).

³⁾ M. Hoch & H. R. Weisser, Helv. 33, 2128 (1950).


⁴⁾ K. Clusius, Helv. 33, 2134 (1950).

mit der Folgereaktion

$$2 \text{ N}_2\text{O}_4 + \text{O}_2 + 2 \text{ H}_2\text{O} \rightarrow 4 \text{ HNO}_3$$

quantitativ in Salpetersäure übergeführt wurde. Elementarer Stickstoff ist dafür natürlich ebenso geeignet.

In den Reaktionskolben R von 100 cm³ Inhalt sind durch zwei Schliffe 2 mm dicke Eisenelektroden eingeführt, deren Enden 15 mm Abstand haben (Fig. 1). An ihnen liegt die Sekundärseite eines 6 KV-Trafos, dessen Primärspule mit 50 Perioden-Netzstrom gespeist wird. Die Hitze des Lichtbogens und das auf 200° C geheizte Rohrstück H bewirken eine rasche Konvektionsströmung in den 10 mm weiten Rohren der Anordnung in der Pfeilrichtung. Die gebildeten Stickoxyde, überwiegend N₂O₄ mit wenig N₂O₃, frieren in der mit CO₂—CH₃OH gekühlten Ausfriertasche Flaufend aus, so dass das Fortschreiten der Reaktion an der Druckabnahme am Manometer M₁ bequem zu verfolgen ist. Von A aus treten Distickoxyd aus dem Kolben K₁ und Sauerstoff aus einer Bombe gut getrocknet abwechselnd zu, wobei die braunrote Färbung in der Längsdurchsicht des kalten Rohrastes L einen nach kurzer Übung darüber belehrt, welches Gas fehlt.

 $\label{eq:Fig. 1.} Fig.~1.$ Anordnung zur Herstellung von $\rm H^{15}NO_3$ aus $^{15}N_2O$ und $\rm O_2+H_2O.$

Diese Betriebsweise ist bedeutend anpassungsfähiger als die Verwendung stöchiometrisch vorgemischter Gase, die sich einem zunächst aufdrängt. Ist alles Distickoxyd eingeführt, so gibt man nur noch Sauerstoff bis zum gewöhnlichen Arbeitsdruck von etwa 600 mm zu, bis nach 15 Minuten der Stickstoff restlos oxydiert ist. Darauf wird die Ausfriertasche mit flüssiger Luft gekühlt, der überschüssige Sauerstoff weggepumpt, und die Stickoxyde werden in das Anhängsel des Kolbens K_2 umkondensiert. Anschliessend füllt man in K_2 noch 60% des verarbeiteten $^{15}N_2O$ - (bzw. $^{15}N_2$ -) Volumens an Sauerstoff ein, schneidet den Kolben bei Z ab und spritzt durch den Kolbenhahn etwas Wasser ein. Dieses nimmt die aufgetauten Stickoxyde beim vorsichtigen Schwenken rasch auf und nach 24-stündigem Stehen ist die Oxydation zu Salpetersäure beendet. Meist gewannen wir aus der Säure zur bequemen Aufbewahrung ihr Kaliumsalz.

Beispiel: 750 cm³ $^{15}\rm{N}_2\rm{O}$ von 680 mm Druck bei 20° C wurden in 4 Stunden zu $\rm{N}_2\rm{O}_4$ oxydiert und lieferten 5,35 g kristallisiertes $\rm{K}^{15}\rm{NO}_3$, d. h. 95% der Theorie (5,64 g); der Rest blieb in der Mutterlauge.

2. Na 15 NO $_2$. Zur Darstellung dieses Salzes diente die in Figur 2 skizzierte Apparatur. In den Kolben K $_1$ (1,2 Liter) wurden 4,5 g K 15 NO $_3$ (44,5 Millimol Stickstoff) mit 80 g Hg und in den Ansatz S $_1$ 21 cm 3 konz. H $_2$ SO $_4$, die vorher im Vakuum entgast worden war,

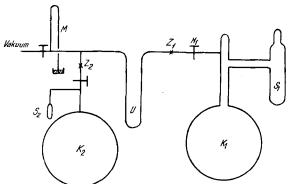


Fig. 2.

Anordnung zur Umsetzung von K¹⁵NO₃ über ¹⁵NO und ¹⁵N₂O₃ in Na¹⁵NO₂.

eingeschmolzen. Nach dem Evakuieren wurde H_1 geschlossen und der Kolben bei Z_1 abgeschnitten, worauf man unter Neigen und Schütteln die Schwefelsäure allmählich in den Kolben fliessen liess. Nach 2 Stunden war der Inhalt wieder farblos und kalt. Jetzt wurde bei Z_1 wieder angeschmolzen und die Leitung evakuiert, sodann am Manometer M der Druck in K_1 gemessen. Durch Einkühlen des U-Rohrs U mit flüssigem Stickstoff konnte das Stickoxyd aus K_1 quantitativ entfernt werden, wobei die bei der Reduktion gebildeten Stickstoffspuren kurz weggepumpt wurden. Das Stickoxyd wurde mit Hilfe des Ansatzes S_2 in den Kolben K_2 (1 Liter) umkondensiert und die Rohrleitungen sowie K_1 mit reinem Sauerstoff gefüllt. Von diesem liess man $^{1}/_{4}$ des vorher an M abgelesenen NO-Drucks durch vorsichtiges Öffnen des Kolbenhahnes nach K_2 übertreten, worauf der Inhalt von S_2 verdampft wurde. In dem Kolben bildete sich dann ein stöchiometrisches Gleichgewichtsgemisch $4 \text{ NO} + O_2 \Longrightarrow 2 \text{ N}_2O_3$

aus, das mit Laugen überwiegend wie das Anhydrid der salpetrigen Säure reagierte. Dazu wurde K_2 bei Z_2 abgeschnitten und durch den Hahn die Lösung von 1,95 g NaOH (96-proz., entsprechend 5% Überschuss) in 6 cm³ Wasser eingelassen. Die Absorption erfolgte unter Erwärmung momentan. Die Nitritlösung wurde in ein 10 cm³ Messkölbehen gespült und in je 0,5 cm³ der Gesamtstickstoff nach Devarda (42,7 Millimol, d. h. 96% der Theorie) und der Nitritstickstoff nach Lunge (37,8 Millimol, d. h. 85% der Theorie) bestimmt. Die Lösung enthielt also 88,5% Na¹⁵NO₂ und 11,5% Na¹⁵NO₃.

Das geschilderte Verfahren mag umständlich erscheinen, empfiehlt sich aber vor anderen auch erprobten Möglichkeiten (z. B. Reduktion des Nitrats mit Blei usw.) durch die Ausbeute und Reinheit des Produktes bei weitem. Mit so hergestellten Nitritlösungen konnte einwandfrei diazotiert werden. Durch Wahl etwas anderer Druck- und Temperaturverhältnisse beim Umsatz des N_2O_3 mit der Lauge sollte sich die Ausbeute noch erhöhen lassen.

3. $C_6H_5NH^{15}NH_2$. 3 g reines Anilin wurden unter magnetischer Rührung in 30 cm³ konz. Salzsäure verteilt und die Mischung auf -4° gekühlt. Der Zulauf der Na $^{15}NO_2$ -Lösung beanspruchte 1 Stunde, da die Temperatur 3° nicht überschreiten sollte. Die klare, kalte Diazolösung wurde dann unter kräftigem Rühren in eine gekühlte Suspension von 20 g SnCl₂, 2 H₂O in 20 cm³ konz. Salzsäure eingegossen. Nach 2stündigem Stehen in Eiswasser saugte man das ausgefallene Hydrochlorid ab und wusch es mit wenig starker kalter Salzsäure. Der Salzkuchen kam in einem kleinen Scheidetrichter mit 60 cm³

10-proz. Natronlauge zur Lösung, worauf das Phenylhydrazin mehrfach mit insgesamt 80 cm³ Äther ausgezogen und nach dem Trocknen mit Pottasche in der üblichen Weise durch Vakuumdestillation aufgearbeitet wurde. Es wurden 1,95 g reines Phenylhydrazin (18,1 Millimol) vom Sdp. 120° bei 14 mm erhalten, was einer Ausbeute von 53%, bezogen auf den in der Lösung noch vorhandenen Nitritstickstoff (34 Millimol), entspricht.

Zersetzung des Phenylhydrazins und Isolierung der Reaktionsprodukte.

1. Die thermische Zersetzung des Phenylhydrazins erfolgte in der auf Figur 3 wiedergegebenen Hochvakuumanordnung. In das Kölbchen K von 5 cm³ Inhalt wurden 0,6 g $C_6H_5NH^{15}NH_2$ (5,5 Millimol) und einige Körnchen Cu_2Cl_2 eingeschmolzen. Die Zugabe des Kupfersalzes war durchaus notwendig, da sich unsere reine Base in einer Wasserstoffatmosphäre bei 2stündigem energischem Sieden nicht im geringsten veränderte.

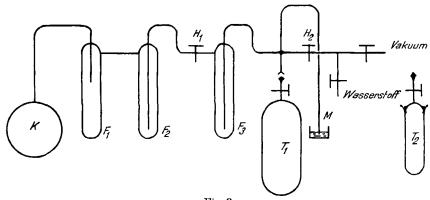


Fig. 3.

Anordnung zur thermischen Zersetzung des Phenylhydrazins $C_6H_5NH^{15}NH_2$ und zur Isolierung der gebildeten stickstoffhaltigen Produkte.

Darauf wurde die Anordnung mehrmals evakuiert und mit reinem Wasserstoff gespült und gefüllt. Nach dem Schliessen von H_2 kam die Falle F_2 in flüssigen Stickstoff und F_3 in abgepumpten festen Stickstoff (-218°). Erhitzte man jetzt das Phenylhydrazin zum Sieden, so begann es sich bald zu zersetzen, wie man am Entweichen von Wasserstoff aus dem Manometer M und am Auftreten von Benzoltröpfchen in der eisgekühlten Falle F_1 bemerkte. Der Ammoniak blieb quantitativ in F_2 zurück, während der entstandene Stickstoff bis zum Partialdruck von 15 mm in F_3 ausfror. Nach 20 Minuten war die Zersetzung beendet, worauf nach 10 minutigem weiterem Erhitzen H_1 geschlossen und K abkühlen gelassen wurde. Das Benzol befand sich im wesentlichen in F_1 , das gebildete Anilin zumeist noch in K.

- 2. Stickstoffisolierung: Die Falle F_3 enthielt festen Stickstoff neben Wasserstoff. Letzteren pumpte man mehrmals durch H_2 kurz ab, worauf sich immer wieder der Stickstoffpartialdruck einstellte und den restlichen H_2 durch Diffusion verdünnte. Kleine H_2 -Mengen sind für die Isotopenanalyse unschädlich. Dann wurde F_3 erwärmt und der Stickstoff in die Gaspipette T_1 entspannt (Ausbeute ca. 0,8 Millimol N_2).
- 3. Ammoniakisolierung: Anschliessend ersetzten wir T_1 durch die evakuierte Schliffpipette T_2 , die 1 cm³ entgaste konz. H_2SO_4 enthielt, und pumpten alle Gasreste aus der Anordnung fort, während F_2 zum Festhalten des Ammoniaks immer noch in flüssigen Stickstoff tauchte. Dann wurde F_3 mit flüssigem Stickstoff gekühlt und F_2 durch feste Kohlensäure auf -80° gebracht; bei dieser Temperatur hat Ammoniak einen Dampfdruck von 37 mm, während Benzol und Anilin kaum flüchtig sind, so dass reiner Ammoniak in 1 Stunde nach F_3 übersublimierte. Hier wurde er dann aufgetaut und zur Säure in T_2 geleitet, aus der er schliesslich durch alkalische Destillation befreit und ins Chlorid verwandelt wurde. (Ausbeute: 96 mg, d. h. 1,8 Millimol).

- 4. Anilinisolierung: Den Inhalt von F₁ und F₂, der auch noch Anilin enthalten konnte, vereinigte man mit dem des Kölbehens K durch Einkühlen mit fester Kohlensäure. Er wurde darauf mit 100 cm³ Wasser 2 cm³ Eisessig und 2 cm³ konz. Salzsäure aufgenommen und mit 0,5 cm3 Benzaldehyd versetzt. Noch vorhandene Spuren von Phenylhydrazin liessen sich nach mehrstündigem Stehen als Hydrazon abfiltrieren. Das Filtrat wurde alkalisch 2 mal mit Wasserdampf destilliert und die Base als Anilinhydrochlorid gewonnen. Das Salz war zwar frei von Phenylhydrazin, erwies sich jedoch als ammoniumchloridhaltig, da es im Gegensatz zu reinem Anilinchlorhydrat mit Nesslerschem Reagenz eine Fällung gab. Zur Beseitigung des Ammoniaks wurden 69 mg des Hydrochlorids in einer Mikrowaschflasche mit 0,5 g KOH in 3 cm³ H₂O versetzt und H₂SO₄-gewaschener H₂ eingeleitet, der hinterher noch durch Nessler-Lösung strich. In letzterer erschien nach und nach ein Niederschlag, der'sich beim Eintauchen der Waschflasche in 50° warmes Wasser kräftig vermehrte. Das Anilin blieb in winzigen Tröpfehen auf der Kalilauge schwimmen; sein Dampfdruck beträgt bei dieser Temperatur immerhin 2 mm, so dass der Versuch der Verluste halber nicht über 2 Stunden ausgedehnt werden konnte. Die Kalilauge unter dem Anilin gab dann mit Nessler-Reagenz nur mehr eine schwache Reaktion. Deshalb wurde das Anilin mit insgesamt 4-5 cm³ Äther mehrfach vorsichtig aufgenommen, der Ätherauszug mit 2 Tropfen konz. Salzsäure versetzt und zur Trockene gebracht. Ausbeute 42 mg gereinigtes Anilinhydrochlorid mit Spuren KCl. Das Salz wurde einem Kjeldahl-Aufschluss mit Hg und Se als Katalysatoren unterworfen und lieferte schliesslich 13 mg Ammoniumchlorid.
- 5. Um eine Isotopenanalyse des Gesamtstickstoffs des markierten Phenylhydrazins noch durchzuführen, fällten wir 0,2 g in alkoholischer Lösung (5 cm³) mit 0,4 g Benzaldehyd. Das gelbe Benzaldehyd-phenylhydrazon schmolz nach zweimaligem Umkristallisieren konstant bei 153°. Von ihm wurden nach $Friedrich^1$) 0,2 g mit 40 cm³ Jodwasserstoffsäure (d = 1,7) 2 Stunden lang im Kjeldahl-Kolben langsam gekocht, worauf nach dem Erkalten 15 cm³ konz. Schwefelsäure zugesetzt und Jod und Jodwasserstoff abgetrieben wurden. Der Aufschluss wurde dann in der üblichen Weise durch Zugabe von Hg und Se und anschliessende alkalische Destillation beendet, so dass auch hier der Stickstoff als Ammonchlorid vorlag.

Ergebnisse der Isotopenanalyse.

Die Ergebnisse der bandenspektroskopischen Isotopenanalysen sind in der Tabelle 1 zusammengefasst. Man muss dabei beachten, dass gewöhnlicher Stickstoff 0,38 % ¹⁵N enthält, so dass das unmittelbar an den Benzolkern gebundene Stickstoffatom von vornherein diesen %-Gehalt an schwerem Stickstoff hat. In der zweiten Spalte sind die beobachteten, in der dritten die berechneten Atomprozente an ¹⁵N eingetragen. Dabei wurde von der Annahme ausgegangen, dass sich zwei Molekeln des Phenylhydrazins gemäss dem Schema

disproportionieren, das nach der Anlage unserer Versuche natürlich nur eine Aussage über die Verteilungsart der Stickstoffatome, nicht aber über die der Wasserstoffatome machen kann. Mit dem skiz-

¹⁾ A. Friedrich, Z. physiol. Ch. 216, 68 (1933).

zierten Zerfall, bei dem der ¹⁵N-Überschuss quantitativ im Ammoniak, nur zur Hälfte im Stickstoff und gar nicht im Anilin auftreten soll, sind unsere Ergebnisse in bester Übereinstimmung. Es darf als erwiesen gelten, dass eine Molekel Phenylhydrazin ihren Stickstoff verliert und eine zweite Molekel unter Absprengung der Aminogruppe samt dem eigenen restlichen Phenylkern hydriert. Anzeichen für das intermediäre Auftreten von stickstoffhaltigen Radikalen liegen nicht vor.

Tabelle 1.
Isotopenanalysen von Phenylhydrazin und seinen Zersetzungsprodukten.

Substanz	Durchschnittlicher Gehalt an ¹⁵ N in Atom %		Atom% ¹⁵ N berechnet –
	beobachtet	berechnet	beobachtet
$ \begin{array}{c c} \hline & ^{15}\mathrm{NH_4Cl} \text{ (aus dem ""uber"} ^{15}\mathrm{N_2O} \to \\ & ^{15}\mathrm{N_2O_4} \to \mathrm{H^{15}NO_3} \to \mathrm{K^{15}NO_3} \to \\ & ^{15}\mathrm{NO} \to ^{15}\mathrm{N_2O_3} \mathrm{das \ zum \ Diazo-} \\ & \mathrm{tieren \ benutzte \ Na^{15}\mathrm{NO_2} \ gebil-} \\ & \mathrm{det \ wurde)} \end{array} \right\} $	4,86		
Phenylhydrazin (Versuchssubstanz)	2,58	$2,62^{1}$)	+0,04
Stickstoff . Ammoniak . Thermische Zersetzungsprodukte	2,56 4,79 0,39 ₅	$(= [0,38+4,86]/2)$ $2,58^{2})$ $4,78^{2})$ $(= 2 \cdot 2,58-0,38)$ $0,38^{2})$	$+0.02$ -0.01 -0.01_{5}

Herrn cand. chem. H. R. Weisser danken wir vielmals für die sorgsame Ausführung der Isotopenanalysen.

Zusammenfassung.

1. Es werden Anordnungen beschrieben, um Distickoxyd (oder Stickstoff) mit erhöhtem ¹⁵N-Gehalt über die Zwischenprodukte

$$^{15}\rm{N_2O_4} \to H^{15}\rm{NO_3} \to K^{15}\rm{NO_3} \to ^{15}\rm{NO} \to ^{15}\rm{N_2O_3}$$
 in Na $^{15}\rm{NO_2}$ umzusetzen.

2. Mit einer so gewonnenen Natriumnitritlösung von ca. 5% 15 N wird das Phenylhydrazin $\rm C_6H_5NH^{15}NH_2$ synthetisiert und der thermischen Zersetzung nach

$$2 \cdot \mathrm{C_6H_5NHNH_2} \longrightarrow \mathrm{C_6H_5NH_2} + \mathrm{C_6H_6} + \mathrm{N_2} + \mathrm{NH_3}$$

unterworfen. Die Isotopenanalyse der Spaltprodukte zeigt, dass der ¹⁵N-Überschuss quantitativ im entstandenen Ammoniak, hälftig im Stickstoff und überhaupt nicht im Anilin auftritt. Danach dürfte der Reaktionsmechanismus darin bestehen, dass eine Molekel Phenylhydrazin eine Molekel Stickstoff verliert und ihren eigenen Phenylrest sowie eine zweite Molekel Phenylhydrazin hydriert.

Physikalisch-Chemisches Institut der Universität Zürich.

¹⁾ Bezogen auf den 15N-Gehalt des Ausgangsmaterials.

²) Bezogen auf den ¹⁵N-Gehalt des Phenylhydrazins.