The Synthesis of Anthglutin and Its Analogues

Takeshi Kinoshita,* Hiroko Watanabe, and Sadamasa Minato[†]
Central Research Laboratories, Sankyo Co., Ltd., Hiromachi, Shinagawa-ku, Tokyo 140

† Fermentation Research Laboratories, Sankyo Co., Ltd., Hiromachi, Shinagawa-ku, Tokyo 140

(Received August 6, 1980)

Synopsis. Anthglutin $(1-\gamma-L-glutamyl-2-(2-carboxyphenyl))hydrazine) and its analogues were synthesized. Their inhibitory activity on <math>\gamma$ -glutamyl transpeptidase was measured. 2-Carboxyphenyl derivatives, including anthglutin, showed inhibitory activity, while the other derivatives did not. The 2-carboxyl group seems to be essential for the inhibitory activity.

In previous papers, $^{1,2)}$ we reported that anthglutin, an inhibitor of γ -glutamyl transpeptidase, was isolated from a cultured medium of Penicillium oxalicum, and Structure (1), $1-\gamma$ -L-glutamyl-2-(2-carboxyphenyl)hydrazine, was proposed. We have confirmed the structure of anthglutin by the synthesis of $1-\gamma$ -glutamyl-2-(2-carboxyphenyl)hydrazine (1).

Several compounds related to anthglutin were synthesized and measured for their inhibitory activity on γ -glutamyl transpeptidase (Tables 1 and 2). 2-Carboxyphenyl hydrazine derivatives (4—6) inhibited an enzyme activity, showing that the 2-carboxyl group

of anthglutin is a functional group for the inhibitory activity. As has been shown in a previous paper, 1) the α -carboxyl and α -amino groups of the glutamyl moiety of anthglutin also seem to be essential for forming a complex between the inhibitor and the enzyme.

Experimental

Materials. Commercially available aminobenzoic acid derivatives were used. The N-t-BOC-L-glutamic acid abenzyl ester was obtained from the Sigma Chemical Company. γ-Glutamyl transpeptidase was partially purified by the method of Orlowski and Meister;3) it was thereby purified about 140-fold from the whole homogenate of the hog kidney. Synthesis. Carboxyphenylhydrazine compounds were synthesized, according to the method described by Stephenson,4) from the appropriate aminobenzoic acid compounds. 1-γ-L-Glutamyl-carboxyphenylhydrazine compounds were prepared by condensation between the N-t-BOC-L-glutamic acid benzyl ester and the appropriate free base form of the hydrazine, according to the method de-

scribed by F. Hoffmann-La Roche & Co.5)

1-γ-L-Glutamyl-2-(2-carboxyphenyl) hydrazine (1). 2-Carboxyphenylhydrazine (0.96 g, 6.31 mmol), the N-t-BOC-L-glutamic acid α-benzyl ester (1.05 g, 3.11 mmol), and triethylamine (0.6 ml) were dissolved in dichloromethane (10 ml). To the solution we then added dicyclohexylcar-bodiimide (0.88 g, 4.53 mmol) dissolved in dichloromethane (1.0 ml), and the mixture was stirred for 3 h at room temperature. After removing the precipitate thus obtained by filtration, the filtrate was subjected to column chromatography on silica gel, eluting with chloroform-methanol-acetic acid (400:10:1). After the solvent had been removed in vacuo at 30 °C, the residue was dissolved in ethanol (20 ml) containing cyclohexene (1.0 ml). To the solution we added palladium-charcoal (5%, 400 mg), after which the mixture was refluxed for 1 h with stirring. The catalyst was removed

TABLE 1. YIELDS, MELTING POINTS, AND ANALYTICAL DATA

Compound	Yield/%	Mp/°C	Molecular formula	Found (Calcd)(%)		
				$\overline{\mathbf{c}}$	H	N
2	18.3	187	${ m C_{12}H_{15}N_3O_5}$	51.27 (51.24	5.31 5.38	14.84 14.94)
3	14.1	175	${ m C_{12}H_{15}N_3O_5}$	51.44 (51.24	5.41 5.38	14.70 14.94)
4	24.4	165	$\mathrm{C_{12}H_{14}N_3O_5Cl}$	45.75 (45.65	4.31 4.47	13.18 13.31)
5	16.8	172	$\mathrm{C_{12}H_{14}N_3O_5Cl}$	45.90 (45.65	4.51 4.47	13.11 13.31)
6	25.4	165	${ m C_{13}H_{17}N_3O_5}$	52.61 (52.88	5.97 5.80	$14.08 \\ 14.23)$
7	26.3	202	${ m C_{11}H_{15}N_3O_3}$	55.57 (55.68	$\substack{6.48 \\ 6.47}$	17.68 17.71)
8	24.6	164	$\mathrm{C_5H_{11}N_3O_3}$	37.26 (37.26	6.87 6.88	26.10 26.08)
9	22.7	152	$\mathrm{C_6H_{13}N_3O_3}$	41.26 (41.14	7.41 7.43	24.03 24.00)

Table 2. Inhibition of γ -glutamyl transpeptidase anthglutin analogues

Compounds (R-)	$K_{ m i}/\mu{f M}$		
Anthglutin (P. oxalicum)	5.7		
2-Carboxyphenyl-(1)	5.9		
3-Carboxyphenyl-(2)	200.0		
4-Carboxyphenyl-(3)	>1000.0		
2-Carboxy-5-chlorophenyl-(4)	7.5		
2-Carboxy-4-chlorophenyl-(5)	11.6		
2-Carboxy-4-methylphenyl-(6)	8.7		
Phenyl-(7)	> 1000.0		
N-Unsubstituted (8)	Not inhibit		
Methyl-(9)	Not inhibit		

In the presence of the analogues $(6.5 \,\mu\text{M})$, inhibition was determined according to a method described previously.¹⁾ Substrate (γ -glutamyl-p-nitroanilide), $0.42-4.21 \, \text{mM}$; acceptor(glycylglycine), $47.9 \, \text{mM}$; enzyme, hog kidney γ -glutamyl transpeptidase; incubation, pH 8.5, 37 °C, 15 min.

by filtration, and the filtrate was evaporated in vacuo at 30 °C to dryness to give a white powder. The powder thus obtained was treated with trifluoroacetic acid (1.0 ml) and anisole (0.25 ml) for 1 h in an ice bath.⁶) The reaction product was thus precipitated by the addition of ether (25 ml). The precipitate thus obtained was purified on a column of Dowex 2×8 (formate form) according to the method described previously.¹⁾ The product thus obtained (210

mg) was identical with a sample of natural anthglutin (yield, 24%; mp 170—171.5 °C; UV (water): 243 and 322 nm (pH 2.0), and 240 and 307 nm (pH 7.0); $[\alpha]_{10}^{10}$: +22.6° (c, 0.9, 0.05 mol dm⁻³ HCl)), as established by paper chrcmatography and the inhibitory activity (Table 2). Found: C, 51.21; H, 5.32; N, 14.88%. Calcd for $C_{12}H_{15}N_3O_5$: C, 51.24, H, 5.38; N, 14.94%.

Analogues Anthglutin. Analogues of anthglutin (2—6) were synthesized by the procedure described above using the appropriate hydrazine compound.

The $1-\gamma$ -L-glutamyl hydrazine compounds (7—9) were prepared by condensation between L-pyroglutamic acid and the appropriate free-base form of the hydrazine compound, under reflux overnight in 85% ethanol, according to the method described by Yale *et al.*⁷⁾ The results thus obtained are shown in Table 1.

References

- 1) S. Minato, Arch. Biochem. Biophys., 192, 235 (1979).
- 2) T. Kinoshita and S. Minato, Bull. Chem. Soc. Jpn., 51, 3282 (1978).
- 3) M. Orlowski and A. Meister, J. Biol. Chem., 240, 338 (1965).
- 4) E. F. M. Stephenson, Org. Synth., Coll. Vol. III, 475 (1955).
- 5) F. Hoffmann-La Roche & Co., British Patent, 843372, Avg. 4, 1960.
- 6) F. C. McKay and W. F. Albertson, J. Am. Chem. Soc., **79**, 4684 (1957).
- 7) H. L. Yale, K. Losee, S. J. Martin, M. Holsing, F. M. Perry, and J. Bernstein, J. Am. Chem. Soc., 75, 1933 (1953).