SYNTHESIS OF 3-OXYGENATED 13-NORHELIANGOLIDES

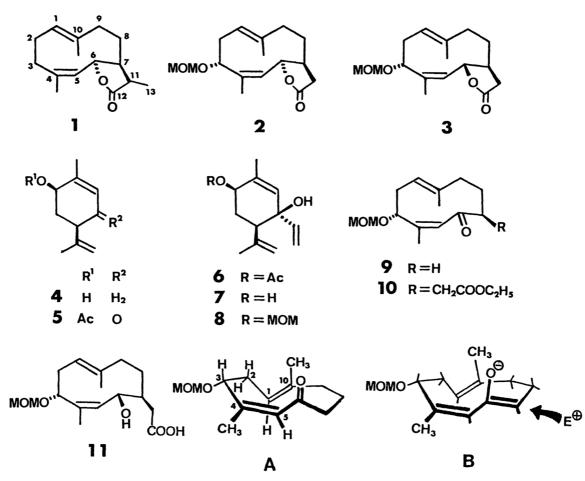
Chiaki KURODA, Hiroshi HIROTA, and Takeyoshi TAKAHASHI* Department of Chemistry, Faculty of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113

Optically active $(3\underline{R}, 6\underline{S}, 7\underline{S}, 1(10)\underline{E}, 4\underline{Z})$ - and $(3\underline{R}, 6\underline{R}, 7\underline{S}, 1(10)\underline{E}, 4\underline{Z})$ -3-methoxymethoxy-13-nor-1(10),4-germacradieno-12,6-lactones, key synthetic intermediates for 3-oxygenated heliangolides, were synthesized from (-)-carvone.

A number of germacradienolides with an α -methylene- γ -lactone ring have been reported in these years, some of them showing strong anti-tumor activity.¹⁾ Among these sesquiterpenes, $(1(10)\underline{E},4\underline{E})-1(10),4$ -germacradienolides constitute a group of "germacrolides"²) and their synthesis have been reported by many groups.³⁾ $(1(10)\underline{E}, 4\underline{Z}) - 1(10), 4$ -Germacradienolides possessing a skeletal structure (1) are also known¹⁾ as "heliangolides".²⁾ For example, hiyodorilactone A, isolated from Eupatorium sachalinense Makino by one of us and co-workers, belongs to this group and showed a significant inhibitory activity in vivo against the Ehrlich ascites carcinoma.⁴⁾ Although $(1\underline{E},5\underline{Z})-1,5-cyclodecadiene derivatives$ without a lactone moiety were synthesized by the route involving oxy-Cope rearrangement,⁵⁾ pyrolysis,⁶⁾ or cyclization,⁷⁾ no synthesis of heliangolides has yet been described to our knowledge. Most of natural heliangolides have an oxygen function at C-3 position. We chose optically active C-3 oxygenated 13-norheliangolides as synthetic targets, because the introduction of an α -methylene to the γ -lactone ring in the final synthetic stage has been well-investigated.⁸⁾ In this paper, we wish to report the synthesis of $(3\underline{R}, 6\underline{S}, 7\underline{S}, 1(10)\underline{E}, 4\underline{Z})$ and $(3\underline{R},$ 6R,7S,1(10)E,4Z]-3-methoxymethoxy-13-nor-1(10),4-germacradieno-12,6-lactones (2 and 3) from (-)-carvone.

(-)-<u>cis</u>-Carveol (4),⁹⁾ obtained from (-)-carvone by LiAlH₄ reduction, was acetylated and then oxidized with <u>t</u>-butyl chromate to afford a ketone 5 [45 % yield; oil; $[\alpha]_D^{14}$ -52° (EtOH); IR (neat) 1740, 1675 cm⁻¹; UV (EtOH) 228 nm (ϵ 9800); M⁺ at <u>m/e</u> 208.1090 (C₁₂H₁₆O₃)]. Reaction of 5 with 1.4 equivalent moles of vinyl magnesium bromide gave trienes, 6 and 7, in 28 and 6 % yields, respectively.¹⁰⁾ (6: oil; $[\alpha]_D^{14}$ -30° (EtOH); IR (neat) 3500, 1735 cm⁻¹; NMR¹¹⁾ (CDCl₃) δ 5.87 (1H, dd, J=10 and J=17 Hz, -CH=CH₂); \mathcal{I}^{12} : mp 142.5-144.5°C; $[\alpha]_D^{16}$ -24° (EtOH); IR (KBr) 3320, 3250 cm⁻¹; NMR (CDCl₃) δ 5.86 (1H, dd, J=10 and J=17 Hz, -CH=CH₂)]. Since an oxy-Cope rearrangement for both 6 and 7 was unsuccessful, the protective group for the secondary hydroxyl group of 6 was replaced by a methoxy-methyl (MOM) group to give 8 [76 % yield; oil; $[\alpha]_D^{16}$ -61° (EtOH); IR (neat) 3480 cm⁻¹; NMR (CDCl₃) δ 3.40 (3H, s, -OCH₂OCH₃), 4.65 and 4.76 (each 1H, A and B parts of an ABq, J=6 Hz, -OCH₂OCH₃)].

When the triene (8) was treated with 1.2 equivalent moles of KH and 18-crown-6 in THF,⁵⁾ & underwent the oxy-Cope rearrangement to afford a cyclodecadienone (9)¹²⁾ [67 % yield; mp 52-53°C; $[\alpha]_D^{11}$ -111° (EtOH); IR (neat) 1680 cm⁻¹; UV (EtOH) 235 nm (ε 5300); NMR (270 MHz; CDCl₃) δ 3.42 (3H, s, -OCH₂OC<u>H₃</u>), 4.65 and 4.67 (each 1H; A and B parts of an ABq, J=6 Hz, $-OCH_2OCH_3$), and signals listed in Table 1]. The geometry of olefinic double bonds was confirmed by NOE experiments (270 MHz; CDCl₃). The result shown as Table 1 can only be interpreted based on the $[1(10)\underline{E},4\underline{Z}]$ -structure (A) for 2. Treatment of 2 with LDA followed by ethyl bromoacetate gave a keto ester (10) as a sole product in 74 % yield. [10: oil; $[\alpha]_{D}^{12}$ -40° (EtOH); IR (neat) 1735, 1680 cm⁻¹; NMR (CDCl₃) δ 1.24 (3H, t, J=7 Hz, $-CO_2CH_2CH_3$, 4.11 (2H, q, J=7 Hz, $-CO_2CH_2CH_3$), 6.23 (1H, s, C(5)-H); M⁺ at <u>m/e</u> 324.1948 $(C_{18}H_{28}O_5)$]. The stereochemistry at C-7 of 10 would be $7\alpha H$ as a result of an attack of the reagent to the C-7 position from the less hindered side (outer side) (B) of the intermediate enclate anion molecule having a more stable 6(7)Zdouble bond, which can conjugate with the 4(5)-double bond, while the corresponding 6(7) enolate can not do. This stereochemical assignment was supported by the following chemical transformation.


The keto ester (10) was reduced with NaBH₄ to give a lactone (3) [12 % yield;¹³⁾ oil; $[\alpha]_D^{24}$ -110° (EtOH); IR (neat) 1765 cm⁻¹; NMR (CDCl₃) & 1.46 (3H, s), 1.75 (3H, s), 3.36 (3H, s, $-\text{OCH}_2\text{OCH}_3$), 4.36 (1H, t, J=3 Hz, C(3\beta)-H), 4.51 and 4.65 (each 1H; A and B parts of an ABq, J=6.5 Hz, $-\text{OCH}_2\text{OCH}_3$), <u>ca</u>. 5.37 (2H, m, C(1)-H and C(5)-H), 6.01 (1H, dd, J=7 and J=11 Hz, C(6\alpha)-H); M⁺ at <u>m/e</u> 280.1656 (C₁₆H₂₄O₄)]. The methoxymethoxyl group at C(3\alpha) is in axial conformation judging from the coupling constant of C(3\beta)-H (t, J=3 Hz). The & value (6.01) at fairly low field observed for C(6)-H shows that C(6)-H is situated close to the C(3\alpha)-axial methoxymethoxyl oxygen. These facts together with large J values (7 and 11 Hz) observed for C(6)-H lead to a <u>cis</u>-lactone structure with C(6\alpha)-H and C(7\alpha)-H configurations for 3. The <u>cis</u>-lactone structure (3) is also compatible with the formation mechanism that a hydride attack from the less hindered outer side of the ten-membered ring would be preferred.

Hydrolysis (K₂CO₃-aq. MeOH; 93 % yield) of 10 followed by reduction with LiBH₄ gave a hydroxy acid (11), which was easily lactonized to give \underline{Z} during isolation procedure. The treatment of crude 11 with N,N-dimethylformamide dineopentyl acetal in boiling toluene gave a trans-lactone (2) with inversion of the chiral center at the hydroxy-carrying carbon atom¹⁴) in 15 % yield from 10.¹⁵ (\underline{Z} : oil; $[\alpha]_D^{19}$ +61° (EtOH); IR (neat) 1770 cm⁻¹; NMR (CDCl₃) δ 1.59 (3H, s), 1.75 (3H, br. signal), 3.37 (3H, s, -OCH₂OCH₃), 4.20 (1H, dd, J=6 and J=9.5 Hz, C(3 β)-H), 4.48 and 4.57 (each 1H; A and B parts of an ABq, J=7 Hz, -OCH₂OCH₃), 4.55 (1H, br. signal, C(1)-H), 5.12 (2H, br. singlet, C(6 β)-H and C(5)-H); M⁺ at m/e 280.1672 (C₁₆H₂₄O₄)]. The NMR spectral data are compatible with the structure 2 when compared with those of a natural heliangolide, eupasimplicin A.¹⁶

The synthesis of 2 and 3 constitutes the first example of the synthesis of $(1(10)\underline{E},4\underline{Z})-1(10),4$ -cyclodecadienes with a γ -lactone fused to the C(6)-C(7) position.

Chemistry Letters, 1982

The authors wish to thank Professor Tatsuo Miyazawa and Dr. Tatsushi Murae, Faculty of Science, the University of Tokyo, for the measurement of 1 H NMR spectra at 270 MHz including NOE's and Dr. Hajime Nagano, Ochanomizu University, for valuable discussions.

	Table	1 ^{a)}	NOE	data	for	9	
--	-------	-----------------	-----	------	-----	---	--

`

irradiated proton(s)	observed proton	NOE ^b)	
С(10)-СН ₃ (δ 1.56, 3H, s)	C(1)-H (δ 5.03, 1H, t, $J_{1,2\alpha}=J_{1,2\beta}=8$ Hz)	<2%	
	C(2 β)-H (δ 2.51, 1H, ddd, J _{1,2β} =8 Hz, J _{2α,2β} =13 Hz, J _{2β,3β=5.5 Hz)}	7 %	
	C(3 β)-H (δ 4.88, 1H, dd, $J_{2\alpha,3\beta}$ =11 Hz, $J_{2\beta,3\beta}$ =5.5 Hz)	10 %	
C(4)-CH ₃ (8 1.79, 3H, s)	С(1)-Н	15 %	
	C(5)-H (8 6.07, 1H, s)	20 %	
С(2β)-Н	С(3β)-Н	12 %	

a) Assignment of signals was determined by decoupling experiments.

b) Accuracies are about ± 2 %.

References

- <u>E.g.</u>: T. K. Devon and A. I. Scott, "Handbook of Naturally Occurring Compounds", Academic Press, New York (1972), Vol. II, pp. 79-84; E. Rodriguez, G. H. N. Towers, and J. C. Mitchell, Phytochemistry, <u>15</u>, 1573 (1976); S. M. Kupchan, Pure Appl. Chem., <u>21</u>, 227 (1970), and references cited therein.
- D. Rogers, G. P. Moss, and S. Neidle, J. Chem. Soc., Chem. Commun., <u>1972</u>, 142; <u>cf</u>. S. Neidle and D. Rogers, <u>ibid</u>., <u>1972</u>, 140; S. M. Kupchan, J. E. Kelsey, and G. A. Sim, Tetrahedron Lett., <u>1967</u>, 2863.
- 3) E. J. Corey and A. G. Hortmann, J. Am. Chem. Soc., <u>87</u>, 5736 (1965); M. Watanabe and A. Yoshikoshi, J. Chem. Soc., Chem. Commun., <u>1972</u>, 698; Y. Fujimoto, T. Shimizu, and T. Tatsuno, Tetrahedron Lett., <u>1976</u>, 2041; Y. Fujimoto, T. Shimizu, M. Ohmori, and T. Tatsuno, Chem. Pharm. Bull., <u>27</u>, 923 (1979); P. A. Grieco and M. Nishizawa, J. Org. Chem., <u>42</u>, 1717 (1977); P. A. Wender and J. C. Lechleiter, J. Am. Chem. Soc., <u>102</u>, 6340 (1980); <u>cf</u>. A. Gopalan and P. Magnus, <u>ibid.</u>, <u>102</u>, 1756 (1980).
- 4) T. Takahashi, H. Eto, T. Ichimura, and T. Murae, Chem. Lett., 1978, 1345.
- 5) W. C. Still, J. Am. Chem. Soc., <u>101</u>, 2493 (1979); <u>idem</u>, <u>ibid</u>., <u>99</u>, 4186 (1977); <u>cf</u>. D. A. Evans and A. M. Golob, <u>ibid</u>., <u>97</u>, 4765 (1975).
- 6) G. L. Lange, M. -A. Huggins, and E. Neidert, Tetrahedron Lett., <u>1976</u>, 4409;
 J. R. Williams and J. F. Callahan, J. Org. Chem., <u>45</u>, 4475 and 4479 (1980).
- 7) M. Kodama, Y. Matsuki, and S. Itō, Tetrahedron Lett., <u>1976</u>, 1121.
- 8) <u>E.g.</u>: P. A. Grieco, Synthesis, <u>1975</u>, 67; R. B. Gammill, C. A. Wilson, and T. A. Bryson, Synth. Commun., <u>5</u>, 245 (1975), and references cited therein.
- 9) R. Grandi, U. M. Pagnoni, R. Trave, and L. Garanti, Tetrahedron, <u>30</u>, 4037 (1974); L. Garver, P. van Eikeren, and J. E. Byrd, J. Org. Chem., <u>41</u>, 2773 (1976), and references cited therein.
- 10) No diastereomer of <u>6</u> nor <u>7</u> was obtained. The stereochemistry at the vinyland hydroxy-carrying carbon atom for <u>6</u> and <u>7</u> was deduced from their formation mechanism. Other products showing small Rf values on TLC were also formed. However, their structures remained undetermined.
- 11) Determined at 90 MHz unless otherwise cited.
- 12) The result of elementary analysis was fully compatible with the structure.
- 13) Other products suggested to be a keto alcohol and a diol were also formed.
- 14) H. Vorbrüggen and K. Krolikiewicz, Angew. Chem., Int. Ed. Engl., <u>16</u>, 876 (1977); <u>cf</u>. H. Brechbühler, H. Büchi, E. Hatz, J. Schreiber, and A. Eschenmoser, Angew. Chem., <u>75</u>, 296 (1963); <u>idem</u>, Angew. Chem., Int. Ed. Engl., <u>2</u>, 212 (1963); <u>idem</u>, Helv. Chim. Acta, <u>48</u>, 1746 (1965).
- 15) Other products showing small Rf values on TLC were also formed.
- 16) T. Takahashi, A. Utagawa, and T. Murae, the 23rd Symposium on the Chemistry of Perfumes, Terpenes, and Essential Oils, Tottori, October, 1979 (Proceedings, p. 276); Chem. Abstr., <u>93</u>, 114734t (1980); eupasimplicin A, 3α-acetoxy-8β [(2<u>E</u>)-2-hydroxymethyl-2-butenoyloxy]-heliangolide, was isolated from <u>Eupatorium</u> chinense simpliciforium.