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Abstract—The design and evaluation of a new genetic selection system for evolving catalytic antibodies with aldolase activity are
described. Through a series of model selections, we have identified selection conditions where expression of a catalytically active
antibody confers a growth advantage to Escherichia coli. In addition, we provide evidence that the growth advantage is a direct
result of catalytic activity. © 2002 Published by Elsevier Science Ltd.

Genetic selections have proven extremely valuable for
evolving enzymes with improved catalytic activity,
improved stability, and altered specificity.! Conse-
quently, there has been considerable interest in devel-
oping genetic seclections for enhancing the catalytic
activity of antibodies.? For a genetic selection to work,
one must identify a set of conditions whereby expression
of an active enzyme/antibody confers a growth advan-
tage. The high catalytic activity of enzymes makes it
relatively easy to identify such conditions whereas the
catalytic activity of antibodies is typically lower than
that of enzymes, making it more difficult to develop
schemes in which a catalytically active antibody affords
a growth advantage. Moreover, other factors that affect
the growth rates of bacteria such as differences in toxi-
city and expression levels of antibodies can further
complicate the development of genetic selections. Here
we report a general selection strategy in which expres-
sion of a catalytically active antibody confers a growth
advantage to Escherichia coli. In addition, we provide
evidence that the observed growth advantage is a direct
result of catalytic activity.

A first consideration for the development of a genetic
selection is the choice of the host auxotroph and com-
plementation strategy. A good selection host should be
easy to manipulate, capable of producing antibodies in
active form, and suitable for selections with a range of
substrates. Based on these requirements, we decided to
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use an E. coli strain (HDU78) that cannot biosynthesize
chorismate due to a defective chorismate synthase gene,
aroC.? Chorismate is a key intermediate in the shiki-
mate pathway and is required for the biosynthesis of the
essential metabolites tyrosine, phenylalanine, trypto-
phan, para-aminobenzoic acid (PABA), para-hydroxy-
benzoic acid (PHB), and isochorismate.* In principle,
any one of these nutrients could be used as a basis for
complementation as long as the remaining nutrients are
supplemented in the media making HDU78 a highly
flexible host. Importantly, we have shown that HDU78
is capable of expressing Fabs in active form. Yields of
Fab are in the range of 100 to 200 ug/L and are com-
parable with good E. coli expression strains such as
Topl0 cells.>

The next step is the choice of selection marker and
reaction system. Complementation based on PABA
should be quite general since a range of chemical reac-
tions (e.g., hydrolytic, elimination, redox reactions, etc.)
can be coupled to the release of this nutrient. In addi-
tion, complementation based on PABA should be sen-
sitive enough to translate even modest catalytic activity
into a measurable growth advantage since very low
concentrations of PABA (1-10nM) are required to sus-
tain growth of E. coli. To test the utility of PABA in
antibody-catalyzed complementation reactions, we
investigated the aldolase antibody 38C2 developed by
the Lerner and Barbas groups.® The antibody has broad
substrate specificity and, in particular, has been shown
to catalyze the activation of prodrugs such as 1 via a
retro-aldol retro-Michael reaction sequence (see Fig.
1).7 We anticipated that this system could be easily
modified for the release of PABA.
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Figure 1. Retro-aldol retro-Michael activation of prodrug 1 and sub-
strate 2.
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Figure 2. Synthesis of substrate 2. Reaction conditions: (a) ethyl iso-
cyanatobenzene, toluene, 105°C (99%); (b) NaOEt, EtOH/H,O (2:1),
55°C (75%); (c) OsO4, NMO, CH,Cl,, 1 h then Pb(OAc)4 (63%).

A genetic selection involving 38C2-catalyzed release of
PABA requires that substrate 2 is not converted to
PABA by any endogenous enzymes and the rate of the
uncatalyzed reaction in culture media is sufficiently low
to provide a selectable window. Substrate 2 was syn-
thesized as shown in Figure 2 and then evaluated by
comparing the growth rates of HDU78 in the presence
of various concentrations of either PABA or 2.°
Approximately 1 nM PABA is required to detect growth
while 10nM PABA is required to produce normal
growth of HDU78. For comparison, 1 uM 2 is required
to detect growth and >20uM 2 is required for normal
growth. These results demonstrate that the uncatalyzed
rate of conversion of 2 to PABA is sufficiently low to
permit selections using this substrate. Finally, com-
pound 2 was found to be an acceptable substrate for
38C2 with similar kinetic parameters as other retro-
aldol-retro-Michael substrates (key=0.0069 min~! at
37°C, Ky =150 uM).10-11

To determine if expression of an active antibody confers
a growth advantage and identify the optimal growth
conditions, a series of model selections were carried out
with bacteria expressing 38C2. Bacteria expressing
38KM, a catalytically inactive mutant of 38C2, were
used as a control.'>!3 By comparing 38C2 with a closely
related mutant, any differences in growth rates due to
differences in toxicity, expression levels, etc. should be
minimized. Bacteria expressing 38C2 and bacteria
expressing 38KM were mixed and small aliquots of this
stock mix were used to inoculate selection cultures. The
cultures were then grown under various conditions (i.e.,
1-20 uM substrate 2, 0-0.05% arabinose, pH 7.0-8.0,
30-37°C) to an ODgoo of 1.0, diluted, and then re-
grown over approximately 30 generations.'* The starting
mix and cultures were plated out on LB/amp/glucose
plates and colony PCR reactions were performed with
primers specific for either 38C2 or 38KM to determine
the identities of individual colonies. The ratio of 38C2

Table 1. Results from the model selections

Entry Substrate Temp. Arabinose® pHP Enrichment
(M) ({®) (%) for 38C2

1 2 (20) 37 0.05 7.0 9

2 2 (10) 37 0.05 7.0 11

3 2(5) 37 0.05 7.0 21

4 2(1) 37 0.05 7.0 None

5 2(5) 30 0.05 7.0 None

6 2 (5) 37 None 7.0 None

7 5 (10) 37 0.05 7.0 None

8 5 (10) 37 None 7.0 None

aSelections with 0.05% and 0.005% arabinose produced similar
results.

bSelections were also conducted at pH 7.5 and 8.0, but pH 7.0 was
found to be optimal.

containing colonies to 38KM containing colonies for
each of the cultures was then compared to the ratio for
the starting mix.

The results from the model selection are summarized in
Table 1. Using the best growth conditions (see Table 1,
entry 3), we obtained a 21-fold enrichment of bacteria
expressing 38C2 demonstrating that expression of an
active antibody can confer a growth advantage using
our selection system. An enrichment of 21 after growth
over 30 generations indicates that bacteria expressing
38C2 have an average growth rate that is ~10% faster
than bacteria expressing 38KM. The growth advantage
is noteworthy given the modest activity of 38C2 for
substrate 2 and the concentration of 2 in the selection. It
is important to note that a growth advantage of 10% or
more should be sufficient for selections on antibody
libraries as long as multiple rounds of selection are
conducted. For example, a 10% growth advantage over
150 generations would produce an enrichment of ~ 10°.

Although enrichment for bacteria expressing an active
antibody over bacteria expressing an inactive antibody
was observed, this result alone did not rule out the pos-
sibility that the difference in growth rates was a result of
subtle differences in toxicity, expression levels, etc.,
between the antibodies. However, no enrichment could
be detected in the absence of Fab expression (i.e., no
induction with arabinose — see Table 1, entry 6), and no
enrichment could be detected when cells were grown in
the presence of 5 (an isostere of 2 that is not a substrate
for 38C2, see entry 7). These additional experiments
provide evidence that the growth advantage is a direct
result of catalytic activity.

In summary, we have developed a new genetic selection
system for catalytic antibodies based on complementa-
tion of an E. coli auxotroph lacking chorismate synthase
activity. Through a series of model selections, we have
successfully identified selection conditions where
expression of a catalytically active antibody confers a
growth advantage. In addition, we provide evidence
that the growth advantage is a direct result of catalytic
activity. It is important to note that the selection system
is sensitive enough to translate even modest catalytic
activity into a measurable growth advantage. By gen-
erating large combinatorial libraries of antibodies and
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conducting iterative rounds of selection and DNA
shuffling, we hope to identify highly active aldolase
antibodies.
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lys, 0.2 mM met, 0.4 mM phe, 0.4 mM pro, 10 mM ser, 0.4 mM
thr, 0.1 mM trp, 0.2mM tyr, 0.6 mM val, 0.0l mM thiamine,
0.0l mM pantothenate, 0.0l mM para-hydroxybenzoic acid,
0.0lmM dihydroxybenzoic acid, 0.4mM adenine, 1 mM
MgSOy, 0.1 mM CaCl,, and 0.0l mM FeSOy). This stock mix
was then diluted by a factor of 50 and 50 puL of the diluted
stock mix was used to inoculate each 5mL selection culture
(e.g., supplemented minimal media containing 0.05% arabi-
nose, 70ug/mL ampicillin, pH 7.0, and 5uM substrate 2).
Selection cultures were grown in a shaker (250 rpm, 30°C or

37°C) to an ODggo=1.0, diluted into fresh selection media
and then re-grown to an ODggo= 1.0 etc. over approximately
30 doublings. The starting stock mix and the final selection
cultures were plated on LB/Amp/Glucose plates and single
colonies were analyzed by two different colony PCR reactions:
one containing primers jj24 (5-AATTTTGTTTAACTTTAA-
GAAGGAG-3) and jg5 (5-GTAAGAAAATGAGTAAAA-
ATAGGTTT-3/, specific for 38C2) and another containing
primers jj24 and jg6 (5-GTAAGAAAATGAGTAAAAA-
TAGGTCA-3, specific for 38KM).



