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Abstract: The first total synthesis of (+)-11-hydroxyerythratidine
is described. The strategy is featured by a highly stereoselective
construction of the C(5) spiro center via the Lewis acid promoted
cyclization of ortho-quinone acetal, derived from di-ortho-substi-
tuted biphenyl 9 with a chiral center at the side chain.

Key words: asymmetric synthesis, biphenyls, erythrinan alkaloids,
natural product, spirocenter chirality

Erythrinan alkaloids constitute a class of natural products,
sharing indolo[7a,1-a]isoquinoline skeleton (Figure 1).1,2

These compounds have been popular synthetic targets by
the challenges posed by the unique tetracyclic amino
structures, and also by the physiological significance, ex-
hibiting curare-like, sedative, hypotensive, and central
nerve system depressant activities.1,3,4 Indeed, many syn-
thetic approaches have been developed, though the enan-
tioselective ones are still limited.4

Figure 1 Natural erythrinan alkaloids

We recently reported an enantioselective approach to
these alkaloids via the chiral transmission, and its viability
was demonstrated by the total synthesis of (+)-O-methyl-
erysodienone (1, Scheme 1).5 By installing a TMS group
for retarding the atropisomerization (enantiomerization),

the axial chirality of ortho-‘tri’-substituted biphenyl I is
nicely transmitted into the chirality of spirocycle III via
the Lewis acid promoted cyclization of ortho-quinone
acetal II.

In further study, we focused on a class of minor erythrinan
alkaloids with additional oxy function at C(11), such as 3
and 4. By an adrenaline-like substructure at the N(9)–
C(17) framework, intriguing biological profiles may be
expectable. However, the synthesis of such C(11)-oxy
compounds has been virtually unexplored; only one race-
mic synthesis has been recorded to date.6,7

Scheme 1 Stereospecific spirocyclization strategy

We became interested, however, in the possibility that the
chiral center at the side chain in biphenyl IV may direct
the mode of cyclization of ortho-quinone acetal V, allow-
ing the stereocontrolled formation of the C(5) spiro center
(Scheme 2). The key to such a plan was the behavior of
two ortho-quinone acetal rotamers Va and Vb; given they
are rapidly interconverting because of a ortho-‘di’-substi-
tuted biphenyl-like structure, an optimistic assumption
was either the cyclization rate or the equilibrium prefer-
ence of Va and Vb was somehow different enough, en-
abling the diastereoselective cyclization to occur.

In this communication, we describe the realization of this
scenario, albeit not straightforward, and application to the
first total synthesis of (+)-11-hydroxyerythratidine (3).8
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As the enantiomerically pure spirocyclization precursor,
ortho-quinone acetal 10 was prepared starting from aryl
iodide 5 {[a]D

26 –11 (c 0.92, CHCl3), >99.5% ee},9,10

which was coupled with boronic ester 611 by Suzuki–
Miyaura reaction12 (Scheme 3). The reaction with 10
mol% of PdCl2(dppf)·CH2Cl2 (K2CO3, DME–H2O, 60 °C)
cleanly afforded biphenyl aldehyde 7 in 98% yield. The
Wittig methylenation of the formyl group (Ph3P=CH2,
THF), and hydroboration of the resulting olefin
[(Me2CHCHMe)2BH, THF, 0 °C] followed by oxidative
workup (H2O2, aq NaOH) afforded alcohol 8. After pro-
tection of the primary alcohol by a benzoyl (BzCl,
DMAP, pyridine, CH2Cl2), one of the Boc groups on the
nitrogen was removed by treatment with CeCl3·7H2O and
NaI in MeCN (23–25 °C).13 Final removal of the benzyl
group (H2, 10% Pd/C, MeOH) and selective oxidation of
one of the aromatic rings by PhI(OAc)2 (MeOH, 0 °C)
gave the desired ortho-quinone acetal 10 in high yield.14

At the stage that ortho-quinone acetal 10 was obtained,
NMR analyses (CDCl3 and C6D5CD3) showed us a pessi-
mistic data;15 two rotamers are present in roughly 1:1 ra-
tio, which are interconverting only slowly. Variable-
temperature NMR showed that the rotamer peaks did not
coalesce even at 70 °C (C6D5CD3), and further warming
led to decomposition. The estimated rotational barrier was
>18 kcal/mol, albeit not that high to allow rotamer separa-
tion. Nevertheless, we proceeded to examine the spiro-
cyclization with a hope that the relevant bond rotation
would become dynamic at the key cyclization stage, be-
cause the oxophenonium species 11 would help by the en-
forced planarity from contribution of the extended
quinone-type resonances as 12a and 12b (Scheme 4). 

Scheme 2 Diastereoselective spirocyclization strategy
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Scheme 4

Based on our previous experiences in related cycliza-
tions,5 we first examined BF3·OEt2, TMSOTf and some
other metal triflates (CH2Cl2, MS4A, –20 °C to 25 °C).
Selected results are shown in Table 1. The reaction pro-
ceeded reasonably well with BF3·OEt2, TMSOTf,
Yb(OTf)3, or Cu(OTf)2, though the stereoselectivity was
not spectacular so long as CH2Cl2 was used as the solvent
(entries 1–4). However, we found a remarkable solvent ef-
fect; Cu(OTf)2 in toluene specifically led to the excellent
result — the desired spirocycle 13 was obtained in 96%
yield in favor of 13a in a 14:1 ratio (entry 8).16

The stereostructure of the major isomer 13a was deter-
mined by X-ray crystallography after derivatization to
diol 14 [(1) n-Bu4NF, THF, –78 °C to 0 °C; (2) K2CO3,
MeOH, –20 °C to r.t.],17 thereby showing the S-configura-
tion of the spiro stereogenic center, needed for the erythri-
nan alkaloids (Scheme 5).1

The predominance of 13a could be explained as follows
(Scheme 6): If one assume the pseudo-equatorial place-
ment of the bulky (triisopropylsilyl)oxy group in the tran-
sition state with half-chair-like conformation, two
possible transition structures are TS-a (leading to 13a)
and TS-b (leading to 13b). Among these, TS-b is less fa-
vored by steric repulsion as shown, letting aside the spe-
cific role of Cu(OTf)2 and the solvent effect.

Having secured the key spiro center, our focus was shifted
to the synthesis of 11-hydroxyerythratidine (3),8 one of
the C(11)-oxygenated erythrinan alkaloids.
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Table 1 Spirocyclization of ortho-Quinone Acetal 10

Entry Lewis acid (equiv) Solvent Yield (%) 13a/13b

1 BF3·OEt2 0.5 CH2Cl2 76 1:1

2 TMSOTf 0.3 CH2Cl2 55 1:1.2

3 Yb(OTf)3 0.3 CH2Cl2 75 1.3:1

4 Cu(OTf)2 0.3 CH2Cl2 55 2.4:1

5 BF3·OEt2 0.5 toluene 65 1:1.5

6 TMSOTf 0.3 toluene 55 1:1.2

7 Yb(OTf)3 0.3 toluene 35 14:1

8 Cu(OTf)2 0.4 toluene 95 14:1

Scheme 5 Conversion of spirocycle 13a into diol 14 and the X-ray crystal structure of 14. Reagents and conditions: i) THF, –78 °C to 0 °C,
3 h (quant.); ii) –20 °C to r.t., 6 h (93%).
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For the B-ring cyclization, the primary alcohol in diol 14
{[a]D

28 –1.5 (c 1.2, CHCl3), >99.5% ee} was selectively
tosylated (TsCl, pyridine, CH2Cl2, 0 °C) and the remain-
ing alcohol was oxidized [o-iodoxybenzoic acid (IBX),
DMSO].18,19 Upon removal of the Boc group via forma-
tion of the trimethylsilyl carbamate (TMSOTf, CH2Cl2, 0
°C)20 and subsequent hydrolysis (MeOH, pH 7 phosphate
buffer), the desired B-ring cyclization spontaneously pro-
ceeded to give tetracycle 15 (Scheme 7), with a complete
erythrinan skeleton as well as the functionalities ready for
further transformations.

Selective hydrogenation of the C(3)–C(4) double bond
necessitated considerable trials, but was finally effected
by using 5% Pd on alumina as the catalyst [H2 (1 atm),
H2O–EtOH (1:5)]. Simultaneously the C(2) carbonyl un-
derwent reduction, presumably via hydrogenation of the
enol tautomer from the less hindered a-face to give 2,3-
cis-alcohol 16 exclusively.21,22 Alcohol 16, thus obtained,
was protected by a tert-butyldimethylsilyl (TBDMS)
group (TBDMSCl, imidazole, DMF, 0 °C).

Reduction of the C(11) carbonyl in 17 with Li(s-Bu)3BH
(THF, –78 °C to 0 °C) gave the corresponding 11b-alco-
hol 18 exclusively,23,24 which was then converted into
ketone 19 in three steps including acetylation of the C(11)
hydroxy (Ac2O, DMAP, pyridine, 0 °C), removal of the
TBDMS group (n-Bu4NF, THF), and oxidation of the re-
sulting C(2) hydroxy group by IBX (DMSO).

Upon treatment with K2CO3 in MeOH, ketone 19 cleanly
underwent epimerization at C(3) and deacetylation to give
alcohol 20 in 91% yield, whose stereostructure was unam-
biguously determined by X-ray crystal structure analysis
(Figure 2).17,22

Scheme 6 Proposed transition-state structures for the spirocycliza-
tion [the bold lines in TS-a and TS-b represent the side view of the
aromatic ring (the ring D)]

NH

H

RO

H
H

Boc

O

OMe

RO

H

+
NH

H

RO

H
H

Boc

O
+

RO

OMe
H

OR

NHBoc

OR
MeO

OMe

+

11a 11b

TS-a TS-b

O

13a 13b

7

10
7

10

NHBoc

OR
MeO

OMe

+

O

RO

OMe
MeO

Scheme 7 Synthesis of (+)-11-hydroxyerythratidine (3). Reagents
and conditions: i) pyridine, 0 °C, 1.5 h (74%); ii) DMSO, r.t., 2.5 h
(93%); iii) CH2Cl2, 0 °C, 3 h (96%); iv) H2O–EtOH (1:5), r.t., 4.5 h;
v) DMF, 0 °C, 1 h (58%, 2 steps); vi) THF, –78 °C to 0 °C, 2 h (74%);
vii) DMAP, pyridine, 0 °C, 1 h (93%); viii) THF, r.t., 2 d (92%); ix)
DMSO, r.t., 1 h (95%); x) r.t., 1.5 h (91%); xi) THF, –78 °C to 0 °C,
1 h (81%).

N-Boc

MeO

MeO

O

MeO

OH

OH

i) TsCl, DMAP

N

MeO

MeO

O

MeO

O

66%

N

MeO

MeO

OR

MeO

O

iv) H2
     Pd/Al2O3

v) tBuMe2SiCl
     imidazole

58%

iii) Me3SiOTf
    then
    MeOH, buffer

N

MeO

MeO

OTBDMS

MeO

OH

N

MeO

MeO

O

MeO

OAc

11-hydroxyerythratidine (3)

81%

20

11 11

74%

viii) nBu4NF

14 15

16: R = H
17: R = TBDMS

vi) Li(s-Bu)3BH

vii) Ac2O

ix) IBX

x) K2CO3
    MeOH

91%

N

MeO

MeO

O

MeO

OH

11

N

MeO

MeO

OH

MeO

OH

11

xi) Li(s-Bu)3BH

81%

18 19

ii) IBX

2

3

3

Figure 2 The X-ray crystal structure of 20 and the observed NOE



LETTER Total Synthesis of (+)-11-Hydroxyerythratidine 1045

Synlett 2009, No. 7, 1041–1046 © Thieme Stuttgart · New York

Finally, reduction of the C(2) carbonyl with Li(s-Bu)3BH
(THF, –78 °C to 0 °C) proceeded exclusively in an a-
selective manner to complete the first synthesis of 11-
hydroxyerythratidine (3) {[a]D

24 +203 (c 1.1, CHCl3),
>99.5% ee}.25,26

In summary, we have accomplished the first total synthe-
sis of 11-hydroxyerythratidine (3). The key step was the
Lewis acid promoted cyclization of ortho-quinone acetal
10 to effect the construction of the chiral spiro center at
C(5) in highly diastereoselective manner. This synthesis
demonstrates a new application of biphenyl derivative as
a scaffold for stereocontrolled and convenient assembly
of polycyclic structures in natural product synthesis. Fur-
ther application of this methodology is now under investi-
gation in our laboratory.

Supporting Information for this article is available online at
http://www.thieme-connect.com/ejournals/toc/synlett.
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24 +203 (c 1.1, 
CHCl3). 

1H NMR (400 MHz, CDCl3): d = 1.82 (dd, 1 H, 
J1 = 12.5 Hz, J2 = 11.6 Hz), 1.93 (dd, 1 H, J1 = 11.6 Hz, 
J2 = 4.1 Hz), 2.00–2.25 (br, 2 H), 2.20–2.30 (m, 1 H), 2.40–
2.60 (m, 1 H), 3.02 (ddd, 1 H, J1 = J2 = 9.3 Hz, J3 = 6.8 Hz), 
3.14 (ddd, 1 H, J1 = J2 = 9.3 Hz, J3 = 3.0 Hz), 3.29 (dd, 1 H, 
J1 = 15.4 Hz, J2 = 1.2 Hz), 3.35 (s, 3 H), 3.62 (ddd, 1 H, 
J1 = 12.5 Hz, J2 = J3 = 4.1 Hz), 3.73 (dd, 1 H, J1 = 15.4 Hz, 
J2 = 5.7 Hz), 3.83 (s, 3 H), 3.91 (s, 3 H), 4.44–4.54 (br, 1 H), 
4.56–4.66 (br, 1 H), 5.86–5.94 (br, 1 H), 6.50 (s, 1 H), 7.06 
(s, 1 H). 13C NMR (100 MHz, CDCl3): d = 27.5, 35.5, 48.8, 
50.5, 55.9, 56.1, 56.5, 62.9, 63.3, 64.7, 76.2, 109.8, 111.8, 
120.8, 128.2, 128.3, 145.6, 148.0, 148.7. IR (ATR): 3393, 
2926, 2866, 2852, 1509, 1462, 1255, 1101, 1057, 981, 873, 
778, 750 cm–1. Anal. Calcd for C19H25NO5: C, 65.69; H, 
7.25; N, 4.03. Found: C, 65.48; H, 7.55; N, 3.83. HPLC 
[CHIRALCEL® OD-H (Daicel), Ø 0.46 × 25 cm (2×), 
hexane–2-PrOH (4:1), 1.0 mL/min, 30 °C, 254 nm] tR = 12.6 
min for 3 (15.4 min for ent-3). NOE was observed between 
the hydrogens at C(2) and C(14) (Figure 4).
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