Tetrahedron Letters 55 (2014) 3149-3152

Contents lists available at ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

On the scope of the Pt-catalyzed Srebnik diborylation of diazoalkanes. An efficient approach to chiral tertiary boronic esters and alcohols via B-stabilized carbanions

Andrew J. Wommack^{a,†}, Jason S. Kingsbury^{a,b,*}

^a Department of Chemistry, Eugene F. Merkert Chemistry Center, Boston College, Chestnut Hill, MA 02467, United States ^b Department of Chemistry, Ahmanson Science Center, California Lutheran University, 60 West Olsen Road, Thousand Oaks, CA 91360, United States

ABSTRACT

ARTICLE INFO

Article history: Received 28 February 2014 Revised 31 March 2014 Accepted 31 March 2014 Available online 8 April 2014

Keywords: Diazoalkanes 1,1-Diborylalkanes Deboronation B-stabilized carbanions

The C-B bond holds a special status in organic synthesis, unrivaled as a handle for further elaboration through oxidative,¹ cross-coupling,² or homologation³ strategies. The latter of these invariably requires introduction of a carbenoid (donor-acceptor) reagent for complexation with the electrophilic boron atom prior to 1,2-rearrangement. Along with the highly reactive 1-lithio-1halogenoalkanes popularized by Matteson,³ sulfur ylides⁴ and metalated α -chloro sulfoxides^{4b} can be applied to stereoretentive carbofunctionalization of alkylborons. Hooz, however, was the pioneer of C–B homologations with diazo compounds.⁵ With its reliance on stabilized diazoester and diazoketone nucleophiles, a Hooz reaction furnishes α -boryl carbonyls that undergo further Aldol, Mannich, or alkylation events, but the process is limited to trialkylboranes because of their greater electrophilicity relative to boronic acids or esters (Scheme 1a). Recent work⁶ has broadened the reactivity to include reaction of trimethylsilyldiazomethane and α -substituted diazoesters with catecholboranes and boroxines (respectively, Scheme 1b and c), findings that hint at generality for a range of diazoalkanes and boryl acceptors. In our own laboratory, some experience has been gained in the synthesis⁷ and solutionphase handling⁸ of diverse non-carbonyl-stabilized diazoalkanes, and catalytic methods for ketone, aldehyde, and formaldehyde

E-mail address: jkingsbu@callutheran.edu (J.S. Kingsbury).

of a Lewis base and genesis of a highly reactive B-stabilized carbanion.

Conditions milder than those previously reported are shown to be generally applicable to the Pt-cata-

lyzed insertion of non-carbonyl-stabilized diazoalkanes into B₂pin₂. Selective transformation of one

(pinacolato)boryl unit in the products is enabled by rapid, low-temperature deboronation in the presence

Scheme 1. Varied approaches to C—B and B—B homologation with donor–acceptor diazo compounds by complexation and 1,2-migration.

homologation have been developed.⁹ To further expand on the synthetic utility of these unique carbon nucleophiles, we began to explore various B-based electrophiles in formal carbon insertion.

© 2014 Published by Elsevier Ltd.

^{*} Corresponding author. Tel.: +1 (805) 493 3026.

[†] Current address: Department of Chemistry, High Point University, 833 Montlieu Avenue, High Point, NC 27262, United States.

Of the available boron reagents to consider for reaction development, diboronic esters are among the most intriguing. Formal diazoalkyl insertion into a B-B bond gives mono- and di-substituted 1,1-diborylalkanes^{10,11}-molecules that have captured the interest of multiple research groups.^{12,13} The common mode of preparing these building blocks is a double hydroboration¹⁴ of terminal alkynes, for which 9-BBN^{14c,d} is the preferred reagent in the absence of Rh or Cu(I) catalysis.¹⁵ However, dihydroboration is not general; the use of internal alkyne substrates leads to regioisomeric mixtures, and this has created a gap in reaction scope for doubly carbon-substituted geminal diborons. Very recently, Wang and coworkers^{11a} reported a simple and convenient entry to 1,1bis(pinacolato)diborylalkanes by merging Bamford-Stevens N-tosylhydrazone cleavage with high-temperature homologation of B₂pin₂ (Scheme 1d). A range of base-stable BCB products were prepared, but a limitation was identified in the case of internal. ketone-derived diazoalkanes: steric hindrance and low solubility of the intermediate tosylhydrazone sodium salts led to diminished yields. Therefore, the Pt(0)-catalyzed insertion of diazoalkanes into B₂pin₂, a novel transformation first discovered by Srebnik¹⁰ with diazomethane, remains a more efficient approach to fully C-substituted, sp³ hybridized 1,1-diborons. Herein, we disclose the results of our own independent study on the scope of the catalytic Srebnik¹⁰ diborylation of 'non-stabilized' diazo compounds. Specifically, we have lowered the temperature needed (80 °C) to observe facile carbon insertion with B₂pin₂ and further widened preparative access to the more challenging disubstituted adducts. Encouraged by the promise of gem-diborylalkanes as precursors to valuable quaternary carbon atoms, we further report that the products undergo a clean, high-yield conversion to chiral tertiary alkyl (pinacolato)borons by Lewis base-induced deboronation and S_N2 alkylation of the resulting B-stabilized carbanion (Scheme 2).

We began our studies by screening conditions reported for the syntheses of **1** and **6** (Table 1, entries 1 and 6), two of the four compounds that had been prepared earlier by Srebnik in 2002.^{10b} Ni(PCy₃)₂, Pd(PPh₃)₄, and Pd₂dba₃ all failed to provide any of the desired insertion product, but smooth conversion was observed with Pt(PPh₃)₄. At a catalyst loading of 3 mol %, transformation of pure methyl phenyl diazomethane¹⁶ to diboronic ester **1** was rapid enough to permit a lower reaction temperature (110 \rightarrow 80 °C) and a shorter reaction time (6 h, >98% conversion of B₂pin₂). Reaction progress can be monitored by visual inspection due to the brightly colored appearance of the diazoalkane, but regardless a 6 h duration was applied to a selection of aryl alkyl diazomethanes in warm toluene.

The experimental results are compiled in Table 1. The method tolerates both electron-donating and -withdrawing substituents at the *para* position (entries 2–4, 7). Also of note is chemoselective reaction with the diboron reagent in the case of *p*-chlorophenyl methyl diazomethane (entry 4). The Miyaura borylation¹⁷ product is not observed, an expected result given a slow rate of oxidative addition of Pt(0) into the aryl—Cl bond. Cyclic diazo compounds can be employed to prepare diboryl tetrahydronaphthalenes and indanes (entries 6 and 7). Importantly, reaction efficiency maintains in the presence of increased steric congestion, as demonstrated by the syntheses of benzylic diborylalkanes **5** and **8** in >70% yield (entries 5 and 8). Additional reactions of internal and terminal alkyl diazoalkanes¹⁶ (entries 9–12) attest to the height-

Scheme 2. A dual investigation on the scope of Pt-catalyzed Srebnik diazoalkane diborylation and selective transformation of one B group.

Table 1

Doubly C-substituted 1,1-diborons by diazoalkyl insertion^a

 $[^]a$ Conditions: 1.1 equiv diazoalkane, 1 equiv $B_2 pin_2$ and 3 mol % Pt(PPh_3)_4 in dry toluene (0.1 M, 80 $^\circ$ C, 6 h).

^b Purified yields.

^c Run at 40 °C for 6 h.

ened reactivity that is observed in the absence of resonance delocalization. In these cases, complete conversion was achieved in 6 h at just 40 °C. All diboron products proved robust and benchstable, and they were typically isolated as colorless crystalline solids in 60–80% yield by standard flash silica gel chromatography.

At the temperatures reported herein, efficient diborylation is not observed in the absence of Pt(0). This suggests that a Hooz pathway involving diazoalkyl addition to B_2pin_2 and a B—B bond shift (Scheme 1, top) is not a dominant source of products. Two other mechanisms differing only in the site of nucleophilic attack (B vs Pt) are provided in Scheme 3. With di(pinacolato)boryl Pt(II) complex **A** well characterized by the work of Ishiyama et al.,¹⁸ Srebnik¹⁰ postulates that boronate formation and subsequent

Scheme 3. Two possible catalytic cycles for formal carbon insertion.

1,2-migration afford intermediate **B**. Reductive elimination then turns over the catalyst. Alternatively, metalation at platinum(II) could occur after dissociation of a phosphine ligand. Formation of carbene¹⁹ **C**, followed by migratory insertion and reductive elimination, would also complete the catalytic cycle.²⁰

1,1-Diborylalkanes are useful synthons marked by a growing list of strategies for further transformation. Of particular value are those that chemoselectively divert one boryl unit toward C-C bond formation. For monosubstituted derivatives with an α -C—H, deprotonation with LTMP and nucleophilic addition/ elimination with ketones gives alkenyl boronates that are direct precursors to tetrasubstituted olefins through Suzuki-Miyaura cross coupling.²¹ Shibata and coworkers also identified mild conditions in which terminal pinacol 1,1-diboronic esters participate outright as cross coupling nucleophiles.²² In this context, enabling features are an incipient hydroxy boronate that serves to direct transmetalation and stabilization of the resulting arvl Pd-alkvl intermediate by the remaining, proximal boronyl. Hall and coworkers^{15b} achieved similar success with chiral 1,1-diborons prepared by catalytic asymmetric conjugate borylation in which chemoselectivity for arylation or vinylation derives from differentiated boron groups.

Judging that severe steric crowding would pose new challenges for Pd-catalyzed cross coupling, we chose a more classical mode of reaction to initially probe the utility of the guaternary diboron products. As shown in Scheme 4, a Matteson homologation was attempted under the standard conditions for chloromethyl lithium formation in situ, and a basic peroxide workup was performed to oxidize any remaining C-B bonds. Naively, we were surprised to find that none of the homologous quaternary 1,2-diol is formed under these conditions. Rather, a tertiary alcohol incorporating a butyl fragment (13, Scheme 4) is produced cleanly in high yield. It became clear that *n*-butyl bromide, the byproduct of lithiumbromine exchange, had served as electrophile in an unforeseen S_N2 alkylation. Instead of rendering the attached C–B bond more electron-rich toward 1,2-migration, ate complex formation allows for rapid deboronation. The result is a B-stabilized carbanion that clearly represents a competent electrofuge. To test this notion,

Scheme 4. Attempt to produce quaternary diol gives tertiary alcohol.

Scheme 5. 1,1-Diborons are precursors to tertiary boronic esters and alcohols due to the ease with which deboronation/substitution occurs.

the same experiment was repeated, this time with benzyl bromide (1 equiv) added to outcompete the *n*-butyl bromide formed in situ. Homobenzylic tertiary alcohol **16** (see Scheme 5) was recovered in 91% purified yield under the conditions of this experiment.

Survey of the literature reveals a number of examples in which terminal gem-organoborons undergo based-induced deborylation as part of another transformation. 1.1-diborane intermediates give only primary alcohols upon direct oxidation due to the rapid rate of protodeboronation, 14b,23 but the use of H₂O₂ in acidic medium²⁴ furnishes the expected aldehydes in good yield. Treatment with 2 equiv of *n*-BuLi gives dianionic 1-lithio-1-borato alkanes²⁵ that can be quenched with carbon dioxide to yield alkylmalonic acids. Use of only 1 equiv of *n*-BuLi produces 1-lithio boranes which can add to aldehydes and ketones to form alkenes.²⁶ A boron enolate has been prepared from 1,1-diborylhexane by sequential exposure to methyllithium and methyl benzoate.²⁷ Finally, gemdiborylalkanes presenting a leaving group at the 3- or 4-position have given rise to the corresponding cyclopropyl or cyclobutyl boranes by intramolecular cyclization.^{14a,b} Thus, despite useful precedents for forming resonance-delocalized α -boryl anions by metalation/deborylation, B-C-B structures stay underappreciated as precursors to tertiary organoborons by a simple substitution event.²⁸ Moreover, to our knowledge, we are the first to conduct such a sequence on an internal, fully substituted diboronic ester.

Additional experiments that underscore the remarkable facility with which quaternary *gem*-diborons experience net substitution

^a Conditions stated; yields represent major isomer. *E*/*Z* ratios by ¹H NMR.

upon metalation are illustrated in Scheme 5. In these cases, the acetophenone-derived product 1 was treated with a commercial solution of methyllithium (1 equiv, THF, -78 °C) followed by an alkyl bromide with warming. Chiral tertiary (pinacolato)borons 14 and 15, derived from alkylation with ethyl and allyl bromide, are isolated in 90–92% yields. If desired, the sequence can also be extended to include oxidation of the second C—B bond. Boronate formation, as before, followed by reaction with *n*-butyl, benzyl, or allyl bromide and sodium hydroxide/hydrogen peroxide upon workup affords tertiary alcohols 13, 16, and 17 in excellent yield.

As shown in Table 2, the efficient production of trisubstituted alkenes from various aromatic aldehydes lends added support to a boryl-ylide intermediate. Boron-Wittig reagents are commonly accessed by deprotonating secondary dimesitylboranes, wherein a base is sterically prevented from adding to the vacant p orbital on boron.²⁹ Deprotonation is irrelevant here starting with the ketone-derived insertion product **1**. Nonetheless, these examples serve to complement other known alkylidenations of B-stabilized anions and confirm the applicability of a user-friendly pinacolato ester.³⁰ Selected functional groups (ether, ester, nitrile, or thiophene) are well tolerated, and E/Z selectivity approaching >5:1 is possible in certain cases (18, 20, and 23). Also noteworthy is the fact that an alkynyl trimethylsilyl function (in 20) remains intact during the nucleophilic addition/elimination. The presence of any unreacted methyllithium at the time an electrophile is introduced is unlikely given the high rate of initial metalation/deboronation.

In summary, we report an expanded scope for the Pt-catalyzed diazoalkane diborylation reaction, particularly for disubstituted (pinacolato)diborons. An opening attempt at desymmetrizing the products led to the precedented discovery that 1,1-diboroalkanes undergo bond-selective substitution upon treatment with a Lewis base and alkyl halide. The underlying deboronation mechanism is now advanced as a convenient and practical route toward chiral tertiary boronic esters. Although highly enantioselective methods have been achieved for this class of compounds,³¹ the universal importance of organoborons as nucleophiles for Suzuki–Miyaura cross coupling³² and Rh-catalyzed 1,4-/1,2-addition³³ renders the innate modularity and generality of our findings very compelling.

Acknowledgments

We are grateful to the donors of the ACS Petroleum Research Fund (#5001009) and to Boston College and California Lutheran University for substantial startup grants. The mass spectrometry facility at B.C. is supported by NSF instrumentation funds (DBI-0619576). Dr. A. J. W. was a B.C. LaMattina graduate fellow.

Supplementary data

Supplementary data (experimental procedures, characterization data, and copies of ¹H and ¹³C NMR spectra) associated with this article can be found, in the online version, at http:// dx.doi.org/10.1016/j.tetlet.2014.03.135.

References and notes

- (a) Brown, H. C.; Singaram, B. Pure Appl. Chem. **1987**, 59, 879; (b) Mlynarski, S. N.; Karns, A. S.; Morken, J. P. J. Am. Chem. Soc. **2012**, 134, 8770. and references therein..
- (a) Miyaura, N.; Suzuki, A. Chem. Rev. 1995, 95, 2457; (b) Chemler, S. R.; Trauner, D.; Danishefsky, S. J. Angew. Chem., Int. Ed. 2001, 40, 4544; (c) Jana, R.; Pathak, T. P.; Sigman, M. S. Chem. Rev. 2011, 111, 1417; (d) Tayaka, J.; Iwasawa, N. ACS Catal. 2012, 2, 1993.
- (a) Matteson, D. S. Stereocontrolled Synthesis with Organoboranes; Springer-Verlag: Berlin, 1995; (b) Matteson, D. S. Chem. Rev. 1989, 89, 1535.
- (a) Fang, G. Y.; Wallner, O. A.; Di Blasio, N.; Ginesta, X.; Harvey, J. N.; Aggarwal, V. K. J. Am. Chem. Soc. 2007, 129, 14632; (b) Blakemore, P. R.; Marsden, S. P.; Vater, H. W. Org. Lett. 2006, 8, 773.

- (a) Hooz, J.; Linke, S. J. Am. Chem. Soc. **1968**, 90, 5936; (b) Hooz, J.; Linke, S. J. Am. Chem. Soc. **1968**, 90, 6891; (c) Hooz, J.; Gunn, D. M. Chem. Commun. **1969**, 139; (d) Hooz, J.; Morrison, G. F. Can. J. Chem. **1970**, 48, 868; (e) Hooz, J.; Bridson, J. N.; Calzada, J. G.; Brown, H. C.; Midland, M. M.; Levy, A. B. J. Org. Chem. **1973**, 38, 2574; See also: (f) Brown, H. C.; Midland, M. M.; Levy, A. B. J. Am. Chem. Soc. **1972**, 94, 3662.
- (a) Goddard, J. P.; Le Gall, T.; Mioskowski, C. Org. Lett. 2000, 2, 1455; (b) Kalendra, D. M.; Duenes, R. A.; Morken, J. P. Synlett 2005, 1749; (c) Peng, C.; Zhang, W.; Yan, G.; Wang, J. Org. Lett. 2009, 11, 1667; (d) Luan, Y.; Schaus, S. E. Org. Lett. 2011, 13, 2510.
- 7. Wommack, A. J.; Kingsbury, J. S. J. Org. Chem. 2013, 78, 10573.
- 8. Rendina, V. L.; Kingsbury, J. S. J. Org. Chem. 2012, 77, 1181.
- (a) Moebius, D. C.; Kingsbury, J. S. J. Am. Chem. Soc. 2009, 131, 878; (b) Moebius, D. C.; Dabrowski, J. A.; Wommack, A. J.; Kornahrens, A. F.; Kingsbury, J. S. Org. Lett. 2010, 12, 3598; (c) Rendina, V. L.; Moebius, D. C.; Kingsbury, J. S. Org. Lett. 2011, 13, 2004; (d) Rendina, V. L.; Kaplan, H. Z.; Kingsbury, J. S. Synthesis 2012, 686; (e) Wommack, A. J.; Moebius, D. C.; Travis, A. L.; Kingsbury, J. S. Org. Lett. 2009, 11, 3202; (f) Ref. 7.
- (a) Abu Ali, H.; Goldberg, I.; Srebnik, M. Organometallics 2001, 20, 3962; (b) Abu Ali, H.; Goldberg, I.; Kaufmann, D.; Burmeister, C.; Srebnik, M. Organometallics 1870, 2002, 21.
- (a) Li, H.; Shangguan, X.; Zhang, Z.; Huang, S.; Zhang, Y.; Wang, J. Org. Lett.
 2014, 15, 448; (b) Li, H.; Zhang, Y.; Wang, J. Synthesis **2013**, 45, 3090; (c) Li, H.; Wang, L.; Zhang, Y.; Wang, J. Angew. Chem., Int. Ed. **2012**, 51, 2943.
- For reviews, see: (a) Takaya, J.; Iwasawa, N. ACS Catal. **1993**, 2012, 2; (b) Shimizu, M.; Hiyama, T. Proc. Jpn. Acad. Ser., B **2008**, 84, 75; (c) Dembitsky, V. M.; Abu Ali, H.; Srebnik, M. Appl. Organomet. Chem. **2003**, 17, 327.
- For a lead reference on applications involving sp² hybridized B–C–B derivatives, see: Masaki, S.; Nakamaki, C.; Shimono, K.; Schelper, M.; Kurahashi, T.; Hiyama, T. J. Am. Chem. Soc. 2005, 127, 12506.
- (a) Köster, R.; Binger, P. Angew. Chem. 1962, 74, 652; (b) Zweifel, G.; Arzoumanian, H. J. Am. Chem. Soc. 1967, 89, 291; (c) Brown, H. C.; Rhodes, S. P. J. Am. Chem. Soc. 1969, 91, 4306; (d) Brown, H. C.; Scouten, C. G.; Liotta, R. J. Am. Chem. Soc. 1979, 101, 96.
- (a) Endo, K.; Hirokami, M.; Shibata, T. Synlett 2009, 1331; (b) Lee, J. C. H.; McDonald, R.; Hall, D. G. Nat. Chem. 2011, 3, 894; (c) Feng, X.; Jeon, H.; Yun, J. Angew. Chem., Int. Ed. 2013, 52, 3989.
- 16. All aryl diazoalkanes were prepared by Brewer's dehydrogenation with Swern reagent; see: Javed, M. I.; Brewer, M. Org. Lett. 2007, 9, 1789. The aliphatic nucleophiles utilized herein were synthesized as reported in Ref. 7. For facile titration as toluene solutions, see Ref. 8.
- 17. Ishiyama, T.; Murata, M.; Miyaura, N. J. Org. Chem. 1995, 60, 7508.
- Ishiyama, T.; Matsuda, N.; Murata, M.; Ozawa, F.; Suzuki, A.; Miyaura, N. Organometallics 1996, 15, 713.
- Postulation of a palladium carbene from trimethylsilyldiazomethane: (a) Kudirka, R.; Van Vranken, D. L. J. Org. Chem. 2008, 73, 3585; (b) Devine, S. K. J.; Van Vranken, D. L. Org. Lett. 1909, 2008, 10; General comments on mechanism of rhodium carbenoid formation: (c) Wong, F. M.; Wang, J.; Hengge, A. C.; Wu, W. Org. Lett. 2007, 9, 1663.
- 20. Upon nucleophilic coordination to Pt, 1,2-migration of a Pt–B bond (as opposed to carbene formation) is also possible. Additional studies are needed to identify which of the various pathways is the most significant.
- 21. Endo, K.; Hirokami, M.; Shibata, T. J. Org. Chem. 2010, 75, 3469.
- (a) Endo, K.; Ohkubo, T.; Hirokami, M.; Shibata, T. J. Am. Chem. Soc. 2010, 132, 11033; (b) Endo, K.; Ohkubo, T.; Shibata, T. Org. Lett. 2011, 13, 3368; (c) Endo, K.; Ohkubo, T.; Ishioka, T.; J. Org. Chem. 2012, 77, 4826; (d) Endo, K.; Ishioka, T.; Ohkubo, T.; Shibata, T. J. Org. Chem. 2012, 77, 7223; (e) Sun, C.; Potter, B.; Morken, J. P. J. Am. Chem. Soc. 2014, 136. Articles ASAP.
- 23. Dulou, R.; Chretien-Bessière, Y. Bull. Soc. Chim. Fr. 1959, 1362.
- 24. Matteson, D. S.; Shdo, J. G. J. Org. Chem. 1964, 74, 2742.
- 25. Cainelli, G.; Dal Bello, G.; Zubiani, G. Tetrahedron Lett. 1965, 3429.
- 26. Cainelli, G.; Dal Bello, G.; Zubiani, G. Tetrahedron Lett. 1966, 4135.
- 27. Mukaiyama, T.; Murakami, M.; Oriyama, T.; Yamaguchi, M. Chem. Lett. 1981, 1193.
- 28. For one case of deboronation/intermolecular alkylation involving synthesis of 3-heptanol from 1-pentyne and ethyl bromide; see (a) Zweifel, G.; Arzoumanian, H. Tetrahedron Lett. 1965, 3429; For methylation in a tris- and tetrakis(dialkoxyboryl)methane series, see (b) Matteson, D. R.; Thomas, J. R. J. Organometal. Chem. 1970, 24, 263.
- (a) Pelter, A.; Buss, D.; Cocllough, E. Chem. Commun. 1987, 297; (b) Pelter, A.; Buss, D.; Cocllough, E.; Singaram, B. Tetrahedron 1993, 49, 7077; (c) Pelter, A.; Smith, K.; Elgendy, S. M. A. Tetrahedron 1993, 49, 7119.
- 30. (a) Ref. 26.; (b) Rathke, M. W.; Kow, R. J. Am. Chem. Soc. 1972, 94, 6854.
- (a) Lee, K.-S.; Zhugralin, A. R.; Hoveyda, A. H. J. Am. Chem. Soc. 2009, 131, 7253;
 (b) O'Brien, J. M.; Lee, K.-S.; Hoveyda, A. H. J. Am. Chem. Soc. 2010, 132, 10630;
 (c) Guzman-Martinez, A.; Hoveyda, A. H. J. Am. Chem. Soc. 2010, 132, 10634; (d) Stymiest, J. L.; Bagutski, V.; French, R.; Aggarwal, V. K. Nature 2008, 456, 778;
 (e) Sonawane, R. P.; Jheengut, V.; Rabalakos, C.; Larouche-Gauthier, R.; Scott, H. K.; Aggarwal, V. K. Angew. Chem., Int. Ed. 2011, 50, 3575.
- Imao, D.; Glasspoole, B. W.; Laberge, V. S.; Crudden, C. M. J. Am. Chem. Soc. 2009, 131, 5024.
- 33. (a) Takaya, Y.; Ogasawara, M.; Hayashi, T.; Sakai, M.; Miyaura, N. J. Am. Chem. Soc. 1998, 120, 5579; (b) Hayashi, T.; Takahashi, M.; Takaya, Y.; Ogasawara, M. J. Am. Chem. Soc. 2002, 124, 5052; (c) Sakai, M.; Ueda, M.; Miyaura, N. Angew. Chem., Int. Ed. 1998, 37, 3279; (d) Ros, A.; Aggarwal, V. K. Angew. Chem., Int. Ed. 2009, 48, 6289.