STUDY OF COMPARATIVE TRANSMISSION CAPACITY OF C-N BOND BY ¹⁹F NMR METHOD

S. I. Pombrik, E. V. Polunkin,

A. S. Peregudov, D. N. Kravtsov, and É. I. Fedin

UDC 543.422.25:547.554

During a systematic quantitative study of the transmission capacity (TC) of binuclear bridge groupings (BBG), containing the atoms of the heavy nontransition metals of type $-M-X-(M = Sn, Hg; X = CH_2, N(SO_2Ph))$ [1, 2], it was established that the indicated BBG have the property of a high electron conductance. In harmony with this, the question arose of whether the observed property is specific for organometallic systems or whether it can also be manifested in purely organic compounds. In addition, since a study of the TC of the BBG Hg - N was run on model systems of type $A_rHgN(SO_2Ph)C_6H_4F-4$, it seemed of interest to ascertain what effect the PhSO₂ group exerts on the TC of nitrogen-containing BBG.

In the present paper, in order to solve the set problems, we synthesized two series of compounds of type $ArCH_2NHC_6H_4F-4$ (Ia-1) and $ArCH_2N(SO_2Ph)C_6H_4F-4$ (IIa-1), where $Ar = 4-Me_2NC_6H_4$ (a), $4-MeOC_6H_4$ (b), $4-MeC_6H_4$ (c), Ph (d), $4-FC_6H_4$ (e), $4-ClC_6H_4$ (f), $3-ClC_6H_4$ (g), $3-FC_6H_4$ (h), $3-CF_3C_6H_4$ (i), $3,5-Cl_2C_6H_3$ (k), $3,4,5-Cl_3C_6H_2$ (1), determined the ¹⁹F chemical shifts (δ F) in them using dilute CHCl₃ solutions (Table 1). For a quantitative estimate of the comparative TC of the BBG CH₂ – NH we made a correlation of the δ F in compounds of the (I) series with the literature data on the δ F for the corresponding $ArCH_2-C_6H_4F-4$ (III) [3] in CH_2Cl_2 and $ArCH_2CH_2C_6H_4F-4$ (IV) [4] in C_6H_6 , which is expressed by Eqs. (1) and (2).

$$\delta F (I) = 0.78 \ \delta F (III) + 11.81; \ S_{\rho} = 0.09; \ S = 0.07; \ r = 0.971$$
(1)

$$\delta F(I) = 1,20 \ \delta F(IV) + 10,23; \ S_{\rho} = 0,11; \ S = 0,05; \ r = 0,970$$
 (2)

The fact that the value of the slope tangent of Eq. (1), which expresses the linear correlation between the δF in (I) and in (III), is somewhat less than one is evidence that the transition from (III) to (I) is accompanied by a much smaller decrease in the TC of the bridge system when compared with that when going from (III) to (IV) [2]. In harmony with Eq. (2), the TC of the BBG $CH_2 - N$ is higher than the TC of the BBG $CH_2 - CH_2$.

Further, on comparing the TC of benzylamines (I) and their N-benzenesulfonyl derivatives (II) (Eq. (3)) it proved that their TC are

$$\delta \mathbf{F} (\mathbf{I}) = 0.98 \ \delta \mathbf{F} (\mathbf{II}) + 14.98; \ S_{\rho} = 0.03, \ S = 0.05, \ r = 0.995$$
(3)

practically the same, i.e., the addition of an acidic grouping to the nitrogen atom has no effect on the TC of the C-N bond.

TABLE 1. δF Values for (I) and (II) in CHCl₃ Relative to the Pseudoinner C₆H₅F (ppm)

Compound index	δF (I)	δF (II)	Compound index	δF (I)	δF (II)
a b c d e f	15,20 14,93 14,94 14,86 14,52 14,56	$\begin{array}{c} 0,25 \\ -0,06 \\ 0,01 \\ -0,18 \\ -0,45 \\ -0,53 \end{array}$	q h i k 1	14,47 14,50 14,26 14,02 13,79	-0,53 -0,50 -0,71 -0,97 -1,19

A. N. Nesmeyanov Institute of Heteroorganic Compounds, Academy of Sciences of the USSR, Moscow. Translated from Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No. 10, pp. 2406-2408, October, 1981. Original article submitted March 25, 1981.

Compound	Yield, %	mp	bp (p, mm		1	
	{		Hg)	C	н	N
TO T M (OC T) OT O T N (N-)	1 96	133~134		05.11	-	
$-FC_6H_4N(SO_2Ph)CH_2C_6H_4N(Me)_2-4$	90	(heptane)	Į	$\frac{65,44}{65,59}$	5,46	7,14
-FC6H4N (SO2Ph) CH2C6H4OMe-4	90	125-126	}	64,66	5,52 4.86	7,29
-PC6H4N (SO2FII) CH2C6H4OME-4	1	(methanol)		64.67	4,00	3,77
-FC6H₄N (SO2Ph) CH2C6H4Me-4	94	101-102		68,02	5,07	3,86
1 0611411 (0021 11) 011206144110 1	}	(methanol)	}	67,58	5,12	3,94
-FC6H4N (SO2Ph) CH2Ph	96	115-116		66,67	4,75	3,89
		(heptane)		66,83	4,73	4,10
-FC6H4N (SO2Ph) CH2C6H4F-4	95	127-128		63,53	4,42	4,00
•		(aq. acetone)		63,49	4,22	3,90
FC6H4N (SO2Ph) CH2C6H4Cl-4	96	112-113		60,68	4,36	2 5 9
TU611411 (DU2EII) UI12U6II4UF4		(heptane)		60,71	4,30	3,53
$FC_{6}H_{4}N(SO_{2}Ph)CH_{2}C_{6}H_{4}Cl-3$	80	92-93		60,79	4,05	3,42
		(heptane)		60,71	4,03	3,73
$FC_6H_4N(SO_2Ph)CH_2C_6H_4F-3$	94	101-102		63,42	4,35	3,93
1 061141 (DO21 11) 0112061141 D	01	(heptane)		63,49	4,22	3,90
$FC_6H_4N(SO_2Ph)CH_2C_6H_4CF_3-3$	89		210(3)	57,96	3,70	4,10
			-10(0)	58,67	3,70	3,42
$FC_6H_4N(SO_2Ph)CH_2C_6H_3Cl_2-3.5$	95	121-122		56,00	3,62	3,22
	ļ ļ	(heptane)		55,62	3,45	3,42
FC_6H_4N (SO ₂ Ph) $CH_2C_6H_2Cl_3-3,4,5$	97	125-126	ĺ	51,22	2,94	3,24
		(heptane)		51,31	2,95	3,15
$FC_6H_4NHCH_2C_6H_4N$ (Me) 2-4	89	120-121		73,71	7,02	11,49
		(methanol)		73,73	7,03	11,47
$FC_{6}H_{4}NHCH_{2}C_{6}H_{4}OMe-4$	70		171-173	71,97	6,32	5,61
			(2-3)	72,69	6,11	6,06
$FC_6H_4NHCH_2C_6H_4Me-4$	75	66 - 67		78,06	7,03	6,27
EC U NHCH O H E /		(methanol)	Ì	71,34	6,57	6,51
$FC_6H_4NHCH_2C_6H_4F-4$	49	48-49	158163	71,21	5,19 5,07	6,37 6,39
FC6H4NHCH2C6H4Cl-4	17		(3-4)	66,30	3,07 4,56	5,62
1.08114141101120611401-4	17	50-51 (heptane)	·)	66,24	4,71	5,94
FC6H4NHCH2C6H4Cl-3*	24		}	57,36	4,43	5,06
	- ⁴⁴	197198 (ethanol)		57,37	4,45	5,15
FC6H4NHCH2C6H4F-3*	37	(Childhol)	186-188	60,79	5,05	5,46
	ļŗļ		(14)	61,06	4,74	5,48
FC6H4NHCH2C6H4CF3-3	65	Ì	144-145	62,32	3,99	4,69
		l	(3)	62,45	4,13	5,20
FC6H4NHCH2C6H3Cl2-3,5 *	59	227-229		51,14	3,81	4,95
		(ethanol)		50,92	3,62	4,57
FC6H4NHCH2C6H2Cl3-3,4,5	80	90-92	{	50,82	3,05	4,38
		(heptane-	ĺ	51,26	2,98	4,60
		petroleum ether)	1	1	1	

TABLE 2. Analytical Data and Physical Properties of SynthesizedCompounds

*The analyses and melting points are given for the aniline hydrochlorides.

As a result, it may be concluded that the exaltation of the TC, previously observed on the example of metalcontaining BBG, can also be manifested in the case of purely organic BBG, containing a heteroatom with an unshared electron pair. At the same time, it should be mentioned that, as it proved from a comparison of the TC of the BBG HgN(SO₂Ph) and the TC of Hg ($\rho_{Hg(NSO_2Ph)/Hg} = 1.2$) [1], the above indicated property of the exaltation of the TC of mercury-containing BBG is manifested to a greater degree than for the analogous organic BBG.

EXPERIMENTAL

The ${}^{19}F - {}^{1}H$ NMR spectra were obtained on an RYa-2309 spectrometer (operating frequency 84.56 MHz) at 25° using dilute solutions (concentration 0.05 mole/liter). The experimental error in measuring the δF did not exceed ± 0.01 ppm. The solvents were purified by standard procedures and were additionally distilled in a dry argon stream.

Compounds (Ia-c) were obtained by the reduction of the corresponding benzazomethines, (Ie-l) were obtained by alkylating the Na derivative of 4-fluoroaniline with the appropriate substituted benzyl chlorides, and (IIa-l) were obtained

by reacting $PhSO_2Cl$ with the appropriate (I) compounds. The purity of the synthesized compounds was checked via the ¹⁹F and ¹H NMR spectra. The constants and analysis data for the new compounds are given in Table 2.

Below are given typical examples for the synthesis of the compounds studied in this paper.

N-(4-Chlorobenzyl)-4'-fluoroaniline (If). To a mixture of 5 g (0.05 mole) of Na_2CO_3 and 19 ml (0.2 mole) of 4-fluoroaniline was added 8.05 g (0.05 mole) of 4-chlorobenzyl chloride. Then the reaction mixture was heated for 1 h at 100°, cooled, diluted with 100 ml of water, extracted with ether, dried over Na_2SO_4 , and the ether was distilled off. Recrystallization from a heptane-petroleum ether mixture gave 2.1 g of a pale yellow crystalline compound with mp 50-51°.

N-(4-N,N-Dimethylaminobenzyl)-4'-fluoroaniline (Ia). A solution of 7.5 g (0.031 mole) of 4-N,N-dimethylaminophenyl -N-(4'-fluorophenyl)azomethine in 100 ml of abs. MeOH was added in drops to a suspension of 1 g (0.04 g-atom) of Mg turnings in 20 ml of hot abs. MeOH. At the end of brisk H₂ evolution the mixture was refluxed for 1 h, cooled, diluted with 50 ml of water, extracted with ether, dried over Na₂SO₄, and the solvent was removed in vacuo. The residue was recrystallized from MeOH to give 6.3 g of a pale yellow crystalline compound with mp 120-121°.

N-(4-Chlorobenzyl)-N-benzenesulfonyl-4'-fluoroanilide (IIf). With stirring, to 2.4 g (0.01 mole) of (If) in a mixture of 7 ml of acetone and 1 ml of pyridine was added a solution of 2.1 g (0.012 mole) of benzenesulfonyl chloride in 5 ml of acetone, after which the mixture was heated to reflux, let stand overnight, poured into 180 ml of distilled water, and the precipitate was filtered and washed with water to give 3.6 g of a compound with mp 112-113° (from heptane-pentane).

CONCLUSIONS

1. A study was made of the ¹⁹F NMR spectra of a number of free and N-substituted benzylanilines $ArCH_2NHC_6H_4F-4$ and $ArCH_2N(SO_2Ph)C_6H_4F$, respectively.

2. The binuclear bridge grouping $CH_2 - N$ has a high transmission capacity (TC). The addition of an acidic grouping to the nitrogen atom has no effect on the TC of the C-N bond.

LITERATURE CITED

- 1. A. N. Nesmeyanov, D. N. Kravtsov, S. I. Pombrik, E. V. Polunkin, A. S. Peregudov, and É. I. Fedin, Izv. Akad. Nauk SSSR, Ser. Khim., <u>1980</u>, 1215.
- 2. A. N. Nesmeyanov, D. N. Kravtsov, S. I. Pombrik, A. S. Peregudov, P. O. Okulevich, and É. I. Fedin, Izv. Akad. Nauk SSSR, Ser. Khim., 1978, 973.
- 3. S. K. Dayal, S. Ehrenson, and R. W. Taft, J. Am. Chem. Soc., 94, 9113 (1972).
- 4. R. G. Rews and N. D. Ojha, J. Am. Chem. Soc., <u>91</u>, 5769 (1969).