STEREOSELECTIVE CYANOHYDRIN-FORMING REACTIONS OF CHIRAL Q-AMINO ALDEHYDES

M.T. Reetz*, M.W. Drewes, K. Harms and W. Reif

Fachbereich Chemie der Universität, Hans-Meerwein-Strasse, 3550 Marburg, FRG

<u>Summary:</u> The Lewis acid mediated cyanohydrin-forming addition of Me₃SiCN to optically active α -dibenzylamino aldehydes <u>2</u> occurs stereoselectively. Chelation controlled adducts <u>3</u> result if MgBr₂ or TiCl₄ is used, whereas the diastereomers <u>4</u> are obtained upon employing BF₃, ZnBr₂ or SnCl₄.

We have previously shown that N,N-dibenzylamino aldehydes $\underline{2}$ undergo stereoselective Grignard-type and aldol additions.¹ Since the aldehydes are readily synthesized from the corresponding acids $\underline{1}$, such C-C bond forming reactions amplify the importance of the "chiral pool" of amino acids.² We now report that cyanohydrin-forming reactions using Me₃SiCN in the presence of equivalent amounts of Lewis acids also occur stereoselectively.³

It is shown in Table 1 that the Lewis acids BF_3 , $ZnBr_2$ or $SnCl_4$ lead to the non-chelation controlled adducts⁴ <u>4</u> preferentially, whereas TiCl₄ or MgBr₂ result in chelation control. In some cases the O-silyl-cyanohydrins are the actual primary products (e.g., when $ZnBr_2$ or MgBr₂ are used), but the crude products can be worked up with methanolic citric acid so as to deliver the final desilylated compounds <u>3/4</u>. The products are enantiomerically pure, which means that no racemization of <u>2</u> occurs during C-C bond formation.⁵

The configurational assignment of 3/4 is based primarily on an X-ray structural analysis of adduct <u>4b</u> (R=CH₂Ph), which is formed in the SnCl₄, BF₃ or ZnBr₂ mediated addition of Me₃SiCN to the aldehyde <u>2b</u> derived from Lphenylalanine <u>1b</u> (Fig. 1).⁶ Accordingly, this diastereomer is clearly the nonchelation controlled adduct corresponding to the relative configuration shown in <u>4</u>. This means that the TiCl₄ and MgBr₂ promoted reactions afford the

3295

diastereomer having the opposite relative configuration <u>3b</u>. The configurational assignments of the other adducts were made on the basis of analogy. The ¹H- and ¹³C-NMR data⁷ do not allow for general rules regarding the configurational assignments, in contrast to the previously reported Grignard adducts¹. However, the chelation controlled adducts <u>3</u> move a little faster on tlc plates than do <u>4</u>, a phenomenon that also pertains in the case of Grignard and aldol adducts.¹

Aldehyde		Lewis acid	Temp./Time (°C/h)	Yield (%)	ratio <u>3:4</u>
2a	(R=CH ₃)	ZnBr ₂	-20/ 3	74	5:95
<u>2a</u>	(R=CH3)	TiCl4 ^{a)}	-60/16	61	82:18
<u>2b</u>	(R=CH ₂ Ph)	$BF_3 \cdot OEt_2$	-10/10	74	5:95
<u>2b</u>	(R=CH ₂ Ph)	ZnBr ₂	-20/ 3	79	5:95
<u>2b</u>	(R=CH ₂ Ph)	SnCl ₄	-78/ 3	67	13:87
<u>2b</u>	(R=CH2Ph)	TiCl ₄ a)	-60/16	58	78:22
<u>2b</u>	(R=CH ₂ Ph)	MgBr ₂	-20/ 3	76	78:22
<u>2c</u>	$(R=CH_2CHMe_2)$	ZnBr ₂	-20/ 3	78	5:95
<u>2c</u>	$(R=CH_2CHMe_2)$	TiCl ₄ a)	-60/16	63	88:12
<u>2d</u>	$(R=CHMe_2)$	ZnBr ₂	-20/ 3	81	5:95
<u>2d</u>	(R=CHMe ₂)	SnCl ₄	-78/ 3	67	5:95
<u>2d</u>	(R=CHMe ₂)	TiCl ₄ a)	-60/16	63	84:16
<u>2d</u>	(R=CHMe ₂)	MgBr ₂	-20/ 3	75	82:18

Table 1. Stereoselective MeaSiCN Additions to Amino Aldehydes 2

a) Two equivalents of Me₃SiCN used. Solvent in all cases: CH₂Cl₂

Non-chelation control in reactions of 2 was previously noted to be in line with the Felkin-Anh model,¹ whereas the chelation controlled adducts are likely to be formed via intermediates 5. Since SnCl₄ mediated allylsilane additions to <u>2</u> occur with chelation control,¹ the stereochemical outcome of the present SnCl₄ induced addition of Me₃SiCN is surprising. Preliminary NMR experiments of 1:1 mixtures of $\underline{2b}$ (R=CH₂Ph) and SnCl₄ show the presence of at least three species in the temperature range of -78°C to 0°C. Since dynamic effects appear to be involved (generally broad lines), they could not be identified, but open-chain Lewis acid adducts are likely to be involved. Similar results were obtained when using TiCl₄. Apparently, the Curtin-Hammett principle pertains in these systems, making mechanistic studies difficult. The reactions in the case of $MgBr_2$ are heterogeneous, a 1:1 mixture (slurry) showing no signs of an adduct (merely non-complexed $\underline{2}$). In the case of TiCl₄ two equivalents of Me₃SiCN must be used. It is likely that the first equivalent undergoes an exchange reaction with TiCl4 to form Cl3TiCN adducts which then react with the second equivalent of Me₃SiCN.⁸

Fig. 1 SCHAKAL drawing of <u>4b</u>

M = metal X = halogen

Irrespective of the precise mechanisms, the present methodologies are of synthetic interest since cyanohydrins are useful vehicles for further transformations. For example, the rational synthesis of a number of low molecular weight peptides such as amastatin, epiamastatin, bestatin and epibestatin, all of which contain β -amino alcohol units,⁹ is now possible. Previous attempts to convert N-protected α -amino aldehydes into the corresponding cyanohydrins resulted in essentially stereorandom formation of diastereomers.⁹

<u>Acknowledgement:</u> This work was supported by the Deutsche Forschungsgemeinschaft (SFB 260) and the Fonds der Chemischen Industrie. M.W.D thanks the DAAD und CSIR (South Africa) for stipends.

REFERENCES AND NOTES:

- Reetz, M.T., Drewes, M.W. and Schmitz, A., Angew.Chem. <u>99</u> (1987) 1186; Angew.Chem.Int.Ed.Engl. <u>26</u> (1987) 1141.
- 2) Martens, J., Top.Curr.Chem. <u>125</u> (1984) 165; Coppola, G.M. and Schuster, H.F., Asymmetric Synthesis, John Wiley, New York 1987.
- 3) <u>General procedure:</u> The mixture of an aldehyde $\underline{2}$ (1.06 mmol), trimethylsilylcyanide (121 mg; 1.21 mmol) and ZnBr_2 (272 mg; 1.21 mmol) in dry CH₂Cl₂ (10 ml) is stirred at -20°C for 4 h. The reaction mixture is poured onto 5 ml of H₂O and the organic phase extracted with ether. The combined organic phases is washed with brine, dried over MgSO₄ and concentrated, yielding the O-silylated form of $\underline{4}$. If the free hydroxy form $\underline{4}$ is desired, workup is performed with 10% methanolic citric acid (5 ml) and the product chromatographed on silica gel (pet-ether/ether in a ratio of 100:1). In the case of chelation control, the equivalent amounts of aldehyde $\underline{2}$ and TiCl₄ are mixed in 10 ml of CH₂Cl₂ at -78°C and two equivalents of Me₃SiCN added. After stirring at -60°C for 16 h, the mixture is poured onto 10% methanolic citric acid and worked up as above.

- 4) Review of chelation and non-chelation controlled additions to chiral alkoxy carbonyl compounds: Reetz, M.T., Angew.Chem. <u>96</u> (1984) 542; Angew. Chem.Int.Ed.Engl. <u>23</u> (1984) 556.
- 5) This was checked by applying the Mosher method in the optically active and racemic series; cf. Dale, J.A., Dull, D.L. and Mosher, H.S., J.Org.Chem. <u>34</u> (1969) 2543.
- 6) Crystal data (K. Harms): $C_{24}H_{24}N_{2}O$, M=356.47, triclinic, P -1, a=8.225(2), b=10.598(2), c=12.754(2) A, α =96.30(1), β =105.52(1), γ 106.17(1)°, V=1007.6 A³, Z=2, D_{c} =1.17gcm⁻³, μ (CuK α)=5.3cm⁻¹. 2660 independent observed reflections [I>4 σ (I), Θ_{max} =120°] were measured on an Enraf-Nonius CAD4 diffractometer with monochromated CuK α -radiation. Structure solution with direct methods (SHELXS-86, G.M. Sheldrick, Goettingen, FRG, 1986), refinement with the Enraf-Nonius SDP-system, all non hydrogen atoms anisotropically, hydrogens with fixed isotropic temperature factors, with the exception of the hydroxyl hydrogen on idealized positions using a riding model, to R=0.053, R_W =0.062 [$w^{-1}=\sigma^2$ (F)]. Further details of the crystal structure are available from the Cambridge Crystallographic Data Centre, University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW, England. Requests should be accompanied by a full literature citation for this communication.
- 7) NMR data (CDCl₃) for <u>3a</u> (δ /ppm): ¹H-NMR (300 MHz): 1.17 (d,3H,J=7.4Hz), 3.16 (m,1H), 3.36 and 4.01 (AB system, 4H, J_{AB}=13.2Hz), 4.11 (d,1H,J=10.0Hz), 7.28 (m, 10H); ¹³C-NMR (75 MHz): 8.65, 53.2, 57.06, 62.05, 118.85, 127.53-137.56 (aromatics). Date for <u>4a</u>: ¹H-NMR (300 MHz): 1.27 (d,3H,J=6.9Hz), 3.12 (m,1H), 3.36 and 3.97 (AB system, 4H, J_{AB}=13.3Hz), 4.16 (d,1H,J=6.4Hz), 7.29 (m,10H); ¹³C-NMR (75 MHz): 9.19, 54.29, 54.67, 62.36, 119.40, 127.71-138.03 (aromatics).
- 8) In the case of TiCl₄ mediated reactions of chiral α-alkoxy aldehydes, two equivalents of Me₃SiCN are also necessary: Reetz, M.T., Kesseler, K. and Jung, A., Angew.Chem. <u>97</u> (1985) 989; Angew.Chem.Int.Ed.Engl. <u>24</u> (1985) 989.
- 9) See for example: Rich, D.H., Moon, B.J. and Boparai, A.S., J.Org.Chem. <u>45</u> (1980), 2288; Nishizawa, R. and Saino, T., J.Med.Chem. <u>20</u> (1977) 510.

(Received in Germany 31 March 1988)