ChemComm

Cite this: Chem. Commun., 2014, 50, 12311

Received 5th June 2014, Accepted 12th August 2014

DOI: 10.1039/c4cc04292a

www.rsc.org/chemcomm

Published on 22 August 2014. Downloaded by Brown University on 29/10/2014 04:29:47.

¹⁹F magnetic resonance probes for live-cell detection of peroxynitrite using an oxidative decarbonylation reaction[†]

Kevin J. Bruemmer,^a Sara Merrikhihaghi,^a Christina T. Lollar,^a Siti Nur Sarah Morris,^b Johannes H. Bauer^{bc} and Alexander R. Lippert*^{ac}

We report a newly discovered oxidative decarbonylation reaction of isatins that is selectively mediated by peroxynitrite (ONOO⁻) to provide anthranilic acid derivatives. We have harnessed this rapid and selective transformation to develop two reaction-based probes, 5-fluoroisatin and 6-fluoroisatin, for the low-background readout of ONOO⁻ using ¹⁹F magnetic resonance spectroscopy. 5-fluoroisatin was used to non-invasively detect ONOO⁻ formation in living lung epithelial cells stimulated with interferon- γ (IFN- γ).

Peroxynitrite (ONOO⁻) is a highly reactive nitrogen oxide species that is formed *in vivo* from the rapid recombination of superoxide (O_2^{-}) and nitric oxide (NO) radicals.¹ Whereas it is recognized that NO and O_2^- are endogenously generated to mediate cellular signaling,² ONOO⁻ formation is generally believed to be deleterious and is increased in a number of diseases such as cancer,³ cardiac dysfunction,⁴ asthma,⁵ and aging-related pathologies. Despite its conspicuous role in many human ailments, there is currently a lack of specific methods for detecting ONOO- in biological samples due to its short lifetime, competition from endogenous scavengers, and background signal from other reactive species.⁶ The current method of choice for studying ONOO⁻ employs antibodies that stain proteins containing nitrated tyrosine residues, often considered a "footprint" of ONOO⁻ production.⁷ This method has proved valuable for increasing our comprehension of ONOObiology, but is an indirect technique and lacks compatibility with living biological specimens. Other methods include using redox-sensitive probes dichlorodihydrofluorescein (DCHF), dihydrorhodamine 123 (DHR 123), and other recently developed responsive dyes.8 Although promising, these probes often suffer

from a lack of selectivity and a relatively slow rate of reaction with $ONOO^-$.

CHEMISTRY

View Article Online

¹⁹F magnetic resonance has emerged as a powerful technique for the detection and imaging of biological analytes due to low background in human cells and tissues.⁹ The ¹⁹F isotope is present at nearly 100% abundance in terrestrial fluorine and has a gyromagnetic ratio that endows it with sensitivity comparable with the ¹H nucleus. Indeed, ¹⁹F NMR and MRI have been used for *in vitro* and *in vivo* detection of pH,¹⁰ metal ions,¹¹ hypochlorite,¹² NO,¹³ tissue oxygenation,¹⁴ hypoxia,¹⁵ enzymatic activity,¹⁶ and other proteins of interest.¹⁷ These advantages prompted us to develop two reaction-based ¹⁹F magnetic resonance probes, 5-fluoroisatin and 6-fluoroisatin, for the detection of ONOO⁻ using newly discovered oxidative decarbonylation chemistry (Scheme 1).

The oxidative *decarboxylation* of α -ketoacids has been employed as a chemoselective and biologically compatible reaction for detecting H₂O₂ by hyperpolarized ¹³C MRL.¹⁸ This reaction is entropically favoured and is thought to proceed by a two-electron mechanism.¹⁹ ONOO⁻, on the other hand, can access one-electron oxidation pathways after forming adducts with carbonyl compounds,²⁰ offering an opportunity to program selectivity *versus* other reactive oxygen species. We reasoned that the α -ketocarbonyl of isatins would be stable towards two-electron cleavage of the carbonyl–carbonyl bond, but might be vulnerable to one-electron decarbonylation mechanisms. In support of this reasoning,

 $\label{eq:scheme1} \begin{array}{l} \text{ONOO}^-\text{-mediated oxidative decarbonylation of 5-fluoroisatin} \\ \text{and } 6\text{-fluoroisatin}. \end{array}$

^a Department of Chemistry, Southern Methodist University, Dallas, TX 75275-0314, USA. E-mail: alippert@smu.edu; Fax: +1-214-768-4089; Tel: +1-214-768-2482

^b Department of Biological Sciences, Southern Methodist University, Dallas,

TX 75275-0235, USA

^c Center for Drug Discovery, Design, and Delivery (CD4),

Southern Methodist University, Dallas, TX 75275-0314, USA

 $[\]dagger$ Electronic supplementary information (ESI) available: Experimental procedure, cell culture conditions, and supplementary spectral data. See DOI: 10.1039/ c4cc04292a

Fig. 1 Oxidative decarbonylation of isatin with ONOO⁻. (a) Fluorescence spectra of 200 μ M isatin with 0 μ M ONOO⁻ (red trace) and 20 μ M ONOO⁻ (black trace). (b) 200 μ M isatin and 0, 5, 10, 15, or 20 mM GSH was reacted with 20 μ M ONOO⁻ in 100 mM HEPES at pH 7.4 and 21 °C. Emission spectra were acquired with λ_{ex} = 312 nm and the intensity was measured at 405 nm.

isatins are inert to biological levels of H2O2, but react instantly with ONOO⁻ to form a fluorescent anthranilic acid product with an emission maximum centred at 405 nm (Fig. 1). We measured an observed second order reaction rate constant of isatin with ONOOof 3.5 \pm 0.1 \times 10 4 M^{-1} s $^{-1}$ at 21 $^{\circ}C$ using glutathione (GSH) as a reaction competitor (Fig. 1).²¹ The combination of the rate constant (k) and the substrate concentration [T], k[T], can be used to compare the reactivity versus other molecules. For instance, for 1 mM isatin at 21 °C, $k[T] = 35 \text{ s}^{-1}$, comparing favourably to CO₂, a key scavenger of ONOO⁻ in biological systems, which has $k[T] = 60-100 \text{ s}^{-1}$ under physiological conditions.²² Encouraged by these properties, we synthesized fluorinated isatin compounds using a previously disclosed sulfur ylide methodology.²³ We confirmed the production of 5-fluoroanthranilic acid in 86% yield from the reaction of 5-fluoroisatin with 1.5 equivalents of ONOO⁻ by ¹⁹F NMR, ¹H NMR, GC/MS, and HPLC analysis (Fig. S1, ESI[†]).

We tested our first generation probes, 5-fluoroisatin and 6-fluoroisatin, for their ¹⁹F NMR responses to synthetic ONOO⁻ (Fig. 2).²⁴ An insert tube containing a 0.1% solution of trifluoroacetic acid (TFA) in D₂O provided a reference signal at -35.6 ppm. With increasing 250 μ M increments of ONOO⁻, the chemical shift changes from -56 to -60 ppm for 5-fluoroisatin ($\Delta \delta = 4$ ppm) and from -44 to -52 ppm for 6-fluoroisatin ($\Delta \delta = 8$ ppm). Complete conversion of isatin to anthranilic acid was observed at 1.5 equivalents of ONOO⁻. Integration of the ¹⁹F NMR peaks of the fluoroanthranilic acids and fluoroisatins provide a quantifiable evaluation of the reaction with increasing ONOO⁻ concentration (Fig. S2 and S3, ESI⁺).

Fig. 2 Responses of (a) 5-fluoroisatin and (b) 6-fluoroisatin to $ONOO^-$. 1.1 mM fluoroanthranilic acid. (2–7) Reaction of 1 mM fluoroisatin with 2. 1.5 mM $ONOO^-$ 3. 1.25 mM $ONOO^-$ 4. 1.0 mM $ONOO^-$ 5. 0.75 mM $ONOO^-$ 6. 0.5 mM $ONOO^-$ 7. 0.25 mM $ONOO^-$ 8.1 mM fluoroisatin. All reactions were performed in 100 mM HEPES at pH 7.4. Spectra were acquired with 128 scans at 11.7 T using an internal reference peak of trifluoroacetic acid at –35.6 ppm.

The ¹⁹F NMR responses of these probes were then evaluated for their selectivity for ONOO⁻ against other reactive sulfur, oxygen, and nitrogen (RSON) species (Fig. 3). Both 5-fluoroisatin and 6-fluoroisatin are highly selective for ONOO⁻ as minimal ¹⁹F NMR response was observed with any other RSON species at this concentration. Even at 120 mM H₂O₂, complete conversion to the anthranilic acid was not observed (Fig. S4 and S5, ESI[†]). We measured a rate constant for the reaction of isatin with $\rm H_2O_2$ of 3.3 \pm 0.4 \times 10⁻³ $\rm M^{-1}$ s⁻¹ at 21 °C, indicating that $\rm H_2O_2$ reacts with isatin $\sim 10\,000\,000$ times slower than ONOO⁻ (Fig. S6, ESI[†]). Higher concentrations of the hydroxyl radical did not result in signal for the fluorinated anthranilic acid, although the isatin peak did disappear (Fig. S4 and S5, ESI⁺). The selectivity of 5-fluoroisatin for ONOO⁻ was further investigated using HPLC analysis (Fig. S8, ESI[†]). Quantification of these experiments revealed that the hydroxyl radical and Angeli's salt (commonly used as a nitroxyl donor) displayed slight reactivity towards 5-fluoroisatin, producing 5-fluoroanthranilic acid in 14% and 22% yields, respectively (Fig. S9, ESI[†]). However, it should be noted that hydroxyl radical rarely diffuses far from its site of production¹ and Angeli's salt may generate ONOO⁻ under certain conditions.²⁵ Taken together, these data demonstrate that the ¹⁹F NMR probes 5-fluoroisatin and 6-fluoroisatin display good selectivity for ONOO⁻ over other RSON species.

Excited by these results, we applied 5-fluoroisatin towards detecting biological ONOO⁻. When treated with the cytokine

Fig. 3 Selectivity of (a) 5-fluoroisatin and (b) 6-fluoroisatin *versus* 750 μ M RSON species, except for GSH, which was reacted at 5 mM. 500 μ M fluoroisatin was reacted with 1. ONOO⁻ 2. •OH 3. GSH 4. •NO 5. Na₂N₂O₃ 6. KO₂ 7. 'BuOOH 8. GSNO 9. NO₂⁻ 10. ClO⁻ 11. KHSO₅ 12. H₂O₂. All reactions, except 2, were performed in 100 mM HEPES at pH 7.4. Reaction 2 was performed in 100 mM PBS at pH 7.4 as described previously.^{12a} Spectra were acquired with 128 scans at 11.7 T using an internal reference peak of trifluoroacetic acid at –35.6 ppm.

interferon- γ (IFN- γ), A549 lung epithelial cells generate NO and display increased staining for nitrotyrosine residues.²⁶ While these observations are consistent with ONOO⁻ generation, it has never been directly detected in this system. We therefore utilized 5-fluoroisatin to monitor ONOO⁻ in this cellular model of lung cancer inflammation. We co-incubated $\sim 10^6$ A549 cells with 50 μ M 5-fluoroisatin and 50 ng mL⁻¹ IFN- γ or a vehicle control for 6-18 hours to capture live-cell ONOO⁻ production over this interval. After incubation, a sample of the cellular media was removed and analyzed by acquiring overnight ¹⁹F NMR spectra using 7300 scans (Fig. 4). With this protocol, anthranilic acid concentrations as low as 1.1 µM can be detected. In the cells treated with IFN- γ , a reproducible increase in the 5-fluoroanthranilic acid peak at -60 ppm is observed, indicating increased ONOO⁻ production (Fig. 4a). Quantifying the peak intensities with reference to the TFA internal standard showed a statistically significant (p < 0.05) increase in the production of 5-fluoroanthranilic acid from $1.1 \pm 0.3 \mu M$ (*n* = 5) in vehicle treated cells to 2.0 \pm 0.6 μ M (*n* = 5) for IFN- γ treated cells (Fig. 4b). In order to confirm these results, we used DHR 123, a dye that responds to reactive oxygen species with moderate selectivity for ONOO^{-,8f} to provide an independent measure of ONOO⁻ production in cytokine-stimulated epithelial cells (Fig. S10, ESI⁺). A clear increase in the intracellular fluorescence

Fig. 4 Detection of cellular ONOO⁻. (a) A549 cells were treated with 50 μ M 5-fluoroisatin and 50 ng mL⁻¹ IFN- γ for 12 hours. The media was transferred to an NMR tube and spectra were acquired with 7300 scans at 11.7 T using an internal reference peak of trifluoroacetic acid at -35.6 ppm. (b) Quantification of the anthranilic acid concentration determined from ¹⁹F NMR peak integrations in A549 cells treated for 6–18 hours with 50 μ M 5-fluoroisatin and 0.1% BSA as a vehicle control, n = 5 (Control) or 50 ng mL⁻¹ IFN- γ , n = 5 (IFN- γ). Statistical analysis was performed using a two-tailed Student's *t*-test to give p = 0.015. Error bars are \pm S.D.

is observed, supporting the ability of 5-fluoroisatin to detect cellular ONOO⁻. This ¹⁹F NMR detection of ONOO⁻ provides direct evidence for the generation of ONOO⁻ by A549 epithelial cells in response to IFN- γ signalling, confirming and complementing the results of prior investigations.²⁶

To conclude, we have communicated a newly discovered isatin decarbonylation reaction that is mediated by ONOO⁻ under physiological conditions. This rapid and biologically compatible transformation was utilized to develop two new ¹⁹F NMR probes, 5-fluoroisatin and 6-fluorisatin, for the chemoselective detection of ONOO⁻ over other RSON species. Using 5-fluoroisatin to measure ONOO⁻ produced by living A549 lung epithelial cells in response to cytokine stimulation, we detected an increase in ONOO⁻ over vehicle controls that matched the trend observed with the fluorescent dye DHR 123. This method non-invasively samples ONOO⁻ in the cellular media, and we anticipate that this study will give rise to a new class of reaction-based ONOO⁻ probes.

Funding was provided by Southern Methodist University (start-up funds to A.R.L.; University Research Council grant to J.H.B.) and the Engaged Learning program (research funds to K.J.B.). K.J.B. and C.T.L. were supported by Hamilton Undergraduate Research Scholarships.

Notes and references

- 1 P. Pacher, J. S. Beckman and L. Liaudet, Phys. Rev., 2007, 87, 315.
- 2 (a) J. Stone and S. Yang, Antioxid. Redox Signaling, 2006, 8, 243;
 (b) G. Groeger, C. Quiney and T. Cotter, Antioxid. Redox Signaling, 2009, 11, 2655.

- 3 E. Szaleczky, L. Prónai, H. Nakazawa and Z. Tulassay, J. Clin. Gastroenterol., 2000, 30, 47.
- 4 P. B. Massion, O. Feron, C. Dessy and J. L. Balligand, *Circ. Res.*, 2003, 93, 388.
- 5 T. Hanazawa, S. A. Kharitonov and P. J. Barnes, *Am. J. Respir. Crit. Care Med.*, 2000, **162**, 1273.
- 6 R. Radi, G. Peluffo, M. N. Alvarez, M. Naviliat and A. Cayota, Free Radical Biol. Med., 2001, **30**, 463.
- 7 Y. Z. Ye, M. Strong, Z. W. Huang and J. S. Beckman, *Methods Enzymol.*, 1996, **269**, 201.
- 8 (a) D. Yang, H. Wang, Z. Sun, N. Chung and J. Shen, J. Am. Chem. Soc., 2006, 128, 6004; (b) F. Yu, P. Li, B. Wang and K. Han, J. Am. Chem. Soc., 2013, 135, 7674; (c) C. Song, Z. Ye, G. Wang, J. Yuan and Y. Guan, Chem. Eur. J., 2010, 16, 6464; (d) J. Tuan, H. Chen, L. Zhuo, Y. Xie, N. Li and B. Tang, Chem. Eur. J., 2011, 17, 6626; (e) Q. Zhang, Z. Zhu, J. Cheng, N. Zhang, Y. T. Long, J. Zheng, X. Qian and Y. Yang, J. Am. Chem. Soc., 2012, 134, 18479; (f) J. P. Crow, Nitric Oxide, 1997, 1, 145.
- 9 J. X. Yu, R. R. Hallac, S. Chiguru and R. P. Mason, Prog. Nucl. Magn. Reson. Spectrosc., 2013, 70, 25.
- 10 (a) R. P. Mason, *Curr. Med. Chem.*, 1999, 6, 481; (b) A. M. Kenwright,
 I. Kuprov, E. De Luca, D. Parker, S. U. Pandya, P. K. Senanayake and
 D. G. Smith, *Chem. Commun.*, 2008, 2514.
- (a) G. A. Smith, R. T. Hesketh, J. C. Metcalfe, J. Feeney and P. G. Morris, *Proc. Natl. Acad. Sci. U. S. A.*, 1983, **80**, 7178; (b) P. Harvey, K. H. Chalmers, E. De Luca, A. Mishra and D. Parker, *Chem. Eur. J.*, 2012, **18**, 8748.
- 12 (a) T. Doura, A. Qi, F. Sugihara, T. Matsuda and S. Sando, *Chem. Lett.*, 2011, 12, 1357; (b) T. Doura, R. Hata, H. Nonaka, F. Sugihara, Y. Yoshioka and S. Sando, *Chem. Commun.*, 2013, 49, 11421.
- 13 A. A. Bobko, S. V. Sergeeva, E. G. Bagryanskaya, A. L. Markel, V. V. Khramtsov, V. A. Reznikov and N. G. Kolosova, *Biochem. Biophys. Res. Commun.*, 2005, 330, 367.

- 14 R. P. Mason, R. L. Nunnally and P. P. Antich, *Magn. Reson. Med.*, 1991, 18, 71.
- 15 K. A. Krohn, J. M. Link and R. P. Mason, J. Nucl. Med., 2008, 49, 129S.
- 16 (a) K. Yamaguchi, R. Ueki, H. Nonaka, F. Sugihara, T. Matsuda and S. Sando, J. Am. Chem. Soc., 2011, 133, 14208; (b) K. Matsuo, R. Kamada, K. Mizusawa, H. Imai, Y. Takayama, M. Narazaki, T. Matsuda, Y. Takaoka and I. Hamachi, Chem. – Eur. J., 2013, 19, 12875.
- 17 Y. Takaoka, T. Sakamoto, S. Tsukiji, M. Narazaki, T. Matsuda, H. Tochio, M. Shirakawa and I. Hamachi, *Nat. Chem.*, 2009, **1**, 557.
- 18 A. R. Lippert, K. R. Keshari, J. Kurhanewicz and C. J. Chang, J. Am. Chem. Soc., 2011, 133, 3776.
- 19 B. Siegel and J. Lanphear, J. Org. Chem., 1979, 44, 942.
- 20 J. Massari, R. Tokikawa, D. B. Medinas, J. P. F. Angeli, P. D. Mascio, N. A. Assunção and E. J. H. Bechara, *J. Am. Chem. Soc.*, 2011, 133, 20761.
- 21 (a) D. A. Wink, J. F. Darbyshire, R. W. Nims, J. E. Saavedra and P. C. Ford, *Chem. Res. Toxicol.*, 1993, **6**, 23; (b) J. A. Reisz, C. N. Zink and S. B. King, *J. Am. Chem. Soc.*, 2011, **133**, 11675; (c) W. H. Koppenol, J. J. Moreno, W. A. Pryor, H. Ischiropoulos and J. S. Beckman, *Chem. Res. Toxicol.*, 1992, **5**, 834.
- 22 G. Ferrer-Sueta and R. Radi, ACS Chem. Biol., 2009, 4, 161.
- 23 C. T. Lollar, K. M. Krenek, K. J. Bruemmer and A. R. Lippert, Org. Biomol. Chem., 2014, 12, 406.
- 24 R. M. Uppu, Anal. Biochem., 2006, 354, 165.
- 25 K. M. Miranda, A. S. Dutton, L. A. Ridnour, C. A. Foreman, E. Ford, N. Paolocci, T. Katori, C. G. Tocchetti, D. Mancardi, D. D. Thomas, M. G. Epsey, K. N. Houk, J. M. Fukuto and D. A. Wink, *J. Am. Chem. Soc.*, 2005, **127**, 722.
- 26 (a) K. S. Aulak, M. Miyagi, L. Yan, K. A. West, D. Massillon, J. W. Crabb and D. J. Stuehr, *Proc. Natl. Acad. Sci. U. S. A.*, 2001, 98, 12056; (b) S. Roy, S. Sharma, M. Sharma, R. Aggarwal and M. Bose, *Immunology*, 2004, 112, 471.