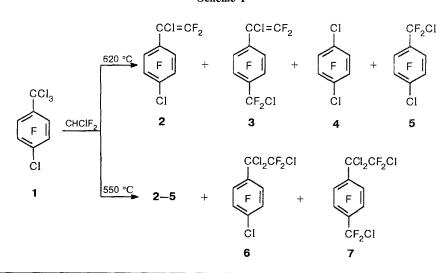
K. V. Dvornikova and V. E. Platonov\*

Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, 9 prosp. Akad. Lavrent'eva, 630090 Novosibirsk, Russian Federation. Fax: +7 (383) 235 4752

Copyrolysis of 4-chlorotetrafluorobenzotrichloride with chlorodifluoromethane (as the source of difluorocarbene) gave 4-chlorodifluoromethyl- $\alpha$ -chlorohexafluorostyrene, 1,4-dichlorotetrafluorobenzene, and 4-(chlorodifluoromethyl)chlorotetrafluorobenzene along with 4-chloro- $\alpha$ -chlorohexafluorostyrene. Possible routes for the formation of these products have been offered.


Key words: copyrolysis; 4-chloro- $\alpha$ -chlorohexafluorostyrene; 4-chlorodifluoromethyl- $\alpha$ -chlorohexafluorostyrene; difluorocarbene; polychlorofluorocyclohexadienes.

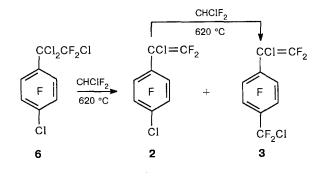
We have shown previously<sup>2,3</sup> that copyrolysis of pentafluorobenzotrichloride and a number of its derivatives with sources of dihalocarbenes affords  $\alpha$ -chloroheptafluorostyrene and the corresponding polyfluorostyrenes. For example, the reaction of 4-chlorotetrafluorobenzotrichloride (1) with CHCIF<sub>2</sub> and tetrafluoroethylene at 620 °C yields 4-chloro- $\alpha$ -chlorohexafluorostyrene (2).

We studied the reaction between compound 1 and  $CHClF_2$  in more detail. Formally, styrene 2 could result from transformations involving the C–Cl bond in the benzyl position.<sup>3</sup> The participation of the  $C_{arom}$ –Cl bond remained unknown.

We showed that copyrolysis of compound 1 with CHClF<sub>2</sub> (620 °C) affords, in addition to the main product 2, 4-chlorodifluoromethyl- $\alpha$ -chlorohexafluorostyrene (3). Small amounts of 1,4-dichlorotetra-fluorobenzene (4) and 4-(chlorodifluoromethyl)chlorotetrafluorobenzene (5) were also detected in the reaction mixture. When the temperature of the reaction was decreased to 550 °C, along with products 2–5, 4-( $\alpha,\alpha,\beta$ -trichlorodifluoroethyl)chlorotetrafluorobenzene (6) and 4-( $\alpha,\alpha,\beta$ -trichlorodifluoroethyl)chlorodifluoromethyl-tetrafluorobenzene (7) were also formed (Scheme 1).

The formation of styrene 2 may have a mechanism analogous to the mechanism given in the literature<sup>3</sup> involving insertion of diffuorocarbene into a C-Cl bond of the CCl<sub>3</sub> group of compound 1 and subsequent




## Scheme 1

Translated from Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 12, pp. 2199–2202, December, 1994. 1066-5285/94/4312-2079 \$12.50 © 1995 Plenum Publishing Corporation

<sup>\*</sup> For Part 30, see Ref. 1.

dechlorination of the intermediate compound **6**. This is confirmed by the facts that the latter compound is isolated when the temperature of copyrolysis of **1** with CHClF<sub>2</sub> is decreased to 550 °C and that copyrolysis of compound **6** with CHClF<sub>2</sub> at 620 °C gives styrene **2**. In this case, styrene **3** is also obtained (Scheme 2).

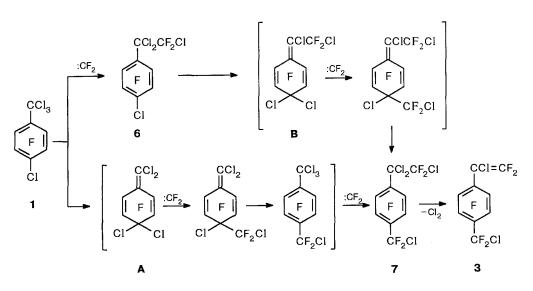
## Scheme 2



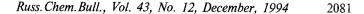
One of the routes for the formation of styrene 3 in the reaction of compound 1 with  $CHClF_2$  is the insertion of difluorocarbene into the  $C_{arom}$ -Cl bond of styrene 2. Styrene 3 is actually formed in the copyrolysis of styrene 2 with  $CHClF_2$  at 620 °C, though in a smaller amount than in the reaction of compound 1 with  $CHClF_2$ under similar conditions.

This fact, as well as the presence of ethylbenzene 6 in the products of the reaction of compound 1 with CHClF<sub>2</sub> at 550 °C and the formation of styrene 3 in the copyrolysis of ethylbenzene 6 with CHClF<sub>2</sub> (620 °C), allow one to suggest that alternative pathways for the formation of styrene 3 may exist. These are the insertion of difluorocarbene into the C—Cl bond of the intermediate cyclohexadienes (A or B) that may result, for example, from isomerization of compounds 1 and 6(Scheme 3).

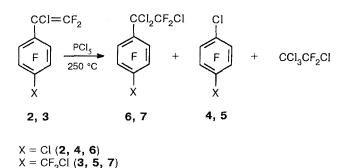
Polyfluorinated methylenecyclohexadienes have been prepared only recently.<sup>4</sup> Copyrolysis of  $\alpha, \alpha$ -dichlorooctafluoroethylbenzene with tetrafluoroethylene affords their analog, *viz.*, perfluoro-7-methylbicyclo[4.3.0]nona-1,4,6-triene.<sup>1</sup> Preparation of *N*-chloriminochloropolyfluorocyclohexadienes<sup>5</sup> and their pyridine analogs,<sup>6</sup> in particular, by thermal isomerization of *N*,*N*-dichloroperfluoroarylamines, has also been reported.


Dichlorobenzene 4 may probably arise similarly to chloropentafluorobenzene<sup>2,3</sup> due to replacement of the trichloromethyl and polychlorofluoroethyl groups in compounds 1 and 6 by chlorine atoms. Dichlorobenzene 4 was found to be the major product of thermolysis of compounds 1 and 6 in the absence of  $CHClF_{2}$ .

In a like manner, compound 5 may be formed from ethylbenzene 7. Another pathway for this compound, *i.e.*, the insertion of difluorocarbene into the  $C_{arom}$ —Cl bond of dichlorobenzene 4, is unlikely under these conditions, since among the products of copyrolysis of the latter with CHClF<sub>2</sub>, only trace amounts of compound 5 are detected.


Ethylbenzenes 6 and 7 were also prepared by reactions of styrenes 2 and 3 with  $PCl_5$  at 250 °C. The process involves partial replacement of the side chain by chlorine and gives compounds 4 and 5, and tetrachloro-1,1-difluoroethane (Scheme 4).

## Experimental


 $^{19}$ F NMR spectra were recorded on a Bruker WP-200 spectrometer in CCl<sub>4</sub> and CDCl<sub>3</sub>. C<sub>6</sub>F<sub>6</sub> was used as the internal standard. IR spectra were obtained on a UR-20



Scheme 3







spectrometer in CCl<sub>4</sub>, and UV spectra were run on a Specord UV-VIS spectrophotometer in EtOH. Mol. weights were determined on a Finnigan-MAT 8200 mass spectrometer. GLC analysis was carried out on an LKhM-7A chromatograph with a heat-conductivity detector and linear temperature programming (10 °C min<sup>-1</sup>); a 4000×4 mm column with SKTFT-50 and SKTFV-803 (15 % each on Chromosorb) was used; N<sub>2</sub> (200 mL min<sup>-1</sup>) and He (60 mL min<sup>-1</sup>) were used as carrier gases. The components were identified by adding authentic samples. Preparative GLC was carried out under the conditions of the analytical GLC using SKTFT-50 on zeolite (125 °C, N<sub>2</sub>).

**Pyrolysis of compounds 1, 2, 4, and 6**. Polyfluoroaromatic compounds were passed through a heated quartz tube  $(400 \times 20 \text{ mm})$  placed in an electric furnace, at a rate of 25–30 g h<sup>-1</sup> in a flow of CHClF<sub>2</sub> (15–20 L h<sup>-1</sup>) or argon (5–10 L h<sup>-1</sup>). The reaction mixture was distilled with steam, and the products were analyzed by GLC and IR and <sup>19</sup>F NMR spectroscopy. Individual compounds 2, 3, and 4 from run 3 (Table 1) were isolated by rectification. Compound 5 was isolated from the enriched fraction using preparative GLC. The experimental conditions and the compositions of the reaction mixtures are presented in Table 1. The presence of compounds 2–7 in

the reaction mixtures was confirmed by IR and  $^{19}$ F NMR spectroscopy and GLC.

Compound 3, b.p. 102 °C (40 Torr). Found (%): C, 32.20; Cl, 21.30; F, 46.67. Mol. weight 329.9252 (MS).  $C_9Cl_2F_8$ . Calculated (%): C, 32.63; Cl, 21.45; F, 45.92. Mol. weight 329.9249 (<sup>35</sup>Cl). IR, v/cm<sup>-1</sup>: 1745 (C=C); 1490, 1655 (fluor. arom. ring). UV,  $\lambda_{max}/nm$  (ɛ): 208 (12400), 256 (5300), 290 sh (2900). <sup>19</sup>F NMR, δ: 23.3 (2 F(3,5)); 26.7 (2 F(2,6)); 81.1 (1 F(y)\*,  $J_{F(y),F(x)} = 17.5$ ,  $J_{F(y),F(2,6)} = 7.5$  Hz); 82.2 (1 F(x),  $J_{F(x),F(y)} = 17.5$ ,  $J_{F(x),F(2,6)} = 1.5$  Hz, cf. Ref. 3); 115.4 (2 F, CF<sub>2</sub>Cl,  $J_{CF_2}$ , F(3,5) = 30, cf. Ref. 7:  $J_{CF_2,o-F} = 31.5$  Hz for  $C_6F_5CF_2Cl$ ).

Compound 5, b.p. 81–82 °C (40 Torr). Found (%): C, 30.93; Cl, 26.23; F, 42.24. Mol. weight 267.9283 (MS). C<sub>7</sub>Cl<sub>2</sub>F<sub>6</sub>. Calculated (%): C, 31.23; Cl, 26.39; F, 42.38. Mol. weight 267.9281. IR, v/cm<sup>-1</sup>: 1497, 1633 (fluor. arom. ring). UV,  $\lambda_{max}/nm$  ( $\varepsilon$ ): 214 (10406), 227 (10520), 281 (1960). <sup>19</sup>F NMR,  $\varepsilon$ : 22.9 (2 F(3,5)); 23.5 (2 F(2,6)); 115.6 (2 F, CF<sub>2</sub>Cl,  $J_{CF_2,F(3,5)} = 30$  Hz).

 $J_{CF_2,F(3,5)} = 30$  Hz). Preparation of 4-( $\alpha,\alpha,\beta$ -trichlorodifluoroethyl)chlorotetrafluorobenzene (6) and 4-chlorodifluoromethyl- $\alpha$ , $\alpha$ , $\beta$ trichlorodifluoroethyltetrafluorobenzene (7). A. A mixture of 10 g of styrene 2 and 22 g of PCl<sub>5</sub> was heated for 6 h in a sealed tube at 250 °C. The tube was cooled and opened, and the reaction mixture was poured on ice. The organic layer was washed with water and dried with MgSO<sub>4</sub> to give 11.7 g of a mixture that contained, according to GLC, three major products: compounds 6 and 4, and CCl<sub>3</sub>CF<sub>2</sub>Cl (64, 20, and 14 %, respectively). Dichlorobenzene 4 and ethylbenzene 6 were isolated by vacuum distillation. According to GLC, the mixture from the trap contained compound 4 (39 %) and CCl<sub>3</sub>CF<sub>2</sub>Cl (58 %). The presence of the latter was confirmed by spectroscopic data. The IR spectrum of the mixture is in agreement with the spectra of individual compound 4 and CCl<sub>3</sub>CF<sub>2</sub>Cl (see Ref. 8). The <sup>19</sup>F NMR spectrum exhibited

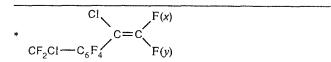



Table 1. Thermal transformations of compounds 1, 2, 4, and 6

| Run | Starting<br>compound* | Gas                | Temperature<br>/°C | Yield of the mixture /g | Content in the mixture (%)<br>(GLC) |    |     |     |
|-----|-----------------------|--------------------|--------------------|-------------------------|-------------------------------------|----|-----|-----|
|     |                       |                    |                    |                         | 2                                   | 3  | 4   | 5   |
| 1   | 1                     | CHCIF,             | 550                | 0.88                    | 34                                  | 7  | 9   | 3** |
| 2   | 1                     | $CHCIF_{2}$        | 620                | 0.68                    | 52                                  | 14 | 6   | 4   |
| 3   | 1                     | $CHClF_{2}$        | 620                | 1490.0                  | 58                                  | 19 | 7   | 5   |
| 4   | 1                     | CHCIF <sub>2</sub> | 690                | 0.87                    | 46                                  | 9  | 13  | 6   |
| 5   | 1                     | Ar                 | 620                | 1.43                    |                                     | -  | 50  |     |
| 5   | 2                     | CHCIF <sub>2</sub> | 620                | 0.75                    | 75                                  | 7  | 1-2 | <1  |
| 7   | 2                     | Ar                 | 620                | 0.81                    | 87                                  |    | 1-2 |     |
| 8   | 4                     | CHClF <sub>2</sub> | 620                | 0.75                    |                                     |    | 95  | 2-3 |
| 9   | 6                     | $CHCIF_{2}$        | 620                | 0.64                    | 78                                  | 10 |     |     |
| 10  | 6                     | Ar                 | 620                | 0.54                    | 44                                  |    | 46  |     |

\* The following amounts of the starting compound were used: run 3 - 1500 g, run 5 - 1.8 g, each of the other runs - 1 g. \*\* The mixture also contained compounds 6 (34 %), 7 (5 %), and 1 (8 %). two signals,  $\delta$  22.4 and 97.4. The latter was assigned to CCl<sub>3</sub>CF<sub>2</sub>Cl (see Ref. 9:  $\delta$  97.4). The analysis of the mass spectrum of the mixture confirms the presence of both components: a peak at m/z 167 corresponds to CCl<sub>3</sub>CF<sub>2</sub>Cl [M-Cl]<sup>+</sup>, and dichlorobenzene **4** is responsible for the peaks at m/z 218 [M]<sup>+</sup> and 183 [M-Cl]<sup>+</sup>.

Compound **6**, b.p. 100 °C (25 Torr). Found (%): C, 27.13; Cl, 39.81; F, 32.24. Mol. weight 349.8667 (MS).  $C_8Cl_4F_6$ . Calculated (%): C, 27.27; Cl, 40.34; F, 32.39. Mol. weight 349.8658. IR, v/cm<sup>-1</sup>: 1480, 1630 (fluor. arom. ring). UV,  $\lambda_{max}/nm$  ( $\varepsilon$ ): 217 (13000), 230 (14300), 283 (2100). <sup>19</sup>F NMR,  $\varepsilon$ : 22.8 (2 F(2,6); 33.5 (2 F(3,5)); 99.1 (2 F, CF<sub>2</sub>Cl,  $J_{CF_2,F(3,5)} = 16.2$  Hz, cf. Refs. 1, 10:  $J_{CF_2,o-F} = 16.5$  Hz for  $C_6F_5CCl_2CF_2Cl$ ).

**B**. The interaction of 5 g of styrene **3** with 9.5 g of PCl<sub>5</sub> as described in procedure **A** gave 5.5 g of a mixture. Vacuum distillation afforded compound **7** and a fraction containing benzyl chloride **5** (85 %). In addition, a mixture containing compound **5** (57 %) and CCl<sub>3</sub>CF<sub>2</sub>Cl (28 %) was obtained. The presence of these products was confirmed in a way similar to that in procedure **A**. Compound **7**, b.p. 106 °C (17 Torr). Mol. weight determined by high-resolution mass spectrometry: 399.8622. C<sub>9</sub>Cl<sub>4</sub>F<sub>8</sub>. Calculated: mol. weight 399.8626 (<sup>35</sup>Cl). IR, v/cm<sup>-1</sup>: 1476, 1640 (fluor. arom. ring). UV,  $\lambda_{max}/nm$  ( $\varepsilon$ ): 209 (14600), 221 (14000), 290 (3300). <sup>19</sup>F NMR,  $\delta$ : 23.9 (2 F(3,5)); 35.4 (2 F(2,6)); 99.6 (2 F,  $\beta$ -CF<sub>2</sub>Cl,  $J_{CF_2,F(2,6)} = 16.75$  Hz); 114.6 (2 F, 4-CF<sub>2</sub>Cl,  $J_{CF_2,F(3,5)} = 29.5$  Hz).

## References

- K. V. Dvornikova, V. E. Platonov, and G. G. Yakobson, *Izv. Akad. Nauk, Ser. Khim.*, 1993, 1767 [*Russ. Chem. Bull.*, 1993, 42, 1690 (Engl. Transl.)].
- K. V. Dvornikova, V. E. Platonov, and G. G. Yakobson, *Zh. Org. Khim.*, 1975, 11, 2372 [*J. Org. Chem. USSR*, 1975, 11 (Engl. Transl.)].
- 3. K. V. Dvornikova, V. E. Platonov, and G. G. Yakobson, J. Fluor. Chem., 1985, 28, 99.
- 4. W. Dmovski, Y. Porwisiak, J. Krajewski, A. Mishnyov, and A. Kemme, J. Fluor. Chem., 1993, 62, 15.
- R. E. Banks, M. G. Barlow, T. J. Noakes, and M. M. Saleh, J. Chem. Soc., Perkin Trans. 1, 1977, 1746;
  Yu. G. Shermolovich, O. M. Polumbrik, L. N. Markovskii,
  E. P. Saenko, G. G. Furin, and G. G. Yakobson, Zh. Org. Khim., 1977, 13, 2589 [J. Org. Chem. USSR, 1977, 13 (Engl. Transl.)].
- R. E. Banks, M. G. Barlow, J. C. Hornby, and M. Mamaghani, J. Chem. Soc., Perkin Trans. 1, 1980, 817.
- 7. V. E. Platonov, V. M. Karpov, and G. G. Yakobson, USSR Pat. 380629, Byul. izobret., 1973, 21.
- 8. The Sadtler Standarted Spectra. Infrared Grating Spectra.
- 9. Annual Reports on NMR Spectroscopy, 1983, 14, 129.
- K. V. Dvornikova, Ph. D. (Chem.) Thesis, Inst. of Organic Chemistry, Siberian Branch of the USSR Acad. Sci., Novosibirsk, 1982.

Received June 7, 1994