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conformational flexibility to the active site allowing different 
substrates to enter the catalytic center of the enzyme as shown 
for the L-enantiomers in Table I .  

The higher initial rates obtained with N-acetyl-L-amino acids 
present during the bio-imprinting procedure than those obtained 
without ligand are noteworthy. 

After an initial lag phase (24-36 h for D-ester synthesis and 
1-3 h for L-ester synthesis) the enzyme lost some of its induced 
substrate specificity and was able to also synthesize the esters of 
the two N-acetylated amino acids not present during the bio-im- 
printing. However, this took place at  a lower rate, 2-30% of the 
rate obtained when the substrate was used during the bio-im- 
printing. The lost specificity might be due to conformational 
changes which may occur due to water molecules produced during 
the enzymatic reaction. For the L-ester synthesis it was shown 
in preliminary experiments that small additions of water a t  the 
outset reduced the lag phase considerably (data not shown). This 
is in  accordance with the discussion above concerning water ad- 
dition. 

Two-thirds (68%) of the active sites were accessible to the 
substrates as determined with active site titration with trans- 
cinnam~ylimidazole.~*~ Furthermore, a-chymotrypsin irreversibly 
inhibited with phenylmethylsulfonyl fluoridelo prior to bio-im- 
printing was completely inactive in the synthesis of ester indicating 
that the active site serine is involved in catalysis. The effects of 
bio-imprinting are thus active-site related and not a general 
protein-related property. 
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(8) Bio-imprinted (8 mg) a-chymotrypsin was suspended in 2 mL of cy- 
clohexane and sonicated (1 min). Ethanol (0.5 ml) with 0.1 M N-acetylated 
amino acid was added. Product formation was followed with HPLC. Optical 
purity of the product was determined to be at least 98% as judged by meas- 
uring the specific rotation polarimetrically. 
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Transformations of typical metal reagents by transition-metal 
catalysis provide new methodology for selective organic synthesis.l 
Recently, considerable attention has been paid to organosilyl- 
stannanes, R,SnSiR{ (l).2-5 Silylstannanes (1) add to I-alkynes 

(1) (a) Collman, J. P.; Hegedus, L. S.; Norton, J. R.; Finke, R. G. Prin- 
ciple and Applications of Orgonotransition Metal Chemistry; University 
Science Books: Mill Valley, CA, 1987; pp 704-720. (b) Negishi, E.-I. 
Advances in Metal-Organic Chemistry; Liebeskind, L. S. ,  Ed.; JAI Press: 
Greenwich, CT, 1988; Vol. I ,  pp 177-207. 

(2) (a) Kosugi, M.; Ohya, T.; Migita, T. Bull. Chem. Soc. Jpn. 1983.56, 
3539. (b) Lipshuta, B. H.; Reuter, D. C.; Ellsworth, E. L. J .  Org. Chem. 1989, 
54, 4975. 

(3) Mori, M.; Kaneda, N.; Shibasaki, M. J .  Org. Chem. 1991, 56, 3486. 
(4) (a) Mitchell, T. N.; Killing, H.; Dicke, R.; Wickenkamp, R. J. Chem. 

Soc.,  Chem. Commun. 1985, 354. (b) Mitchel, T. N.; Wickenkamp, R.; 
Amamria, A.; Dicke, R.; Schneider, U. J .  Org. Chem. 1987, 52, 4868. (c) 
Chenard, B. L.; Laganis, E. D.; Davidson, F.; RajanBabu, T. V. J .  Org. Chem. 
1985.50, 3666. (d) Chenard, B. L.; Van Zyl, C. M. J .  Org. Chem. 1986,51, 
3561. (e) Murakami, M.; Morita, Y.; Ito, Y. J .  Chem. Soc., Chem. Commun. 
1990, 428. 
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in the presence of Pd(PPh3)., to give alkenes having vicinal silyl 
and stannyl substituents? The same catalyst induces the insertion 
of isonitriles into the Sn-Si bond of l.5 The stannyl and silyl 
moieties in those products4qs can be utilized in further function- 
a l i ~ a t i o n s . ~ ~ * ~  However, to our knowledge, there have been no 
reports on the addition of 1 to dienes and unactivated olefins. 

We disclose here the first example of 1,4-silylstannation of 
1,3-dienes (eq 1). The reaction is highly regie and stereoselective. 

R4 R5 

R4 R5 
I I  

( E )  
3a-g 

R1,SnCH,C=CCH,SiR2,R3 (1 )  

All the products in this study are new compounds, which possess 
allylic silane and allylic stannane functionalities in the same 
molecule sharing the same carbon-carbon double bond. The allylic 
silanes' and allylic stannaned arc extremely important in selective 
organic synthesis. Therefore, the present 1 ,4-silylstannation will 
offer a new class of versatile building block. 

When (trimethylsilyl)tributylstannane (la) was allowed to react 
with 3 equiv of 1,3-butadiene (2a) in the presence of a catalytic 
amount ( 5  mol %) of Pt(C0)2(PPh3)2 in toluene at 100 "C for 
6 h, the 1,4-silylstannation product (3a) was obtained as a single 
isomer in excellent yield (Table I, entry 1)9  All the spectral datal0 
show that the adduct has exclusively (E)-  1,4 structure. The nature 
of the catalyst precursor has a critical effect on the reaction. The 
palladium(0) complexes, which were the most effective catalyst 
precursors in the precedent studies using 1,=," are almost inactive 
with the substrates reported here (yield of 3a: Pd(PPh3)4 trace 
(entry 3), Pd(CO)(PPh,), 2%). Among the platinum complexes 
examined, Pt(C0),(PPhJ2 gave the best result. Other platinum 
complexes give less favorable results (yield of 3a: Pt(PPh3)4 29%, 
Pt(C2H4)(PPh3), 13% PtCI2(PPh3), trace, Pt(DBA), 0%, Pt- 
(DBA)Z + 2PPh3 12%)." 

(5) (a) Ito, Y.; Bando, T.; Matsuura, T.; Ishikawa, M. J .  Chem. Soc., 
Chem. Commun. 1986, 980. (b) Ito, Y. Pure Appl. Chem. 1990, 62, 583. 

(6) (a) Ito, Y.; Matsuura, T.; Murakami, M. J .  Am. Chem. Soc. 1987, 109, 
7888. (b) Murakami, M.; Matsuura, T.; Ito, Y. Tetrahedron Lett. 1988,29, 
355. (c) Chenard, B. L.; Van Zyl, C.; Sanderson, D. R. Tetrahedron Lett. 
1986, 27, 2801. 

(7) (a) Colvin, E. W. Silicon Reagents in Organic Synthesis; Academic: 
London, 1988; pp 25-37. (b) Weber, W. P. Silicon Reagents for  Organic 
Synthesis; Springer: Berlin, 1983; pp 173-205. (c) Colvin, E. W. Silicon in 
Organic Synfhesis; Butterworths: London, 1981; pp 97-124. 

(8) Pereyre, M.; Quintard, J.-P.; Rahm, A. Tin in Organic Synrhesis; 
Butterworths: London, 1987; pp 185-258. 

(9) A typical procedure is as follows: 1,3-Butadiene (1.5 mmol, 0.94 mL 
of 1.6 M stock solution in toluene), Pt(CO),(PPh,), (19 mg, 0.025 mmol), 
l a  (181 mg, 0.5 mmol), toluene (2.0 mL), and a magnetic stirring bar were 
placed under argon flow in a 30 mL stainless steel autoclave containing an 
inserted glass tube. An air purge was confirmed by three pressurization (20 
atm)-depressurization sequences with argon. After the reaction, the mixture 
was passed through a short Florisil column (8 mm i.d. X 50 mm) and the 
product (38) was isolated by Kugelrohr distillation (pot temperature 115 OC 
(0.5 mmHg); 175 mg, 84%). 

(10) 3s: 'H NMR (CDCI]) 6 -0.02 (s, 9 H), 0.82-0.94 (m, 15 H), 

1 H, J = 15 Hz, 7 Hz), 5.38 (dt, 1 H, J = 15 Hz, 7 Hz); I3C NMR (CDCI,) 

121.5 ( d , J s d  = 48 Hz), 127.6 (d, J s d  = 44 Hz); "%n NMR (C6Ds) -17.74 
ppm; MS (EI) m/e 418 (M'). Anal. Found: C, 54.40; H, 10.08. Calcd for 
C19H42SnSi: C, 54.68; H, 10.14. 3 b  IH NMR (CDCI,) 6 -0.01 (s, 9 H), 
0.83-0.96 (m, 15 H), 1.24-1.56 (m, 12 H), 1.50 (d. 2 H), 1.55 (s, 3 H), 1.77 

261, 271 Hz), 27.55 (t, 2J = 54 Hz), 29.32 (t. 'JSd = 24 Hz), 115.9 (d, 
' J s d  = 44 Hz), 132.3 ( S , ~ J ~ &  = 44 Hz); "%n NMR -16.04 ppm; MS (EI) 
m / e  432 (M'). Anal. Found: C, 55.40; H, 10.52. Calcd for C2,,H4SnSi: 
C, 55.69; H, 10.28. 

(1 1) Only one side (lower field) of the satellite peaks was observed. The 
pair (higher field) to the observed side could not be distinguished because of 
overlap with other proton resonances. 
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1.24-1.55 (m, 12 H), 1.48 (d, 2 H), 1.70 (d, 2 H, 'JSbH 

6-1.87 (q), 9.15 (t, ' J s d  
I J s n c  

58 Hz), 5.19 (dt, 

296 Hz, 310 Hz), 13.74 (q), 14.26 (t), 22.61 (t, 
24 Hz), 261, 270 Hz), 27.42 (t, 'Jsn< = 65 Hz), 29.26 (t, ,JSn< 

(s, 2 H, 2 J * ~  
(t, 'Jsnx 

59 Hz"), 5.03 (t, 1 H); "C NMR (CDCI,) 6 -1.57 (q), 9.54 
292, 306 Hz), 13.77 (q), 18.46 (q), 18.73 (t), 22.25 (t, 'Jsn< * 
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Table I. 1.4-Silylstannation of 1,3-Dienes' 
silylstannane 1 diene 2 product 3 

entry R' R2 R3 R4 RS yield: 76 
1 9 n-Bu Me Me a H H a 84. 93e (98) 
2d 
3e 
4 
s' 
6 
7 
8 
9 
IO 

n-Bu 
n-Bu 
n-Bu 
n-Bu 
n-Bu 
Me 
Me 
Me 
n-Bu 

Me 
M e  
M e  
Me 
Me 
Me 
M e  
Me 
Me 

Me 
Me 
Me 
Me 
t-Bu 
C6H5 

t-Bu 
C6HS 

Me 

a H 
a H 
b Me 

a H 
a H 
b M e  
a H 
d Me 

C C6HS 

H 
H 
H 
H 
H 
H 
H 
H 
M e  

52'(62). 
truce 
84 
8 5  
0 
35 
30 
26 
70 

' 1  (0.5 mmol), 2 (1 .5 mmol), Pt(C0)2(PPh3)2 (0.025 mmol), toluene (2.0 mL), a t  100 "C for 6-8 h. *Isolated yield. Numbers in parentheses 
show GLC yields determined by the internal standard method. CIsolated yield from larger scale reaction (la; 1.0 mmol). d A t  80 OC. CCatalyst; 
Pd(PPh3)A (0.025 mmol). f2c (0.5 mmol). #The stereochemistry is not determined. 

Isoprene (2b) and 2-phenyl-l,3-butadiene (2c) also react with 
la  to afford the corresponding single 1,4-silylstannation products 
in high isolated yield (Table I, entries 4 and 5 ) .  The most im- 
portant feature of the reaction is its high regio- and stereoselec- 
tivities. The regiochemistry of the products was determined by 
C-H COSY spectra. For the isoprene adduct (3b), the methylene 
carbon resonance (6 22.25: with 117J'9Sn-satellites; IJsnq = 261, 
271 Hz) of the Sn-CH2-C= linkage has a cross peak coupled 
with the proton resonance (6  1.77) which appears as a singlet. 
The same type of C-H correlation was obtained for 2-phenyl- 
1,3-butadiene adduct (3c). These observations definitely indicate 

the 1 ,4-silylstannation products are currently under investigation. 
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3b: R4 = CH, 
3c: R4=C6H5 

that the regiochemistry of the products is what is shown by the 
structures of 3b and 3c. As for the stereochemistry, the (E)-1,4 
configurations are unambiguously confirmed by NOE difference 
spectra with irradiation at  the olefin protons. Thus, the 1,4-si- 
lylstannation of 2a, Zb, and 2c is found to be highly regio- and 
stereoselective, affording the corresponding single ( E ) -  1,4 isomer 
e x c I ~ s i v e l y . ~ ~  

Other organosilylstannanes with more bulky substituents are 
less reactive. (terr-Butyldimethylsily1)tributylstannane (lb) did 
not give the 1 ,4-silylstannation product (entry 6). However, 
(dimethylphenylsily1)trimethylstannane (IC) and (tert-butyldi- 
methylsily1)trimethylstannane (ld) afforded the corresponding 
single 1,4-silylstannation products (3d-f) regio- and stereoselec- 
tively (entries 7-9), although the yields decreased considerably 
as compared with la. With 2,3-dimethyl-1,3-butadiene (2d), the 
reaction proceeded regioselectively (1,4-addition) in high yield 
(entry 10). The reaction of 1,3-pentadiene (2e) with l a  was 
sluggish, giving (E)-1,4 adduct in a low yield (25%) and with low 
regioselectivity. Further studies on the scope and limitation of 
the 1,4-silylstannation and on reactivity and synthetic utility of 

(12) Other selected transition-metal catalyst precursors ( 5  mol W) such as 
RhCI(PPhJ,, IrCI(CO)(PPh3)2, Ru(COD)(COT), and M ~ I ~ ( C O ) , ~  did not 
give any 1,4-silylstannation products at all. 

( I  3) The reaction of 1' or disilanes" with alkynes affords only Z alkenes 
stereoselectively. 1,4-Disilylation of 1,3-dienes with disilanes'l :;so gave 
(Z)-I ,4-disilyl products. In the present 1,4-silylstannation reaction, there 
might be some possibility that (Z)-1,4 adducts are kinetic products and the 
(E)-1,4 products are formed via (Z)- (E)  isomerization. However, any (2)-1,4 
adducts were not detected in the reaction mixtures even at lower conversions 
of I ,  indicating that such (Z) - (E)  isomerization during the course of the 
reaction is unlikely. 

(14) (a) Ito, Y.; Suginome, M.; Murakami, M. J .  Org. Chem. 1 9 9 1 ,  56, 
1948. (b) Okinoshima, H.; Yamamoto, K.; Kumada, M. J .  Orgunomet. 
Chem. 1975, 86, C27. (c) Tamao, K.; Hayashi, T.; Kumada, M. J .  Orgu- 
nomer. Chem. 1976, 114, C19. (d) Watanabe, H.; Kobayashi, M.; Higuchi, 
K.; Nagai, Y. J .  Orgunomet. Chem. 1980, 186, 5 1 .  (e) Sakurai, H.; Komi- 
yama, Y.; Nakadaira, Y. J .  Am. Chem. SOC. 1975, 97, 931. 

( I  5 )  (a) Tamao, K.; Okazaki, S.; Kumada, M. J .  Orgunomet. Chem. 1978, 
14687.  (b) Matsumoto, H.; Shono, K.; Wada, A.; Matsubara, I.; Watanabe, 
H.; Nagai, Y. J .  Orgunomet. Chem. 1980, 199, 185. 
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Uvaricin (1) was the first reported member of the family of 
Annonaceous acetogenins.2 Over thirty relatives are now known; 
their structural and considerable biological features have been 
recently r e ~ i e w e d . ~  Our interest in this area was provoked by 
the opportunity to develop polyepoxide cascade r e a ~ t i o n s ~ ~ , ~  for 
the purpose of determining important stereochemical issues4f*d 
related to the relative configurations of the central tetrahydrofuran 
rings present in these natural products. It continues with synthesis 
issues. Described here is the first preparation of a member of this 
series-albeit a diastereomeric, non-natural one (vide infra). 

threo - Hoe Me 

threo - ~~ 

trans 
19 

3 (+)-Uvaricin 
I.-J 

trans 
erythro - 
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