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SYNTHESIS OF (2R, 6R)-(-)-2,6-LUPETIDINE: 2,6-DISUBSTITUTED PIPERIDINES
AS POTENTIALLY USEFUL "C2-SYMMETRIC" CHIRAL REAGENTS.

Samir Najdi and Mark J. Kurth*!
Department of Chemistry
University of California, Davis
Davis, California 95616

Abstract: (2R, 6R)-(-)-2,6-Lupetidine has been synthesized from (§)-1,2-epoxypropane and (28,
6S)-(-)-2,6-bis(benzyloxymethyl)piperidine has been synthesized from (S)-benzyloxymethyl
oxirane.

When compared to chiral auxiliary reagents with no symmetry, the presence of a C2 symmetry
axis within the auxiliary often offers unique advantage in achieving asymmetric induction for a given
chemical transformation. Indeed the primary benefit of a C2-symmetric auxiliary is that the number
of competing diastereomeric transition-states is greatly reduced, making' system and protocol design
more rational.2 Given the impressive asymmetric induction applications3 found for trans-2,5-
dimethylpyrrolidine (and analogs), we became intrigued with the chiral auxiliary possibilities for its
6-membered ring homolog trans-2,6-dimethylpiperidine. The dynamics of auxiliary-mediated
transformations are such that subtle differences in non-bonding interactions spell the difference
between excellent and unacceptable levels of asymmetric induction. In that vein, it is interesting to
note the conformational differences between amides 1 and 2 which are displayed as computer
generated stereoscopic views of MM2 minimized structures;4 C2 symmetry in the pyrrolidine
auxiliary is obvious, while the piperidine auxiliary manifests functional C2 symmetry as a
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A THF solution of readily available, enantiomerically pure (S)-1,2-epoxypropane’? was added
dropwise to a THF/HMPA solution of methyl phenyl sulfone dianion (from methyl phenyl sulfone
and 2 eq. n-BuLi)3 giving 4-(benzenesulfonyl)-(2S, 65)-heptanediol (5) as a viscous oil after
purification by chromatography on silica gel (96%; [a]p +50.0°, ¢ = 1.190 in CHCl3). Treating a
pyridine solution of 5 with p-toluenesulfonyl chloride (2.2 eq.) delivered bis(tosylate) 6 in 78%
chromatographed yield ([a]p -43.7°, ¢ = 1.095 in CHCl;3) and set the stage for heterocycle formation.
Thus, a neat solution of 6 in excess benzylamine (=25 eq.) was heated at 85°C for 1 h.9 Vacuum
evaporation of the excess benzylamine followed by chromatography on silica gel produced piperidine
7 (90%). Both tosylate displacements proceeded with inversion as trans-7 was the only product; none
of the corresponding cis-dimethyl isomer was detected. The bis(mesylate) analog of 6 was not a
useful precursor to piperidine 7 as it proved insoluble in neat benzylamine and a
benzene/benzylamine co-solvent system which dissolved the bis(mesylate) gave no product after 24
hours at reflux.

In acyclic sulfones 5 and 6, the carbon bearing the phenyl sulfone moiety is a chirotopic,
nonstereogenic center.10 Interestingly, even though the phenyl sulfone moiety in piperidine 7 is
locked cis to one methyl substituent and trans to the other methyl substituent, this carbon remains
chirotopic but nonstereogenic due to pyramidal inversion of the 3°-nitrogen. As a consequence, 7 has
a "C2 symmetry axis"!! and this 1,2,4,6-tetrasubstituted piperidine derivative is obtained
isomerically pure as a white solid (m.p. 134-5°C from hexane/ether; [a]p -18.6°, ¢ = 1.704 in CHCla).
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All that remained in the preparation of 3 was reductive removal of the benzyl and phenyl sulfone
moieties; unfortunately, attempts at the one-pot conversion of 7 to 3 proved inadequate. For
example, sodium in liquid ammonia reduction of 7 gave none of 3 and only a low yield of 8.
Therefore, a two-pot conversion was developed which consisted of 40% sodium amalgam
desulfonylation to 8 (93%; [alp -72.2°, ¢ = 3.18 in CHCl;) followed by hydrogenolysis of the benzyl-
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nitrogen moiety with Pearlman's catalyst. (-)-2,6-Lupetidine was conveniently isolated as its
hydrochloride in 89% yield from 8 (3-HCI12: mp 247-9°C; [a]p +12.8°, ¢ = 3.06 in EtOH).

In similar fashion, the 2,6-bis(benzyloxymethyl) analog of 3, piperidine 4, was prepared starting
from (S)-benzyloxymethyl oxirane.!3 Condensation of this electrophile with the methyl phenyl
sulfone dianion produced 1,7-bis(benzyloxy)-4-benzenesulfonyl-(2R, 6R)-heptanediol (9) in 91%
yield ( [a]p +19.1°, ¢ = 1.04 in CHCI3). To our surprise, the bis(tosylate) derived from this diol
reacted only sluggishly with benzylamine whereas desulfonylated bis(tosylate) 11 reacted nicely.
Thus, 9 was subjected to 40% sodium amalgam desulfonylation to give diol 10 ([a]p -4.8°, ¢ =1.19in
CHCl3) as a viscous oil in 91% yield after chromatography on silica gel. Bis(tosylation) with p-
toluenesulfonyl chloride (2.2 eq.) in pyridine furnished 11 (86%; [a]p +3.9°, ¢ = 1.35 in CHCl;) and
set the stage for piperidine formation.

In the event, a neat solution of 11 in excess benzylamine (=25 eq.) at 85°C for 3 h followed by
vacuum evaporation of the excess benzylamine and chromatography on silica gel produced piperidine
12 in 88% yield ([o]p -29.1°, ¢ = 1.12 in CHCl3). Selective N-debenzylationl4 was effected by
stirring a dry ethanol solution of 12 for 1 h with Pearlman's catalyst under one atmosphere of
hydrogen giving (25, 6S)-(-)-2,6-bis(benzyloxymethyl)piperidine!s (4; 96%; [a]p -1.9°, ¢ = 1.82 in
CHClz).
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This strategy for the preparation of "C2 symmetric" amines like 3 and 4 can be CO.H

easily generalized to include a wide variety of 2,6-disubstituted piperidines. The /\)\/\
synthetic potential of these substrates as chiral auxiliaries, for example in directing 13
double diastereoselective (i.e., group and face selective) iodolactonization of dienamides derived
from 3 or 4 and dienoic acid 13, will be reported in due course.
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