SPECIAL ISSUE RESEARCH ARTICLE

WILEY

Solid-state nuclear magnetic resonance of spin-9/2 nuclei ¹¹⁵In and ²⁰⁹Bi in functional inorganic complex oxides

Kent J. Griffith 🖻 | Fenghua Ding | Steven Flynn

Department of Chemistry, Northwestern University, Evanston, Illinois, USA

Correspondence

Kent J. Griffith, Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA. Email: kent.griffith@northwestern.edu

Funding information Basic Energy Sciences

Abstract

Indium and bismuth are technologically important elements, in particular as oxides for optoelectronic applications. ¹¹⁵In and ²⁰⁹Bi are both I = 9/2 nuclei with high natural abundances and moderately high frequencies but large nuclear electric quadrupole moments. Leveraging the quadrupolar interaction as a measure of local symmetry and polyhedral distortions for these nuclei could provide powerful insights on a range of applied materials. However, the absence of reported nuclear magnetic resonance (NMR) parameters on these nuclei, particularly in oxides, hinders their use by the broader materials community. In this contribution, solid-state ¹¹⁵In and ²⁰⁹Bi NMR of three recently discovered quaternary bismuth or indium oxides are reported, supported by density functional theory calculations, numerical simulations, diffraction and additional multinuclear (²⁷Al, ^{69,71}Ga, and ¹²¹Sb) solid-state NMR measurements. The compounds LiIn₂SbO₆, BiAlTeO₆, and BiGaTeO₆ are measured without special equipment at 9.4 T, demonstrating that wideline techniques such as the QCPMG pulse sequence and frequency-stepped acquisition can enable straightforward extraction of quadrupolar tensor information in $I = 9/2^{115}$ In and ²⁰⁹Bi even in sites with large quadrupolar coupling constants. Relationships are described between the NMR observables and local site symmetry. These are amongst the first reports of the NMR parameters of ¹¹⁵In, ¹²¹Sb, and ²⁰⁹Bi in oxides.

1 | INTRODUCTION

Bismuth- and indium-based complex oxides, that is, oxides containing multiple metal cations, are important functional inorganic materials with a central role in many optoelectronic and energy-related applications. Tin-doped bixbyite indium oxide (In_2O_3) is an n-type transparent conducting oxide^[1-3] used in display technology,^[4,5] electrochromic smart windows,^[6–8] and photovoltaics.^[9–11] Complex indium-containing oxides are being developed for the next generation of electronic materials.^[12–16] Lithium indium oxides have been studied as prospective solid electrolytes for all-solid-state lithium-ion batteries.^[17–19] Substituted versions of fluorite bismuth oxide $(\delta$ -Bi₂O₃)^[20–23] and Aurivillius-type mixed-metal bismuth oxides^[20,24,25] host some of the highest known oxygen-ion conductivities. Bismuthate glasses are nontoxic candidates to replace lead oxide in zero-stress optic materials.^[26,27] The stereochemically active lone pair in Bi³⁺ can lead to noncentrosymmetric structures with useful optoelectronic and ferroic properties.^[28–32]

Given the range of technological applications and frequently cation-mixed and/or poorly diffracting nature of bismuth and indium oxides, it is desirable to develop alternative metrologies to study their atomic environments. ¹¹⁵In and ²⁰⁹Bi solid-state nuclear magnetic resonance (NMR) spectroscopy could, in principle, offer additional insights into the local coordination, symmetry. and ionic/polyhedral dynamics. The quadrupolar interaction, specifically, yields information on the spherical (C_{Ω}) and axial (η_{Ω}) symmetry.^[33] spin 9/2 with Both nuclei are moderate gyromagnetic ratios ($\gamma_{^{115}In} = 5.8972 \times 10^7 \, rad \, s^{-1} T^{-1}$; $\gamma_{^{209}Bi} = 4.3750 \times 10^7 \text{ rad s}^{-1} \text{ T}^{-1}$), large nuclear electric quadrupole moments ($Q_{115}_{In} = 77.2(5) \text{ fm}^2$; $Q_{209}_{Bi} = -51.6$ (2) fm²), and high natural abundances ($^{115}In = 95.71\%$; $^{209}\text{Bi} = 100\%$).^[34,35] Note that ¹¹³In is also spin 9/2 with identical nuclear properties nearly $(\gamma_{113}In$ = 5.8845×10^7 rad s⁻¹ T⁻¹; $Q_{113}_{In} = 76.1(5)$ fm²); however, it comprises only 4.29% natural abundance and is thus disfavored. An analogy must be drawn to ⁹³Nb, the only other stable, odd-proton I = 9/2 nucleus (*nota bene*, there are several odd-neutron I=9/2 nuclides—⁷³Ge, ⁸³Kr, ⁸⁷Sr. and ¹⁷⁹Hf—but these have substantially lower gyromagnetic ratios). ⁹³Nb has found wider use than its (113)/115In and ²⁰⁹Bi counterparts, primarily owing to its smaller nuclear quadrupole moment ($Q_{^{93}Nh} = -32$ (2) fm²). Combined with its slightly higher frequency $(\gamma_{93}_{Nb} = 6.5674 \times 10^7 \text{ rad s}^{-1} \text{ T}^{-1})$ and 100% natural abundance, ⁹³Nb has been used to provide insights on a wide range of materials.^[36–41]

Owing to quadrupolar broadening, ¹¹⁵In and ²⁰⁹Bi NMR studies are infrequent. Both nuclei have been studied in a number of halide systems^[42-49] and molecular compounds.^[48-53] Reports on oxides are exceedingly rare. A pair of very recent reports suggests growing interest in this area.^[16,54] Yamada et al. carried out field-swept ¹¹⁵In NMR to determine the quadrupolar coupling parameters of the two indium sites in $In_2O_3^{[54]}$ complementing the values determined via nuclear quadrupolar resonance (NOR) spectroscopy in the literature^[55]; chemical shift information was not determined. Huang et al. employed ¹¹⁵In NMR to study amorphous indium gallium oxide processed with varying polyvinyl alcohol contents. In the latter study, a distinct ¹¹⁵In signal was detected and observed to narrow slightly with polyvinyl alcohol, but no NMR parameters could be extracted.^[16] It is clear that there is a need to establish structure-spectral relationships for these important inorganic species, particularly in oxide local environments. The initial focus of this work was to demonstrate the applicability of ¹¹⁵In and ²⁰⁹Bi NMR to oxides, but it is noted that this report is also one of the first to describe ¹²¹Sb NMR of an oxide material.^[56]

For quadrupolar nuclei, it is generally desired to acquire spectra at the highest available field, B_0 , to minimize the breadth of the central-transition static powder lineshape, $\Delta \nu_{\rm CT}$, which is given from second-order perturbation theory as follows:

$$\Delta\nu_{\rm CT} = \left(\frac{3C_Q}{2I(2I-1)}\right)^2 \\ \cdot \left(\frac{\left(\eta_Q^2 + 22\eta_Q + 25\right)(I(I+1) - 3/4)}{144\nu_L}\right), \quad (1)$$

where C_Q is the quadrupolar coupling constant, η_Q is the quadrupolar asymmetry parameter, and ν_L is the Larmor frequency, which is proportional to $B_0^{[57]}$ Fortunately, in the case of I = 9/2 nuclei such as ¹¹⁵In and ²⁰⁹Bi, the central transition linewidths are relatively narrow (for a given C_Q) due to the *I*-dependence of Equation 1.

The central transition (CT, $m_{\rm I} = \pm 1/2 \leftrightarrow -1/2$) of a noninteger quadrupolar nucleus is only affected by second-order quadrupolar effects while the eight satellite transitions (STs) in I = 9/2 nuclei ($m_{\rm I} = \pm 1/2 \leftrightarrow \pm 3/2$, $\pm 3/2 \leftrightarrow \pm 5/2, \pm 5/2 \leftrightarrow \pm 7/2, \pm 7/2 \leftrightarrow \pm 9/2$) are affected by first-, second-, and third-order quadrupolar interactions, contributing to the (ultra-)wide powder patterns expected for full (CT and ST) quadrupolar environments of ¹¹⁵In and ²⁰⁹Bi NMR. While second-order perturbation theory is sufficient for many quadrupolar NMR studies, numerous examples have emerged demonstrating the significance of higher order effects.^[58-65] The rule of thumb for the breakdown of second-order perturbation theory and the emergence of third-order effects is when the quadrupolar frequency ν_Q given by the following

$$\nu_{\rm Q} = \left(\frac{3C_{\rm Q}}{2I(2I-1)}\right),\tag{2}$$

approaches 10% of the Larmor frequency $\nu_{\rm L}$.^[66] Widdifield et al. showed that even under these conditions, second-order theory would introduce underestimation errors in $C_{\rm Q}$ and $\delta_{\rm iso}$.^[60] For large values of $\nu_{\rm Q}$, the line between NMR and NQR is blurred.^[67,68] The exceptionally large nuclear electric quadrupole moments of ^{113,115}In and ²⁰⁹Bi—the largest of all main group elements—are expected to lead to noticeable third-order effects on the satellite transitions of these nuclei in distorted environments.

In this report, the ¹¹⁵In and ²⁰⁹Bi solid-state NMR spectra and quadrupolar parameters of three recently discovered complex oxides (LiIn₂SbO₆, BiAlTeO₆, and BiGaTeO₆; Figure 1) are examined via (ultra-)wideline NMR, periodic density functional theory (DFT) calculations, and numerical modeling. LiIn₂SbO₆ is a rutile-like structure with a channel arrangement that is unique amongst rutile phases (Figure 1a).^[19] BiAlTeO₆ and BiGaTeO₆ are isostructural layered compounds with alternating pure BiO₆ and mixed, ordered MO_6/TeO_6 (M = AI, Ga) (Figure 1b).^[31] Collection of the broad

FIGURE 1 Crystal structures of (a) rutile-like $\text{LiIn}_2\text{SbO}_6$ and (b) layered Bi*M*TeO₆ (M = Al, Ga). Li⁺ in teal, In³⁺ in red, Sb⁵⁺ in dark blue, Bi³⁺ in magenta, M^{3+} in green, Te⁶⁺ in gold, O²⁻ in orange

(>15 MHz) NMR spectra is facilitated by signal enhancement from the quadrupolar Carr–Purcell–Meiboom–Gill (QCPMG) pulse sequence in combination with frequency-stepped acquisition, also known as the variable-offset cumulative spectrum (VOCS)^[69] approach. The results are described in the context of the very different local symmetry and coordination environments of indium and bismuth in these examples. A new synthetic route is developed to prepare a bulk sample of crystalline BiAlTeO₆ suitable for NMR. Chemical shift and quadrupolar parameters of ²⁷Al, ⁷¹Ga, and ¹²¹Sb NMR are also investigated and correlated to the local geometry of these cations.

2 | EXPERIMENTAL

2.1 | Synthesis

LiIn₂SbO₆, BiAlTeO₆, and BiGaTeO₆ were synthesized from high-temperature solid-state or flux methods.^[19,31] Li₂CO₃ (Aldrich, 99.999%), Na₂CO₃ (Aldrich, 99.0%), In₂O₃ (Aldrich, 99.994%), Sb₂O₃ (Aldrich, 99.9%), Bi₂O₃ (Aldrich, 99.9%), Al₂O₃ (Aldrich, 99.9%), Ga₂O₃ (Aldrich, 99.9%), and TeO₂ (Aldrich, 99.9%) precursors were used as received. H₂TeO₄·2H₂O (Aldrich, 99.6%) was converted

to amorphous TeO₃ through a preheating step at 673 K for 12 h in air. The reagents were ground together in an agate mortar and pestle until homogenous. LiIn₂SbO₆ was prepared by annealing the stoichiometric pelletized reactants in a Pt crucible in air at 1173 K for 8 h followed by 1473 K for 20 h with an intermediate regrinding. Attempts to prepare single-phase BiAlTeO₆ via solid-state reaction with stoichiometric quantities of Al₂O₃, Bi₂O₃, and TeO₃ (or TeO₂) were unsuccessful, as reported.^[31] Thus, a Na₂CO₃-TeO₂ flux method demonstrated to produce single crystals^[31] of BiAlTeO₆ was modified to prepare a larger quantity for this work. A mixture 1:4:1 mole ratio of Na₂CO₃:TeO₂:Bi₂O₃ was placed in an alumina crucible, which provided the source of Al for BiTeAlO₆. The crucible was heated to 973 K, held for 5 h as a melt, cooled to 673 K at a rate of 0.1 K min^{-1} , and then quenched to room temperature on the bench. BiGaTeO₆ was prepared by heating a pellet of Bi2O3, Ga2O3, and TeO₃ in a Pt crucible in air for a total of 40 h at 973 K with intermediate regrindings.

2.2 | Diffraction

Powder X-ray diffraction (XRD) patterns were recorded in transmission mode with a STOE Stadi P diffractometer and Cu K α radiation. Finely ground sample powders were loaded between two sheets of Kapton tape. Diffraction patterns were recorded from 5 to 80° 2 θ while the sample rotated to improve powder averaging (*nota bene*, data are displayed from 15° to 75° 2 θ to more clearly show the observed reflections). Calculated patterns correspond to entries in the Inorganic Crystal Structure Database (ICSD): LiIn₂SbO₆ (collection code 1976010), BiAlTeO₆ (collection code 21784), and BiGaTeO₆ (collection code 21785).

2.3 | Solid-state NMR

NMR spectra were recorded in a 9.4-T static magnetic field with a Bruker Avance III spectrometer and a 4.0-mm Bruker HX probe with the exception of ²³Na and fast magic-angle spinning (MAS) ^{69,71}Ga measured with a 1.6-mm Phoenix HFX probe. MAS and static ²⁷Al spectra were acquired with a Bloch decay ($\pi/2$ -acq.) pulse sequence and a 1.3-µs excitation pulse corresponding to the $\pi/2$ pulse optimized on α -Al₂O₃. For ²⁷Al, a recycle delay of 6.25 s was used, corresponding to 5*T*₁, and 192 scans were summed. ⁶⁹Ga MAS and static NMR spectra were recorded with a Hahn-echo ($\pi/2-\tau_1-\pi-\tau_2$ -acq.) pulse sequence with a rotor-synchronized (MAS) or 10-µs (static) interpulse delay.

with either a Bloch decay pulse sequence or a Hahn-echo pulse sequence with rotor synchronization or, for static Hahn-echo spectra, a 10-µs interpulse delay. For static and 10-15 kHz MAS ⁶⁹Ga and ⁷¹Ga recorded on the 4.0 mm probe, a $\frac{\pi/2}{(I+\frac{1}{2})} = (\pi/4)_{\text{liquid}}$ excitation pulse of 2.2 µs was applied, the recycle delays were 2 s ($\sim 2T_1$), and 3072-12,288 scans (⁶⁹Ga) or 256-560 scans (⁷¹Ga) were summed. For ⁶⁹Ga and ⁷¹Ga spectra collected at 35 kHz MAS with the 1.6-mm probe, an excitation pulse of 1.0 µs was applied; 56,480 scans with a recycle delay of 1 s were summed for ⁶⁹Ga, and 17,800 scans with a recycle delay of 3 s were summed for ⁷¹Ga. ²³Na MAS NMR was recorded with a rotor-synchronized Hahn-echo, a 1.1 µs $\pi/2$ pulse, a 10-s recycle delay, and by summing 128 scans. Static ¹¹⁵In, ¹²¹Sb, and ²⁰⁹Bi spectra were recorded with a frequency-stepped quadrupolar QCPMG approach with excitation and refocusing pulses of 1.0and 2.0-µs, respectively, and a spikelet spacing of 5 kHz. The excitation and refocusing pulse lengths were determined by maximizing the ²⁰⁹Bi central transition signal in BiGaTeO₆. For ¹¹⁵In QCPMG, 21 echoes were captured in each free induction decay, 186 spectra were collected with transmitter offset steps of 100 kHz, the recycle delay was 0.1 s, and 256 scans were summed at each offset frequency. For ²⁰⁹Bi QCPMG in BiAlTeO₆, 21 echoes were captured in each free induction decay, 145 spectra were collected with transmitter offset steps of 125 kHz, the recycle delay was 0.05 s, and 16,384 scans were summed at each offset frequency. For ²⁰⁹Bi QCPMG in BiGaTeO₆, 11 echoes were captured in each free induction decay, 133 spectra were collected with transmitter offset steps of 125 kHz, the recycle delay was 0.05 s, and 8192 scans were summed at each offset frequency. Solid NaCl at 7.2 ppm, $^{[70]}$ $\alpha\text{-Al}_2\text{O}_3$ (corundum) at 16.0 ppm $(C_{\rm Q} = 2.38 \,{\rm MHz})$,^[57,71] 1.0-M Ga $({\rm NO}_3)_{3({\rm aq.})}$ at 0.0 ppm,^[72] 0.1-M In (NO₃)₃ in 0.5-M HNO₃ at 0.0 ppm,^[51,72], and saturated Bi (NO₃)₃ in concentrated HNO₃ at 0.0 ppm^[72] were used as NMR shift references.

2.4 | Spectral simulations

²⁷Al, ⁶⁹Ga, and ⁷¹Ga MAS and static solid-state NMR spectra were simulated with second-order perturbation theory in the solid lineshape analysis (SOLA) program within TopSpin 3.6.1. Static ¹¹³In, ¹¹⁵In, ¹²¹Sb, and ²⁰⁹Bi spectra were modeled with the "Quadrupolar Exact Software" (QUEST) numerical simulation program, which treats the combined Zeeman–quadrupole Hamiltonian exactly.^[63] MagresView (v1.6.2) was used to visualize tensor orientations and calculate Euler angles.^[73]

2.5 | NMR conventions

In this study, the Haeberlen convention is used to describe the chemical shift tensor with the isotropic shift $\delta_{iso} = \frac{\delta_{XX} + \delta_{YY} + \delta_{ZZ}}{3};$ chemical shift anisotropy $\delta_{CSA} =$ $\delta_{ZZ} - \delta_{iso}$; and the shift asymmetry $\eta_{CSA} = \frac{\delta_{YY} - \delta_{XX}}{\delta_{ZZ} - \delta_{iso}}$. In this definition, the principal components of the shift tensor are ordered such that $|\delta_{ZZ} - \delta_{iso}| \ge |\delta_{XX} - \delta_{iso}| \ge |$ $\delta_{\rm YY} - \delta_{\rm iso}$. The above definition of $\delta_{\rm CSA}$ is sometimes referred to as the reduced anisotropy, which is equal to 2/3 of the "full" anisotropy $\Delta \delta = \delta_{ZZ} - \frac{\delta_{XX} + \delta_{YY}}{2}$ used by some authors and programs. The quadrupolar coupling constant C_{Ω} is defined by the nuclear quadrupole moment Q and the largest principal component V_{ZZ} of the electric field gradient (EFG) at the nucleus according to $C_Q = \frac{eQV_{ZZ}}{h}$, where e is the electric charge and h is Planck's constant. The quadrupolar asymmetry parameter η_Q is defined by the EFG tensor components as $\eta_0 = \frac{V_{XX} - V_{YY}}{V_{TT}}$, with components ordered such that $|V_{ZZ}| \ge |V_{YY}| \ge |V_{XX}|$. The relative orientations of the chemical shift and quadrupolar tensors are defined by a set of Euler angles α , β , and γ defined here in the (ZYZ) Rose convention.

2.6 | Ab initio calculations

Chemical shielding EFG calculations and were performed with the gauge-including projector augmented-wave (GIPAW) approach in the planewave CASTEP.^[74-77] pseudopotential code The calculations used the Perdew-Burke-Ernzerhof (PBE) exchange-correlation functional^[78] and Vanderbilt ultrasoft pseudopotentials^[79] with the default Koelling-Harmon scalar relativistic treatment.^[80] LiIn₂SbO₆, BiAlTeO₆, and BiGaTeO₆ crystal structures were used as starting models.^[19,31] Prior to the NMR calculations, atomic positions and lattice parameters were optimized until the force on any atom was smaller than 1 meV $Å^{-1}$. All calculations used a planewave energy cutoff energy of 700 eV and a Monkhorst-Pack^[81] grid with a spacing finer than $2\pi \times 0.03$ Å⁻¹ to sample the Brillouin zone. Anisotropic NMR parameters were used as the starting point to fit the experimental spectra.

3 | **RESULTS AND DISCUSSION**

3.1 | Synthesis and diffraction

Crystalline samples of $LiIn_2SbO_6$ and $BiGaTeO_6$ were synthesized by high-temperature solid-state methods while $BiAITeO_6$ was synthesized from a flux to overcome

FIGURE 2 Experimental and calculated X-ray diffraction patterns of $LiIn_2SbO_6$, $BiAlTeO_6$, and $BiGaTeO_6$. The asterisk in the pattern of the $BiGaTeO_6$ sample denotes an impurity peak assigned to $Bi_2Te_2O_7$

FIGURE 3 ¹¹⁵In nuclear magnetic resonance (NMR) of LiIn₂SbO₆. (a) Full spectral width including the ¹¹⁵In central and satellite transitions, ¹²¹Sb central transition at high frequency, and the ¹¹³In central transition at low frequency (not experimentally resolved). (b) ¹¹⁵In central transition region only. Experimental data in blue, full simulations in orange, ¹²¹Sb and ¹¹³In contributions to the overall lineshape inset in black. The ppm scale is relative to the ¹¹⁵In reference compound

 \perp Wiley-

6

substantial impurities observed from the previously described method.^[31] Laboratory powder XRD confirmed the crystal structure and crystalline purity of each sample (Figure 2). A broad background component is visible in the diffraction pattern of the BiAlTeO₆ sample. Based on the flux composition, this scattering contribution is attributed to amorphous sodium tellurates.

3.2 | Solid-state NMR of LiIn₂SbO₆

A wideline solid-state ¹¹⁵In NMR spectrum of LiIn₂SbO₆ was recorded by collecting frequency-stepped subspectra covering an excitation range of more than 18 MHz (Figures 3 and S1-S3). In addition to signals from ¹¹⁵In, the broadband spectrum also overlaps the ¹²¹Sb and ¹¹³In Larmor frequencies. While the ST intensity was visible for >15 MHz (Figure 3a), the 115 In CT linewidth was only ca. 400 kHz (Figures 3b and S1). At high frequencies, a quadrupolar CT lineshape from the ¹²¹Sb site was clearly distinguished (Figures 3a, 4, and S2). The CT pattern of ¹²¹Sb is an order-of-magnitude broader than the CT of ¹¹⁵In due not only to the higher $C_{\rm Q}$ of the former in this sample but also the lower spin quantum number of ¹²¹Sb (I = 5/2, see Equation 1). The minor signal expected from ¹¹³In at low frequency was not readily observed (Figures 3a and S3).

FIGURE 4 ¹²¹Sb nuclear magnetic resonance (NMR) of LiIn₂SbO₆. Experimental data in blue, spectral simulations in orange. The dashed orange trace is the pure ¹²¹Sb contribution while the solid orange trace is from the full simulation (see Figure 3) including ¹¹⁵In satellite transition intensity, which contributes to the lineshape on the low-frequency side

Planewave DFT calculations of the shielding and quadrupolar tensors provided a helpful starting point for spectral fitting. Full (CT and ST) simulations of the experimental lineshape yielded a ¹¹⁵In quadrupolar coupling constant of 54.5(10) MHz with an asymmetry of 0.53(2) (Table 1). Few ¹¹⁵In satellite transition discontinuities were visible, but the simulation and experiment are in reasonable agreement for the central transition features and for the overall satellite lineshape. A ¹¹⁵In isotropic shift of 130(20) ppm was determined, but the large quadrupolar interaction precluded the extraction of anisotropic chemical shift parameters at this moderate B_0 field (9.4 T). The calculated chemical shift anisotropy (Table 1) had no effect on the lineshape. The ¹²¹Sb signal was simulated with a $C_{\rm O}$ of 89(1) MHz and an $\eta_{\rm Q}$ of 0.238 (5). Additional details concerning the ¹¹⁵In and ¹²¹Sb variable-offset OCPMG spectral representations are given in Figures S1 and S2, respectively.

3.3 | Structure-spectral relationships in LiIn₂SbO₆

The single crystallographically unique indium site in LiIn₂SbO₆ is a distorted InO₆ octahedron with roomtemperature bond-lengths varying from 2.10 to 2.26 Å and severely distorted bond angles.^[19] Despite these firstshell distortions, the magnitude of C_Q in LiIn₂SbO₆ (54.5 (10) MHz) is substantially smaller than either indium site in bixbyite In₂O₃ (In(1) = 183(2) MHz; In(2) = 126 (2) MHz).^[54,55] Nevertheless, the experimental ¹¹⁵In C_Q in the quaternary oxide is substantially larger than the DFT-predicted value. A similar phenomenon was observed for ¹²¹Sb. The intermediate ¹¹⁵In and ¹²¹Sb asymmetry parameters are consistent with the lack of axial symmetry at the indium or antimony site.

One possible explanation for the deviation between the calculated and experimental results relates to disorder on the lithium site. Lithium coordination in LiIn₂SbO₆ was previously probed by ⁶Li and ⁷Li NMR where it was determined that the unique tunnel pattern of this rutilelike structure hosts lithium ions in (split) tetrahedral sites.^[19] This finding ran counter to a previous proposal that LiIn₂SbO₆ is simply a cation-ordered variant of LiSbO₃ with octahedral LiO₆ sites. The ^{6,7}Li NMR, however, is unable to resolve the question of whether it is disordered (statically or dynamically) in the split tetrahedral site, which may affect the indium and antimony via nextnearest-neighbor (NNN) interactions. It is also possible that the computed $C_{\rm O}$ parameters for ¹¹⁵In and ¹²¹Sb in LiIn₂SbO₆ are underestimated, which is a known issue in a variety of systems and with different quadrupolar nuclei.[38,82,83]

TABLE 1 Experimental and calculated ¹¹⁵In and ¹²¹Sb nuclear magnetic resonance (NMR) parameters of LiIn₂SbO₆

Nucleus	Source	$\sigma_{iso} \text{ or } \delta_{iso} \text{ (ppm)}^a$	δ _{CSA} (ppm)	η_{CSA}	C _Q (MHz)	η_Q	α,β,γ (°)
¹¹⁵ In LiIn ₂ SbO ₆	Calculated	$\sigma_{iso} = 3331$	-50.4	0.89	39.3	0.46	26,90,3
	Experimental ^b	$\delta_{iso} = 130(20)$	n/d	n/d	54.5(10)	0.53(2)	n/d
¹²¹ Sb LiIn ₂ SbO ₆	Calculated	$\sigma_{iso} = 2388$	-96.6	0.03	58.4	0.43	0,1,0
	Experimental ^b	$\delta_{iso} = 350(20)$	n/d	n/d	89(1)	0.238(5)	n/d

^aIn the absence of additional ¹¹⁵In or ¹²¹Sb shift measurements, it is not yet possible to reliably convert the calculated shieldings to the experimentally observed isotropic shifts. However, the values here may prove useful in deriving future relationships.

^bEstimated uncertainty in the fit given in parentheses.

3.4 | Solid-state NMR of $BiMTeO_6$ (M = Al, Ga)

The frequency-stepped VOCS method with QCPMG pulses was also used to record (ultra-)wideline CT and partial ST spectra of BiAlTeO₆ and BiGaTeO₆ covering more than 16 MHz (Figures 5 and S4). Both samples exhibit ²⁰⁹Bi CT that are greater than 1 MHz in breadth (Figure S5). Numerous distinct satellite transition features were clearly resolved in the ultra-wideline spectra across the entire measured frequency range.

Once again, DFT calculations provided a valuable basis for approaching the spectral fitting. As in the case of the ¹¹⁵In spectrum, the calculated shift anisotropy suggested that it would have no impact on the simulated ²⁰⁹Bi linewidth at 9.4 T, and so the number of variable fitting parameters could be reduced. Note that a previous study of bismuth compounds (oxyhalides, nitrate pentahydrate, triflate, and acetate) observed chemical shift anisotropy values that were typically an orderof-magnitude larger than the calculated values for the bismuth oxides here.^[48] The quadrupolar tensor parameters were adjusted to match the discontinuities in the powder lineshape, and the quadrupolar coupling values from DFT were found to be within 5% of those determined experimentally (Table 2).

NMR spectra of the quadrupolar *M*-site cations in Bi*M*TeO₆ were measured as further probes of the atomic structure models. ²⁷Al MAS NMR of BiAlTeO₆ revealed a single pseudo-Voigt lineshape with a center of gravity at 18.5 ppm (Figure 6). The calculated C_Q of 2.0 MHz yields a narrower line (by about a factor of two) than the one observed; however, the calculated C_Q is consistent with the breadth of the spinning sideband manifold (~670 kHz). Assuming this C_Q magnitude, which equates to a quadrupolar shift of ca. 2.2 ppm, the isotropic shift is 20.7 ppm, but the estimated error in the shift is given at 3 ppm to account for uncertainty in the relatively feature-less CT lineshape (Table 3). A static ²⁷Al NMR spectrum gave a featureless resonance with a full-width at half-maximum of about 150 ppm, which did not add any

FIGURE 5 ²⁰⁹Bi nuclear magnetic resonance (NMR) of (a) BiAlTeO₆ and (b) BiGaTeO₆. Experimental data in blue, spectral simulations in orange

information (not shown). ⁶⁹Ga and ⁷¹Ga static spectra of BiGaTeO₆ showed powder lineshapes characteristic of second-order quadrupolar broadening with near axial symmetry (Figure 7). The gallium spectra contain a number of overlapping sidebands at moderate MAS rates

Nucleus	Source	$\sigma_{iso} \text{ or } \delta_{iso} \text{ (ppm)}^a$	δ _{CSA} (ppm)	η_{CSA}	C _Q (MHz)	η_Q	α,β,γ (°)
²⁰⁹ Bi BiAlTeO ₆	Calculated	$\sigma_{iso} = 6192$	-137	0.00	106.5	0.00	1,0,116
	Experimental ^b	$\delta_{iso} = 1300(500)$	n/d	n/d	110(2)	0.03(3)	n/d
²⁰⁹ Bi BiGaTeO ₆	Calculated	$\sigma_{iso} = 6091$	-120	0.00	93.9	0.00	19,0,142
	Experimental ^b	$\delta_{iso} = 1500(500)$	n/d	n/d	90(2)	0.02(2)	n/d

TABLE 2 Experimental and calculated ²⁰⁹Bi nuclear magnetic resonance (NMR) parameters of BiAlTeO₆ and BiGaTeO₆

^aIn the absence of additional ²⁰⁹Bi shift measurements, it is not yet possible to reliably convert the calculated shieldings to the experimentally observed isotropic shifts. However, the values here may prove useful in deriving future relationships.

^bEstimated uncertainty in the fit given in parentheses.

FIGURE 6 ²⁷Al MAS nuclear magnetic resonance (NMR) spectrum of BiAlTeO₆. Experimental data in blue, spectral simulation in orange

(10–15 kHz) that are much smaller than the CT linewidths; this problem is alleviated for ⁷¹Ga but not entirely for ⁶⁹Ga at 35 kHz MAS (Figure 7). In each case, the features under static and variable MAS rates could be readily simulated with second-order perturbation theory (Table 3). The two gallium nuclei have a relative nuclear quadrupole moment ratio of ⁶⁹Ga/⁷¹Ga = 1.60, so collection of both datasets provides additional constraints for the simulations.^[35] The complementary datasets also enabled the estimation of the chemical shift anisotropy, albeit data from a higher B_0 field would improve the precision.

Based on the synthesis conditions and the broad feature in the XRD of BiAlTeO₆, it was hypothesized that the sample contains amorphous sodium tellurate(s). ²³Na MAS NMR supports this hypothesis, showing a broad asymmetric resonance centered around -35 ppm (Figure S6), which is similar to the reported ²³Na NMR of (Na₂O)_x (TeO₂)_{1-x} glasses.^[86]

3.5 | Structure-spectral relationships in $BiMTeO_6$ (M = Al, Ga)

BiAlTeO₆ and BiGaTeO₆ are isostructural layered compounds with a single crystallographically distinct position for each of the cations. Unlike In³⁺ in LiIn₂SbO₆, the Bi³ ⁺ cations in BiMTeO₆ sit in nearly perfect octahedral symmetry with respect to the nearest-neighbor oxygen coordination. All Bi-O distances are identical, and the O-Bi-O bond angles only vary from 87.9° to 92.9°. Thus, considering only the first-shell interactions, bismuth has nearly spherical site symmetry and a small 209 Bi C_{O} would be expected. Owing to the layered nature and chiral structure of BiMTeO₆, the NNN (Figure 8) coordination of bismuth (i.e., BiAl₆Te₆ or BiGa₆Te₆) should be considered for the origin of the observed (ultra-)wideline CT (Figures 5 and S5). The NNN distances are in a narrow range from 3.844 to 3.846 Å, but the geometry is that of a hexagonal prism. Thus, the BiAl₆Te₆ or BiGa₆Te₆ units deviate strongly from spherical symmetry; however, there is D_{3h} symmetry with the three-fold axis along the c direction (Figure 8). Accordingly, the largest component of the electric field tensor (V_{33}) at the bismuth nucleus is oriented along c. The same symmetry properties and V_{33} orientation are true for gallium and, in principle, aluminum. The dominant role of NNN effects in BiMTeO₆ are proposed as the explanation for the relatively small ²⁰⁹Bi $C_{\rm O}$ s [BiAlTeO₆ = 110(2) MHz; BiGaTeO₆ = 90(2) MHz] as compared to α -Bi₂O₃ [Bi(1) = 556.7 MHz; Bi(2) = 482.6 MHz]^[87] with strongly distorted BiO₆ octahedra. Excellent agreement between the calculated and experimentally observed quadrupolar parameters for the bismuth site in BiMTeO₆ strengthen the structural model and suggest the absence of significant aperiodic phenomena such as cation disorder. The gallium calculated quadrupolar parameters are underestimated, but this was systematically observed by Middlemiss et al. for a large number of gallates, suggesting an underlying problem that is not unique to BiGaTeO₆^[85]

LWILEY.

TABLE 3 Experimental and calculated ²⁷Al and ^{69,71}Ga nuclear magnetic resonance (NMR) parameters of BiAlTeO₆ and BiGaTeO₆

Nucleus	Source	δ_{iso} (ppm)	δ _{CSA} (ppm)	η_{CSA}	C _Q (MHz)	η_Q	α,β,γ (°)
²⁷ Al BiAlTeO ₆	Calculated	29 ^a	10.0	0.00	2.02	0.00	78,9,35
	Experimental ^b	21(3)	n/d	n/d	≤2.0	n/d	n/d
^{69,71} Ga BiGaTeO ₆	Calculated	85 ^c	20.3	0.00	${}^{69}\text{Ga} = 8.14; {}^{d}{}^{71}\text{Ga} = 5.09$	0.00	-71,0,147
	Experimental ^b	45(3)	40(20)	n/d	69 Ga = 10.7(1); d 71 Ga = 6.68(6)	0.00(3)	n/d

^aCalculated ²⁷Al shielding converted to shift according to the expression $\delta_{iso} = m\sigma_{iso} + \sigma_{ref.}$ where m = -1.027 and $\sigma_{ref.} = 572.35$ ppm from Seymour et al.^[84] ^bEstimated uncertainty in the fit given in parentheses.

^cCalculated ^{69,71}Ga shielding converted to shift according to the previous expression where m = -0.867 and $\sigma_{ref.} = 1502.63$ ppm from Middlemiss et al.^[85] ^dThe ⁶⁹Ga quadrupolar coupling constant is fixed relative to the ⁷¹Ga C_Q according to the ratio of the ⁶⁹Ga/⁷¹Ga nuclear electric quadrupole moments, which is 17.1/10.7 = 1.60.^[35]

FIGURE 7 (a) ⁶⁹Ga and (b) ⁷¹Ga nuclear magnetic resonance (NMR) of BiGaTeO₆. Experimental data in blue, spectral simulations in orange

3.6 | Higher order quadrupolar effects

Third-order quadrupolar interactions are known to affect satellite transition frequencies in strongly quadrupolar systems. Despite ¹¹⁵In having the largest nuclear electric quadrupole moment of the nuclei studied in this work and ²⁰⁹Bi sites possessing the largest $C_{\rm OS}$, it was ¹²¹Sb that

deviated the most from the high-field approximation. Owing to the relatively small spin quantum number, the ¹²¹Sb (I = 5/2) nucleus in LiIn₂SbO₆ has a ν_Q/ν_L ratio of 0.14. QUEST software was used to simulate all these static spectra with an exact treatment of the Zeeman-quadrupole interaction,^[63] but the results suggest that the effects would have been negligible in the spin-9/2 spectra.

WILEY

FIGURE 8 First-shell coordination (BiO₆) and second-shell coordination (BiM₆Te₆, M = Al, Ga) in BiMTeO₆. A three-fold rotation axis runs parallel to *c*. Bi³⁺ in magenta, M^{3+} in green, Te⁶⁺ in gold, O²⁻ in orange

4 | CONCLUSIONS

¹¹⁵In and ²⁰⁹Bi solid-state NMR spectra and quadrupolar tensor quantities were reported for a series of quaternary oxides. These rarely studied I = 9/2 nuclei are common in a wide range of technologically important oxide materials, and this work demonstrates that quantitative information regarding first- and second-shell coordination environments can be obtained with standard solid-state NMR tools and approaches. The central transition ¹¹⁵In spectrum of the distorted In³⁺ site in LiIn₂SbO₆ was collected in less than 5 min and the ultra-wideline central transition of ²⁰⁹Bi in BiMTeO₆ (M = Al, Ga) required only 2-3 h, all at a modest B_0 field of 9.4 T. Satellite transition intensity was measured out to 15-20 MHz with OCPMG for signal enhancement and the VOCS method to overcome excitation bandwidth limitations. Collecting satellite transition data is not routinely necessary but provides more precise quadrupolar coupling parameters and can reveal interesting third-order quadrupolar interaction effects in strongly coupled systems. Though not required, as demonstrated here, automated tuning software/hardware can facilitate the collection of ultra-wideline spectra. Application of adiabatic, wideline, uniform-rate, smooth-truncation (WURST) pulses could further decrease the instrument time in future studies.[88-90] Finally, DFT calculations are particularly powerful as a predictive tool when studying systems with large quadrupolar coupling interactions. Simulations of the expected lineshapes facilitate the design of suitable experiments, for example, echo versus QCPMG, QCPMG spikelet spacing, VOCS spacing, spectrometer time required, and the consequences of different field strengths.

ACKNOWLEDGEMENTS

This work was supported as part of the Joint Center for Energy Storage Research, an Energy Innovation Hub funded by the US Department of Energy, Office of Science, Basic Energy Sciences. This work made use of the IMSERC X-ray and NMR facilities at Northwestern University, which have received support from the Soft and Hybrid Nanotechnology Experimental (SHyNE) Resource (NSF ECCS-2025633), International Institute of Nanotechnology, and Northwestern University. The authors thank Professor Kenneth R. Poeppelmeier, Northwestern University for comments on the manuscript and Can P. Koçer, University of Cambridge for assistance with the DFT calculations.

CONFICT OF INTEREST

The authors declare no competing financial interest.

PEER REVIEW

The peer review history for this article is available at https://publons.com/publon/10.1002/mrc.5183.

DATA AVAILABILITY STATEMENT

Data underlying this manuscript are available for download online (https://doi.org/10.6084/m9.figshare. 14478168).

ORCID

Kent J. Griffith D https://orcid.org/0000-0002-8096-906X

REFERENCES

- [1] R. Bel Hadj Tahar, T. Ban, Y. Ohya, Y. Takahashi, J. Appl. Phys. 1998, 83, 2631. https://doi.org/10.1063/1.367025
- [2] L. Bizo, J. Choisnet, R. Retoux, B. Raveau, Solid State Commun. 2005, 136, 163. https://doi.org/10.1016/j.ssc.2005. 07.009
- [3] C. A. Hoel, T. O. Mason, J.-F. Gaillard, K. R. Poeppelmeier, *Chem. Mater.* 2010, 22, 3569. https://doi.org/10.1021/cm1004592
- [4] C. G. Granqvist, A. Hultåker, *Thin Solid Films* 2002, 411, 1. https://doi.org/10.1016/S0040-6090(02)00163-3
- [5] U. Betz, M. K. Olsson, J. Marthy, M. F. Escolá, F. Atamny, *Surf. Coat. Technol.* 2006, 200, 5751. https://doi.org/10.1016/j. surfcoat.2005.08.144
- [6] G. Garcia, R. Buonsanti, A. Llordes, E. L. Runnerstrom, A. Bergerud, D. J. Milliron, *Adv. Opt. Mater.* 2013, *1*, 215. https://doi.org/10.1002/adom.201200051
- [7] C. G. Granqvist, Thin Solid Films 2014, 564, 1. https://doi.org/ 10.1016/j.tsf.2014.02.002
- [8] A. Maho, C. A. S. Cabezas, K. A. Meyertons, L. C. Reimnitz, S. Sahu, B. A. Helms, D. J. Milliron, A. Maho, C. A. Saez Cabezas, K. A. Meyertons, L. C. Reimnitz, S. Sahu, B. A. Helms, D. J. Milliron, *Chem. Mater.* **2020**, *32*, 8401. https://doi.org/10.1021/acs.chemmater.0c02399
- [9] P. Cheng, X. Zhan, *Chem. Soc. Rev.* 2016, 45, 2544. https://doi. org/10.1039/C5CS00593K

- [10] S. Chen, Y. Wang, L. Zhang, J. Zhao, Y. Chen, D. Zhu, H. Yao, G. Zhang, W. Ma, R. H. Friend, P. C. Y. Chow, F. Gao, H. Yan, *Adv. Mater.* **2018**, *30*, 1804215. https://doi.org/10.1002/adma. 201804215
- [11] A. Way, J. Luke, A. D. Evans, Z. Li, J.-S. Kim, J. R. Durrant, H. K. H. Lee, W. C. Tsoi, *AIP Adv.* **2019**, *9*, 085220. https://doi. org/10.1063/1.5104333
- [12] K. G. Godinho, B. J. Morgan, J. P. Allen, D. O. Scanlon, G. W. Watson, J. Phys. Condens. Matter 2011, 23, 334201. https://doi. org/10.1088/0953-8984/23/33/334201
- [13] M.-G. Kim, M. G. Kanatzidis, A. Facchetti, T. J. Marks, Nat. Mater. 2011, 10, 382. https://doi.org/10.1038/nmat3011
- [14] K. Rickert, A. Huq, S. H. Lapidus, A. Wustrow, D. E. Ellis, K. R. Poeppelmeier, *Chem. Mater.* 2015, 27, 8084. https://doi. org/10.1021/acs.chemmater.5b03790
- [15] S. Flynn, A. J. Adekoya, S. Saeed, C. Zhang, V. P. Dravid, G. B. Gonzalez, K. R. Poeppelmeier, *Inorg. Chem* 2019, 58, 15610. https://doi.org/10.1021/acs.inorgchem.9b02692
- [16] W. Huang, P. H. Chien, K. McMillen, S. Patel, J. Tedesco, L. Zeng, S. Mukherjee, B. Wang, Y. Chen, G. Wang, Y. Wang, Y. Gao, M. J. Bedzyk, D. M. DeLongchamp, Y. Y. Hu, J. E. Medvedeva, T. J. Marks, A. Facchetti, *Proc. Natl. Acad. Sci.* **2020**, *117*, 18231. https://doi.org/10.1073/pnas.2007897117
- [17] Y. K. Naganovsky, S. E. Sigaryov, Solid State Ionics 1992, 50, 1. https://doi.org/10.1016/0167-2738(92)90030-S
- [18] X. Zhao, Z. Zhang, X. Zhang, B. Tang, Z. Xie, Z. Zhou, J. Mater. Chem. A 2018, 6, 2625, https://doi.org/10.1039/C7TA08968F.
- [19] S. Flynn, S. Sanghvi, M. L. Nisbet, K. J. Griffith, W. Zhang, P. S. Halasyamani, S. M. Haile, K. R. Poeppelmeier, *Chem. Mater.* 2020, 32, 4785. https://doi.org/10.1021/acs.chemmater. 0c01491
- [20] P. Shuk, H. D. Wiemhöfer, U. Guth, W. Göpel, M. Greenblatt, Solid State Ionics 1996, 89, 179. https://doi.org/10.1016/0167-2738(96)00348-7
- [21] T. Takahashi, H. Iwahara, Y. Nagai, J. Appl. Electrochem. 1972, 2, 97. https://doi.org/10.1007/bf00609125
- [22] X. Kuang, J. L. Payne, M. R. Johnson, I. Radosavljevic Evans, Angew. Chem., Int. Ed. 2012, 51, 690. https://doi.org/10.1002/ anie.201106111
- [23] M. T. Dunstan, D. M. Halat, M. L. Tate, I. R. Evans, C. P. Grey, *Chem. Mater.* 2019, *31*, 1704. https://doi.org/10.1021/acs. chemmater.8b05143
- [24] J. Goodenough, A. Manthiram, P. Paranthaman, Y. S. Zhen, Solid State Ionics 1992, 52, 105. https://doi.org/10.1016/0167-2738(92)90096-8
- [25] N. Kim, C. P. Grey, Science 2002, 297, 1317. https://doi.org/10. 1126/science.1074130
- [26] M. Guignard, L. Albrecht, J. W. Zwanziger, Chem. Mater. 2007, 19, 286. https://doi.org/10.1021/cm062208a
- [27] T. Maeder, Int. Mater. Rev. 2013, 58, 3. https://doi.org/10.1179/ 1743280412Y.000000010
- [28] M. Vehkamäki, T. Hatanpää, M. Kemell, M. Ritala, M. Leskelä, *Chem. Mater.* 2006, 18, 3883. https://doi.org/10.1021/ cm060966v
- [29] D. J. Singh, S. S. A. Seo, H. N. Lee, *Phys. Rev. B* 2010, *82*, 180103. https://doi.org/10.1103/PhysRevB.82.180103
- [30] H. G. Kim, T. T. Tran, W. Choi, T. S. You, P. S. Halasyamani,
 K. M. Ok, *Chem. Mater.* 2016, 28, 2424. https://doi.org/10.
 1021/acs.chemmater.6b00778

- [31] F. Ding, M. L. Nisbet, H. Yu, W. Zhang, L. Chai, P. S. Halasyamani, K. R. Poeppelmeier, *Inorg. Chem.* 2018, 57, 7950. https://doi.org/10.1021/acs.inorgchem.8b01087
- [32] K. M. Ok, Chem. Commun. 2019, 55, 12737. https://doi.org/10. 1039/C9CC06778G
- [33] R. W. Schurko, Acc. Chem. Res. 2013, 46, 1985. https://doi.org/ 10.1021/ar400045t
- [34] D. C. Apperley, R. K. Harris, P. Hodgkinson, Solid-State NMR: Basic Principles and Practice, Monumentum Press, New York, NY 2012.
- [35] P. Pyykkö, Mol. Phys. 2018, 116, 1328. https://doi.org/10.1080/ 00268976.2018.1426131
- [36] A. Y. H. Lo, T. E. Bitterwolf, C. L. B. Macdonald, R. W. Schurko, J. Phys. Chem. A 2005, 109, 7073. https://doi.org/10. 1021/jp0521499
- [37] O. B. Lapina, D. F. Khabibulin, A. A. Shubin, V. V. Terskikh, Prog. Nucl. Magn. Reson. Spectrosc. 2008, 53, 128. https://doi. org/10.1016/j.pnmrs.2007.12.001
- [38] J. V. Hanna, K. J. Pike, T. Charpentier, T. F. Kemp, M. E. Smith, B. E. G. Lucier, R. W. Schurko, L. S. Cahill, *Chem. – Eur. J.* 2010, *16*, 3222. https://doi.org/10.1002/chem. 200901581
- [39] K. E. Johnston, J. M. Griffin, R. I. Walton, D. M. Dawson, P. Lightfoot, S. E. Ashbrook, *Phys. Chem. Chem. Phys.* 2011, 13, 7565. https://doi.org/10.1039/C1CP20258H
- [40] E. Papulovskiy, A. A. Shubin, V. V. Terskikh, C. J. Pickard, O. B. Lapina, *Phys. Chem. Chem. Phys.* **2013**, *15*, 5115. https:// doi.org/10.1039/C3CP44016H
- [41] K. J. Griffith, M. A. Hope, P. J. Reeves, M. Anayee, Y. Gogotsi, C. P. Grey, J. Am. Chem. Soc. 2020, 142, 18924. https://doi.org/ 10.1021/jacs.0c09044
- [42] Y. Tomita, K. Yamada, H. Ohki, T. Okuda, Z. für Naturforschung A 1998, 53, 466. https://doi.org/10.1515/zna-1998-6-730
- [43] Y. Tomita, K. Yamada, H. Ohki, T. Okuda, Z. für Naturforschung A 2002, 57, 447. https://doi.org/10.1515/zna-2002-6-728
- [44] K. Yamada, K. Kumano, T. Okuda, Solid State Ionics 2005, 176, 823. https://doi.org/10.1016/j.ssi.2004.10.016
- [45] K. Yamada, K. Kumano, T. Okuda, Solid State Ionics 2006, 177, 1691. https://doi.org/10.1016/j.ssi.2006.06.026
- [46] G. Scholz, T. Krahl, M. Ahrens, C. Martineau, J. Y. Buzaré, C. Jäger, E. Kemnitz, J. Fluorine Chem. 2011, 132, 244. https://doi.org/10.1016/j.jfluchem.2011.01.010
- [47] A. Karmakar, G. M. Bernard, A. Meldrum, A. O. Oliynyk, V. K. Michaelis, J. Am. Chem. Soc. 2020, 142, 10780. https:// doi.org/10.1021/jacs.0c02198
- [48] H. Hamaed, M. W. Laschuk, V. V. Terskikh, R. W. Schurko, J. Am. Chem. Soc. 2009, 131, 8271. https://doi.org/10.1021/ ja901347k
- [49] H. Hamaed, K. E. Johnston, B. F. T. Cooper, V. V. Terskikh, E. Ye, C. L. B. Macdonald, D. C. Arnold, R. W. Schurko, *Chem. Sci.* 2014, 5, 982. https://doi.org/10.1039/C3SC52809J
- [50] F. Chen, G. Ma, G. M. Bernard, R. G. Cavell, R. McDonald, M. J. Ferguson, R. E. Wasylishen, *J. Am. Chem. Soc.* 2010, 132, 5479. https://doi.org/10.1021/ja100625p
- [51] F. Chen, G. Ma, R. G. Cavell, V. V. Terskikh, R. E. Wasylishen, *Chem. Commun.* 2008, 45, 5933. https://doi.org/ 10.1039/b814326a

¹² ₩ILEY-

- [52] A. Y. H. Lo, T. Jurca, D. S. Richeson, D. L. Bryce, J. Phys. Chem. Lett. 2010, 1, 3078. https://doi.org/10.1021/jz101241r
- [53] R. E. Wasylishen, K. C. Wright, K. Eichele, T. S. Cameron, *Inorg. Chem.* **1994**, *33*, 407. https://doi.org/10.1021/ ic00081a003
- [54] K. Yamada, T. Yamaguchi, R. Ohashi, S. Ohki, K. Deguchi, K. Hashi, A. Goto, T. Shimizu, *Solid State Nucl. Magn. Reson.* 2020, 109, 101688. https://doi.org/10.1016/j.ssnmr.2020.101688
- [55] T. J. Bastow, H. J. Whitfield, J. Magn. Reson. 1975, 20, 1. https://doi.org/10.1016/0022-2364(75)90144-4
- [56] A. Faucher, V. V. Terskikh, R. E. Wasylishen, Solid State Nucl. Magn. Reson. 2014, 61–62, 54. https://doi.org/10.1016/j.ssnmr. 2014.05.005
- [57] K. J. D. Mackenzie, M. E. Smith, *Multinuclear Solid-State NMR of Inorganic Materials*, Pergamon Materials Series Vol. 6, Pergamon, London 2002.
- [58] Z. Gan, P. Srinivasan, J. R. Quine, S. Steuernagel, B. Knott, *Chem. Phys. Lett.* **2003**, *367*, 163. https://doi.org/10.1016/ S0009-2614(02)01681-0
- [59] C. M. Widdifield, D. L. Bryce, J. Phys. Chem. A 2010, 114, 10810. https://doi.org/10.1021/jp108237x
- [60] C. M. Widdifield, A. D. Bain, D. L. Bryce, *Phys. Chem. Chem. Phys.* 2011, 13, 12413. https://doi.org/10.1039/c1cp20572b
- [61] R. J. Attrell, C. M. Widdifield, I. Korobkov, D. L. Bryce, *Cryst. Growth Des.* 2012, 12, 1641. https://doi.org/10.1021/cg201683p
- [62] F. A. Perras, D. L. Bryce, Angew. Chem., Int. Ed. 2012, 51, 4227. https://doi.org/10.1002/anie.201200728
- [63] F. A. Perras, C. M. Widdifield, D. L. Bryce, *Solid State Nucl. Magn. Reson.* 2012, 45–46, 36. https://doi.org/10.1016/j.ssnmr. 2012.05.002
- [64] C. M. Widdifield, F. A. Perras, D. L. Bryce, *Phys. Chem. Chem. Phys.* 2015, 17, 10118. https://doi.org/10.1039/C5CP00602C
- [65] O. Pecher, D. M. Halat, J. Lee, Z. Liu, K. J. Griffith, M. Braun, C. P. Grey, J. Magn. Reson. 2017, 275, 127. https://doi.org/10. 1016/j.jmr.2016.12.008
- [66] D. L. Bryce; R. E. Wasylishen Quadrupolar nuclei in solids: influence of different interactions on spectra. In *Encyclopedia* of Magnetic Resonance; Harris, R. K., Ed.; John Wiley & Sons, Ltd: Chichester, UK, **2011**. https://doi.org/10.1002/ 9780470034590.emrstm1197
- [67] A. D. Bain, M. Khasawneh, Concepts Magn. Reson. 2004, 22A, 69. https://doi.org/10.1002/cmr.a.20013
- [68] A. D. Bain, Magn. Reson. Chem. 2017, 55, 198. https://doi.org/ 10.1002/mrc.4418
- [69] D. Massiot, I. Farnan, N. Gautier, D. Trumeau, A. Trokiner, J. P. Coutures, *Solid State Nucl. Magn. Reson.* **1995**, *4*, 241. https://doi.org/10.1016/0926-2040(95)00002-8
- [70] P. K. Allan, J. M. Griffin, A. Darwiche, O. J. Borkiewicz, K. M. Wiaderek, K. W. Chapman, A. J. Morris, P. J. Chupas, L. Monconduit, C. P. Grey, J. Am. Chem. Soc. 2016, 138, 2352. https://doi.org/10.1021/jacs.5b13273
- [71] H. J. Jakobsen, J. Skibsted, H. Bildsøe, N. C. Nielsen, J. Magn. Reson. 1989, 85, 173. https://doi.org/10.1016/0022-2364(89) 90333-8
- [72] R. K. Harris, E. D. Becker, Pure Appl. Chem. 2008, 80, 59. https://doi.org/10.1351/pac200880010059

- [73] S. Sturniolo, T. F. G. Green, R. M. Hanson, M. Zilka, K. Refson, P. Hodgkinson, S. P. Brown, J. R. Yates, *Solid State Nucl. Magn. Reson.* 2016, 78, 64. https://doi.org/10.1016/j. ssnmr.2016.05.004
- [74] S. J. Clark, M. D. Segall, C. J. Pickard, P. J. Hasnip, M. I. J. Probert, K. Refson, M. C. Payne, *Z. für Krist.* 2005, 220, 567. https://doi.org/10.1524/zkri.220.5.567.65075
- [75] C. J. Pickard, F. Mauri, Phys. Rev. B 2001, 63, 245101. https:// doi.org/10.1103/PhysRevB.63.245101
- [76] J. R. Yates, C. J. Pickard, F. Mauri, *Phys. Rev. B* 2007, 76, 024401. https://doi.org/10.1103/PhysRevB.76.024401
- [77] M. Profeta, F. Mauri, C. J. Pickard, J. Am. Chem. Soc. 2003, 125, 541. https://doi.org/10.1021/ja027124r
- [78] J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865. https://doi.org/10.1103/PhysRevLett.77.3865
- [79] D. Vanderbilt, *Phys. Rev. B* 1990, 41, 7892. https://doi.org/10. 1103/PhysRevB.41.7892
- [80] D. D. Koelling, B. N. Harmon, J. Phys. C Solid State Phys. 1977, 10, 3107. https://doi.org/10.1088/0022-3719/10/16/019
- [81] H. J. Monkhorst, J. D. Pack, Phys. Rev. B 1976, 13, 5188. https://doi.org/10.1103/PhysRevB.13.5188
- [82] V. K. Michaelis, S. Kroeker, J. Phys. Chem. C 2010, 114, 21736. https://doi.org/10.1021/jp1071082
- [83] S. Sene, B. Bouchevreau, C. Martineau, C. Gervais, C. Bonhomme, P. Gaveau, F. Mauri, S. Bégu, P. H. Mutin, M. E. Smith, D. Laurencin, *CrystEngComm* 2013, 15, 8763. https:// doi.org/10.1039/c3ce40981c
- [84] V. R. Seymour, J. M. Griffin, B. E. Griffith, S. J. Page, D. Iuga, J. V. Hanna, M. E. Smith, J. Phys. Chem. C 2020, 124, 23976. https://doi.org/10.1021/acs.jpcc.0c07281
- [85] D. S. Middlemiss, R. Blanc, C. J. Pickard, C. P. Grey, J. Magn. Reson. 2010, 204, 1. https://doi.org/10.1016/j.jmr.2010.01.004
- [86] S. L. Tagg, R. E. Youngman, J. W. Zwanziger, J. Phys. Chem. 1995, 99, 5111. https://doi.org/10.1021/j100014a035
- [87] E. A. Kravchenko, V. G. Orlov, M. P. Shlykov, Russ. Chem. Rev. 2006, 75, 77. https://doi.org/10.1070/RC2006v075n01 ABEH003596
- [88] L. A. O'Dell, R. W. Schurko, Chem. Phys. Lett. 2008, 464, 97. https://doi.org/10.1016/j.cplett.2008.08.095
- [89] L. A. O'Dell, A. J. Rossini, R. W. Schurko, *Chem. Phys. Lett.* 2009, 468, 330. https://doi.org/10.1016/j.cplett.2008.12.044
- [90] L. A. O'Dell, Solid State Nucl. Magn. Reson. 2013, 55–56, 28. https://doi.org/10.1016/j.ssnmr.2013.10.003

SUPPORTING INFORMATION

Additional supporting information may be found online in the Supporting Information section at the end of this article.

How to cite this article: K. J. Griffith, F. Ding, S. Flynn, *Magn Reson Chem* **2021**, 1. <u>https://doi.org/10.1002/mrc.5183</u>