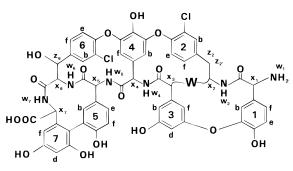
Structural Modifications of the Active Site in Teicoplanin and **Related Glycopeptides. 2. Deglucoteicoplanin-Derived Tetrapeptide**

Adriano Malabarba,* Romeo Ciabatti, Michele Maggini,[†] Pietro Ferrari, Luigi Colombo, and Maurizio Denaro

Marion Merrell Dow Research Institute, Lepetit Center, Via R. Lepetit 34, 21040 Gerenzano (Varese), Italy

Received April 10, 1995 (Revised Manuscript Received October 8, 1995[®])

The deglucoteicoplanin-derived tetrapeptide (TDTP), a key synthon suitable for the synthesis of modified glycopeptide antibiotics differing in the structure of the active site, was prepared from the product (RH-TD) of reductive hydrolysis of the 2,3-peptide bond of deglucoteicoplanin (TD) upon selective oxidation of the newly formed hydroxymethyl group and following simultaneous removal of amino acids 1 and 3 by *double* Edman degradation. The oxidation of the alcohol function of residue 2 in RH-TD was accomplished (Jones reagent) after protection of the two free amino groups as tert-butyl BOC carbamates and of most of phenolic hydroxy groups as benzyl CBZ carbonates. Esterification of the C-terminal carboxy group of intermediate di-BOC-RH-TD allowed the formation at the end of the process of the tetrapeptide (TDTP-Me) protected at one carboxy group as methyl ester. Selective protection of the primary N^4 - and N^2 -amino groups of **TDTP-Me** as BOC and CBZ carbamates, respectively, followed by removal of the BOC function, afforded a more suitable intermediate (*N*²-CBZ-TDTP-Me) for the synthesis of new glycopeptides.


The mechanism of action of glycopeptide antibiotics¹ in part depends on the structure of amino acids 1 and 3. A current strategy to overcome the emerging resistance to glycopeptides in pathogenic bacteria² is based on the replacement of these amino acids with new amino acids or other moieties suitably selected to interact with the modified target³ present in resistant organisms. The recent discovery of a selective method for the reductive hydrolysis of the amide bond between amino acids 2 and 3 in teicoplanin, its pseudoaglycons and aglycon (TD, Figure 1), and related glycopeptides, with sodium borohydride in EtOH/H₂O 35/65 solution,⁴ provided the opportunity to remove amino acids 1 and 3 by Edman degradation. The resulting tetrapeptide derivatives are potential synthons for the synthesis of new families of glycopeptides differing in the structure of their active site.5

In this paper, the preparation of the deglucoteicoplanin-derived tetrapeptide (TDTP, Figure 2) from the product (RH-TD) of reductive hydrolysis of the 2,3peptide bond of TD is described. Suitable methods for the selective protection and deprotection of the two primary amino groups and of the C-terminal carboxy group of the tetrapeptide chain are also reported.

Results and Discussion

Two different synthetic pathways could be followed to prepare TDTP from RH-TD.

(i) Procedure A (Scheme 1): the amino and phenolic hydroxy groups of **RH-TD** are properly protected before oxidation of the primary alcohol function of residue 2. After deprotection, the resulting pentapeptide derivative

TD: W = -NH-CO; RH-TD: W = -NH, HOCH,-

Figure 1. Structure of TD and RH-TD (with proton nomenclature).

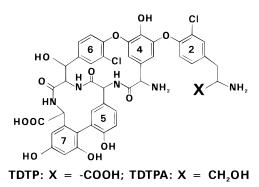
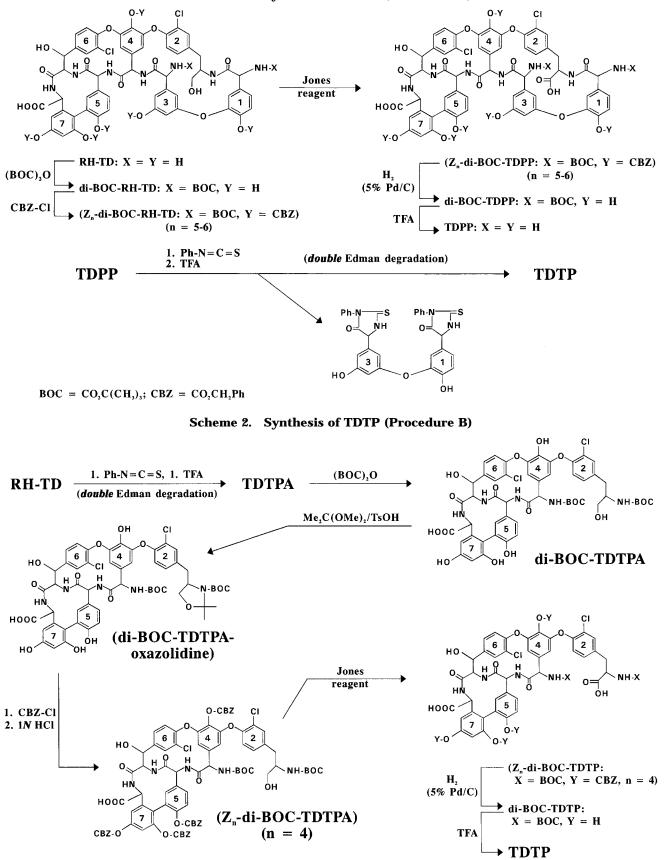


Figure 2. Structure of TDTP and TDTPA.

(TDPP) is submitted to a *double* Edman degradation⁶ step for the simultaneous removal of amino acid fragments 1 and 3.

(ii) Procedure B (Scheme 2): it consists of Edman degradation of RH-TD as a preliminary step. The resulting tetrapeptide alcohol (TDTPA, Figure 2) is then oxidized after proper protection of the susceptible amino and phenolic functions. Final deprotection steps give TDTP.

[†] Present address: Department of Organic Chemistry, University of Padova, Via Marzolo, 1-35100 Padova, Italy. [®] Abstract published in *Advance ACS Abstracts*, February 15, 1996.


⁽¹⁾ Parenti, F.; Cavalleri, B. Drugs Future 1990, 15, 57

⁽²⁾ Johnson, A. P.; Uttley, A. H. C.; Woodford, N.; George, R. C. Clin. Microbiol. Rev. 1990, 3, 280.

⁽³⁾ Bugg, T. D. H.; Walsh, C. T. Nat. Prod. Rep., 1992, 9, 199 (4) Malabarba, A.; Ciabatti, R.; Kettenring, J.; Ferrari, P.; Vékey,

K.; Bellasio, E.; Denaro, M. J. Org. Chem. Submitted for publication.
(5) Malabarba, A.; Ciabatti, R. J. Med. Chem. 1994, 37, 2988.

⁽⁶⁾ Edman, P. Acta Chem. Scand. 1950, 4, 277.

 $BOC = CO_2C(CH_3)_3$; $CBZ = CO_2CH_2Ph$

As reported below, although these approaches were both successful, procedure A was more suitable to prepare **TDTP** when the phenolic hydroxy groups were protected as benzyl carbonates. **Protection of the Oxidation-Sensitive Functional Groups in RH-TD and TDTPA.** In **RH-TD** and **TDTPA** there are several functions, besides the hydroxymethyl moiety of residue 2, which are potentially

Deglucoteicoplanin-Derived Tetrapeptide

susceptible to oxidation: the two primary amino groups, the benzylic OH of residue 6, and all the phenolic hydroxy groups. Preliminary tests carried out on N^{4} -BOC-TD methyl ester,⁷ suitably permethylated⁸ at the phenolic OH's, showed that the benzylic OH of residue 6 was resistant to oxidation under both basic and acidic conditions and that only five of the six phenolic OH's needed protection.⁹

The two free amino groups were protected as *tert*-butyl carbamates by reaction of RH-TD (Scheme 1) or TDTPA (Scheme 2) with di-tert-butyl dicarbonate [(BOC)₂O] at room temperature in dioxane/water 1/1 solution, in the presence of NaHCO₃. The BOC protective group was resistant to oxidation, and in the final deprotection step, it was removed from di-BOC-TDPP or di-BOC-TDTP by mild acidic treatment (TFA), giving TDPP or TDTP with highest yields. The benzyloxycarbonyl (CBZ) group was found to be the most appropriate for the selective protection of the phenolic OH's of di-BOC-RH-TD (Scheme 1). It was resistant to oxidation with the Jones reagent¹⁰ and easily removed from resulting per-protected compound (Zn-di-BOC-TDPP) under hydrogenolysis conditions (1 atm, 5% Pd/C) which were well tolerated by the rest of the molecule. The per-CBZ-protected derivative (Z_n-di-BOC-RH-TD) was prepared by reaction of di-BOC-RH-TD with a large excess of benzyl chloroformate (CBZ-Cl) at room temperature in dioxane/water 1/1 solution, in the presence of Cs₂CO₃.¹¹ The CBZ group was also used to protect the phenolic OH's in di-BOC-**TDTPA** (Scheme 2), but in this case¹² a preliminary protection of the primary alcohol of residue 2 was necessary to prevent coupling of the hydroxymethyl function with the CBZ group. This was accomplished by forming an oxazolidine ring upon reaction of the N-BOCethanolamine moiety of residue 2 with 2,2-dimethoxypropane in anhydrous Me₂CO at room temperature in the presence *p*-toluenesulfonic acid (Ts-OH) as the condensation catalyst. Protection of the phenolic-OH's with CBZ-Cl under anhydrous conditions (DMSO) in the presence of Cs₂CO₃ yielded the per-CBZ phenyl carbonate derivative Z_n-di-BOC-TDTPA-oxazolidine. The hydroxymethyl group was then regenerated by mild acidic treatment (1 N HCl, 25 °C, 90 min) to give Z_n-di-BOC-TDTPA which was amenable to oxidation (Jones reagent) to afford \mathbf{Z}_n -di-BOC-TDTP. In contrast to the pentapeptide (di-BOC-TDPP), tetrapeptide di-BOC-TDTP once formed was in part ($\sim 20\%$) susceptible to dechlori-

L. J. Chem. Soc. **1946**, 39. (b) Bladon, P.; Fabian, J. M.; Henbest, H. B.; Koch, H. B.; Wood, G. W. J. Chem. Soc. **1951**, 2402. (c) Bowers, A.; Halsall, T. G.; Jones, E. R. H.; Lemin, A. J. J. Chem. Soc. **1953**, 2548.

(11) Suitable protection of the phenolic groups was also obtained in anhydrous conditions, in DMSO/THF 4/1 solution, using a large excess of K_2CO_3 and/or TEA as the acid-acceptor agents, but with longer reaction times. The use of K_2CO_3 in aqueous media was unsuitable since the CBZ moiety on ring 4 was susceptible, once formed, to hydrolysis under the resulting basic reaction conditions. Another advantage of the Cs₂CO₃ method is that the reaction mixture dioxane/ water is the same used in the preparation of di-BOC carbamates, thus allowing a one-pot synthesis of **Z_n-di-BOC-RH-TD** from **RH-TD**.

(12) In **di-BOC-RH-TD** the protection of the hydroxymethyl group of residue 2 was unnecessary.

nation under hydrogenation conditions (1 atm, 5% Pd/ C) used to remove the CBZ groups from Z_n -di-BOC-TDTP.

It follows that procedure A is more suitable than B, in terms of overall yields and number of reaction steps, for preparing **TDTP** when using the CBZ as phenol-protecting group. Although the CBZ moiety could be also used for the protection of the amino groups, the BOC group was preferred in this case as it was more easily removed from the *N*-carbamate derivatives (**di-BOC-TDPP** or **di-BOC-TDTP**) than the CBZ group.^{13,14}

Oxidation of the Hydroxymethyl Function to Carboxy Group. Several conditions were tried before selecting the most suitable method for the oxidation of the hydroxymethyl group of residue 2 of Z_n -di-BOC derivatives of RH-TD and TDTPA. Due to the protection of the phenolic OH's as benzyl carbonates, basic conditions had to be avoided. Different oxidation reagents were investigated under the more appropriate acidic conditions. When CrO₃ in glacial or aqueous AcOH was used, a large excess of oxidizer was necessary to complete the reaction. The best results were obtained by treatment of the above protected tetra- or pentapeptide-alcohol derivatives with the Jones reagent (H₂-CrO₄-H₂SO₄/H₂O)¹⁵ at room temperature in THF solution. Under these conditions, the oxidation was fast and occurred without deprotection/decomposition of amino groups or phenolic OH's.

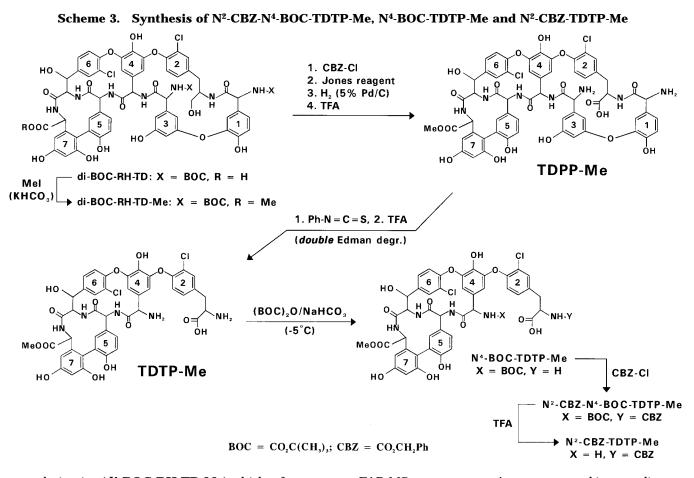
Edman Degradation of RH-TD and TDPP. The diphenyl ether 1,3-diamino acid was removed from RH-TD or TDPP by a *double* Edman procedure. Accordingly, reaction of RH-TD or TDPP with 2.5 equiv of phenyl isothiocyanate in pyridine/water 1/1 afforded the corresponding mixed N^{1} , N^{3} -di-isothiourea derivative which, upon treatment with dry TFA at room temperature, gave tetrapeptide TDTPA or TDTP in high yields.¹⁶

Selective Protection of One Carboxy and the Two Primary Amino Groups in TDTP. TDTP is a potential intermediate for the synthesis of new families of glycopeptides by introduction of appropriate amino acids in positions 1 and 3. This process would require protection of one amino group of **TDTP** prior to coupling of the other primary amine with the carboxy function of a N-protected amino acid. The protection of the carboxy group of residue 7 of **TDTP** is also necessary to prevent intermolecular side reactions in the final macrocyclization step to give a new hexapeptide or heptapeptide compound.

A **TDTP** derivative (N^2 -**CBZ**- N^4 -**BOC**-**TDTP**-**Me**) selectively protected at the C-terminus of the tetrapeptide chain as methyl ester and at the amino groups of residues 2 and 4 as CBZ and BOC carbamates, respectively, was obtained according to the procedure of Scheme 3. Esterification of the carboxy group of **di-BOC**-**RH**-**TD** with MeI in DMF in the presence of KHCO₃ provided a methyl

⁽⁷⁾ Malabarba, A.; Trani, A.; Ferrari, P.; Pallanza, R.; Cavalleri, B. J. Antibiot. **1987**, 40, 1572.

⁽⁸⁾ The phenolic-OH's of N^1 -BOC-TD methyl ester were protected as methyl ethers using a large excess of MeI in DMF, in the presence of K₂CO₃.


⁽⁹⁾ The number of phenolic-OCH₃'s present in permethylated M⁴-BOC-TD methyl ester was determined by NMR. The position of the unprotected phenolic group resistant to oxidation was not determined. (10) (a) Bowden, K.; Heibron, I. M.; Jones, E. R. H.; Weedon, B. C.

⁽¹³⁾ Under the conditions used (H₂, 1 atm., 10% Pd/C) in the hydrogenolysis of the N,N'-di-CBZ derivatives of **TDPP** and **TDTP** the chlorine atoms on rings 2 and 6 were also affected, to a greater extent in **TDTP** than **TDPP**, leading to dechlorinated byproducts.

⁽¹⁴⁾ The number of phenolic-OH's which could be protected as BOC carbonates was insufficient, under all tried conditions, for the oxidation step.

⁽¹⁵⁾ The Jones reagent, "standard" solution, was prepared according to the procedure described in Fieser & Fieser: *Reagents for Organic Synthesis*; Vol. 1: John Wiley & Sons, Inc.: New York, 1967; Vol. 1, p 142.

⁽¹⁶⁾ Although the 1,3-diphenyl ether dihydantoine moiety was not isolated, its formation can be inferred according to the well-known mechanism of Edman degradation.

ester derivative (di-BOC-RH-TD-Me) which, after protection of the phenolic functions as benzyl carbonates, oxidation of the residue 2-CH₂OH, and deprotection of the phenolic and amino groups, gave the pentapeptide monomethyl ester TDPP-Me. Edman degradation of TDPP-Me afforded the tetrapeptide monomethyl ester TDTP-Me. The amino group of residue 4, more nucleophilic¹⁷ than that of residue 2, was selectively protected as BOC carbamate upon treatment of TDTP-Me with an equimolecular amount of $(BOC)_2O$ at -5 °C in a water/ dioxane 1/1 mixture in the presence of NaHCO₃. Under these conditions, the mono-N⁴-BOC derivative (**N⁴-BOC**-**TDTP-Me**) was obtained with high (>95%) yields, while the disubstituted N², N⁴-di-BOC-TDTP-Me was the main product (>50%) when the reaction was carried out at room temperature. Final triprotected derivative N^2 -CBZ-N⁴-BOC-TDTP-Me was prepared by reaction of N⁴-BOC-TDTP-Me with CBZ-Cl (1 equiv, room temperature) in DMF in the presence of KHCO₃. The selective removal of the BOC protective group from N²-CBZ-N⁴-BOC-TDTP-Me (TFA, 0 °C) afforded a further diprotected compound (N²-CBZ-TDTP-Me) particularly suitable for the selective introduction of new amino acids in position 3.18

Structure Elucidation. The structures of TDTP and TDTP-Me, their synthetic precursors TDTPA, TDPP, and TDPP-Me, and the BOC and CBZ derivatives of TDTP-Me were determined by NMR spectroscopy and

FAB-MS spectrometry. Among protected intermediates, only the **di-BOC** derivatives of **TDPP** and **TDTP** were purified and their structures confirmed by ¹H NMR and FAB-MS.¹⁹

The most characteristic ¹H NMR signals of the core molecules and their protecting groups, when present, are given in Table 1 in comparison with the proton assignments for TD hydrochloride. With respect to the TD spectrum, strong changes are found, as expected, in the right-hand part of the structure of **TDTP**, in particular in the chemical shift values of protons x_2 , x_4 , 4b, and to a lesser extent, 4f and x₅. The remaining left-hand part of the molecule of TDTP appears to be substantially unchanged. The differences in their ¹H NMR spectra between TDTP and TDTPA are mainly shown by a strong chemical shift change of proton x₂ and by a minor variation in the chemical shift of proton 4b. Significant changes are also present in the spectrum of **TDPP** with respect to that of **TD**, in the region from x_1 to x_4 and 4b. The attributions were based on the phase sensitive double quantum filter (Bruker COSYPHDQ microprogram) and on the well-established spectra-structure correlations in the teicoplanin field.²⁰ The FAB MS

⁽¹⁷⁾ In **TDTP-Me**, as well as **TDTP**, the residue 4-NH_2 appeared to be generally more susceptible to acylation than the residue 2-NH_2 upon treatment with different acylating agents. In some cases, this allowed the selective coupling of the residue 4-NH_2 of **TDTP-Me** or **TDTP** with activated N-protected amino acid esters without protection of the residue 2-NH_2 (data not reported).

⁽¹⁸⁾ Malabarba, A.; Ciabatti, R. Int. Patent WO94-26780, Nov 24, 1994 (to Gruppo Lepetit S.p.a.).

⁽¹⁹⁾ The structure of **di-BOC-RH-TD**, which was obtained sufficiently pure for the next reaction steps but was not further purified for analysis, was confirmed by FAB MS only. The per-protected Z_n compounds and the oxazolidine derivatives of **TDTPA**, as well as the diisothiourea intermediates of the Edman degradation procedures, were only characterized on the basis of their HPLC retention time (t_R). Their chromatographic behavior is in accordance with the proposed structures.

^{(20) (}a) Barna, J. C. J.; Williams, D. H.; Stone, D. J. M.; Leung, T.-W. C.; Doddrell, D. M. *J. Am. Chem. Soc.* **1984**, *106*, 4895. (b) Hunt, A. H.; Molloy, R. M.; Occlowitz, J. L.; Marconi, G. C.; Debono, M. *J. Am. Chem. Soc.* **1984**, *106*, 4891. (c) Malabarba, A.; Ferrari, P.; Gallo, G. G.; Kettenring, J.; Cavalleri, B. *J. Antibiot.* **1986**, *39*, 1430.

Table 1. Assignments of Significant ¹H NMR Signals in DMSO- d_6 in Comparison with TD (TMS, Internal Reference, δ in ppm)

		di-BOC-				di-BOC-			№-BOC-	N ² -CBZ-	N ² -CBZ-N ⁴ -BOC-
proton	TD	TDPP	TDPP	TDPP-Me	TDTPA	TDTP	TDTP	TDTP-Me	TDTP-Me	TDTP-Me	TDTP-Me
Phe-CH ₂	2.87, 3.35	2.97, 2.84	3.12, 3.00	3.12, 3.04	2.90	2.99, 2.80	3.07	3.06	3.07	3.06	3.05, 2.82
\mathbf{x}_2	4.92	3.88	4.18	4.17	3.34	4.07	4.20	4.03	4.10	4.20	4.19
x ₆	4.10	4.20	4.23	4.23	4.20	4.19	4.22	4.20	4.20	4.20	4.19
X 7	4.42	4.39	4.44	4.51	4.46	4.46	4.45	4.53	4.52	4.54	4.54
X 5	4.33	4.57	4.62	4.62	4.62	4.53	4.62	4.61	4.52	4.60	4.54
Z 6	5.10	5.10	5.11	5.11	5.12	5.10	5.12	5.16	5.12	5.15	5.12
\mathbf{x}_4	5.60	5.22	5.69	5.72	5.16	5.42	5.18	5.12	5.42	5.17	5.46
4f	5.08	5.51	5.48	5.46	5.55	5.46	5.58	5.55	5.50	5.56	6.09
7f	6.24				6.28	6.26	6.28	6.09	6.12	5.98	6.44
7d	6.39				6.43	6.42	6.41	6.42	6.48	6.42	6.53
4b	5.50		6.27	6.27	6.95	6.50	6.87	6.87	6.52	6.85	
W_2	8.10				8.05		8.35	8.45			
W_4	7.53				8.53		8.45	8.45			
W 7	8.40				8.53		8.45	8.67			
W_5	8.38				9.09		9.12	9.16			
COOCH ₃				3.70				3.70	3.71	3.71	3.69
CH ₂ (OH)					2.90						
t-Bu-CH ₃		1.37, 1.33				1.33, 1.26			1.27		1.24
CBZ-CH ₂										5.13	5.11
\mathbf{x}_1	5.47		4.91								

spectra of the above compounds were in accordance with the proposed structures, as shown in Table 2.

Experimental Section

The ¹H NMR experiments were recorded at 500 MHz in DMSO- d_6 solution, added with or without TFA. The positive ion low-resolution (RP = 2000; 10% valley definition) FAB MS spectra were obtained using 8 kV accelerating voltage. The samples were dissolved in a DMSO/thioglycerol 1/1 mixture. Reaction products were purified by reversed-phase column chromatography on silanized silica gel (0.063-0.2 mm), according to the following procedure: 1 g of crude compound was dissolved in 20-30 mL of a MeCN/H₂O (1/1) mixture, the solution was adjusted at pH 5.5 with solid HCO₂NH₄, and then H₂O was added dropwise under stirring until precipitation started. After a few drops of MeCN were added, the resulting cloudy solution was loaded on a column of 50 g of silanized silica gel in the same solvent mixture. Elution was carried out according to a linear gradient from 5-10% to 40-70% of MeCN in H_2O , in 10–15 h, at a flow rate of 200–300 mL/h, while collecting 20 mL fractions; those containing pure compound were pooled, and enough 1-BuOH was added to obtain, after evaporation of most solvent at 40 °C under reduced pressure, a concentrated dry butanol solution (or suspension). Upon addition of Et₂O the precipitated solid was collected, washed with Et₂O, and dried *in vacuo* at room temperature overnight. Reactions, column eluates, and final products were checked by HPLC performed on a column (125 \times 4 mm) prepacked with LiChrospher RP-8 (5 μ m). Chromatograms were recorded at 254 nm. Elutions were carried out by mixing eluent a, MeCN, with eluent b, 0.2% aqueous HCO₂NH₄, according to linear gradients programmed as follows:

	time (min)	0	10	20	30	35	40	45
method A:	% b in a	5	23	26	35	75	35	5
method B:	% b in a	20	33	47	60	75	75	20
method C:	% b in a	40	52	64	75	85	85	40

Pure deprotected pentapeptide (**TDPP** and **TDPP-Me**) and tetrapeptide (**TDTPA**, **TDTP**, and **TDTP-Me**) derivatives were analyzed for C, H, N, and Cl on samples previously dried at 140 °C under N₂ atmosphere. The analytical results obtained for the above elements were within $\pm 0.4\%$ of the theoretical values. The solvent content (<7%, mainly water) and inorganic residue (<0.2%) were determined by thermogravimetry (TG), at 140 °C, and after the samples were heated at 900 °C in O₂ atmosphere, respectively.

Preparation of TDTP Following Procedure A (Scheme 1). Di-BOC-RH-TD. To a stirred solution of 24 g (~20 mmol) Table 2. Analytical Data

compd	formula	MW (av)	FAB MS [MH] ⁺
di-BOC-RH-TD	C68H65Cl2N7O22	1403.2244	1402.4 ± 0.1
di-BOC-TDPP	C68H63Cl2N7O23	1417.2078	1416.3 ± 0.1
TDPP	C58H47Cl2N7O19	1216.9714	1216.2 ± 0.1
TDPP-Me	C ₅₉ H ₄₉ Cl ₂ N ₇ O ₁₉	1230.9984	1230.3 ± 0.1
TDTPA	$C_{42}H_{37}Cl_2N_5O_{13}$	890.7036	890.2 ± 0.1
di-BOC-TDTP	$C_{52}H_{51}Cl_2N_5O_{18}$	1104.9235	1104.3 ± 0.1
TDTP	C42H35Cl2N5O14	904.687	904.2 ± 0.1
TDTP-Me	C43H37Cl2N5O14	918.7141	918.2 ± 0.1
№4-BOC-TDTP-Me	$C_{48}H_{45}Cl_2N_5O_{16}$	1018.8324	1018.2 ± 0.1
N ² -CBZ-TDTP-Me	$C_{51}H_{43}Cl_2N_5O_{16}$	1052.8498	1052.2 ± 0.1
N ² -CBZ-N ⁴ -BOC-TDTP-Me	$C_{56}H_{51}Cl_2N_5O_{18}$	1152.9681	1152.3 ± 0.1

of **RH-TD** (HPLC, method A, $t_{\rm R}$ 11.6 min) in 400 mL of a dioxane/water 1/1 mixture was added 20 mL of a 1 M aqueous solution of NaHCO₃ at room temperature followed by a solution of 9 g (~40 mmol) of (BOC)₂O in 100 mL of the same above dioxane/water 1/1 mixture. After the mixture was stirred at room temperature for 5 h, 250 mL of H₂O was added, and the resulting solution was adjusted at pH 4 with 1 N HCl and then extracted with EtOAc (2 × 200 mL). The organic layer was washed with H₂O (2 × 100 mL), dried over Na₂SO₄, and concentrated at room temperature under reduced pressure to a small volume (~50 mL). On adding Et₂O (450 mL), the precipitated solid was collected and dried *in vacuo* at room temperature overnight to give 27 g (95% yield) of the title compound: HPLC, method B, $t_{\rm R}$ 11.3 min.

Di-BOC-TDPP. A solution of 22.4 g (~16 mmol) of the above compound and of 16 g (\sim 50 mmol) of Cs₂CO₃ in 1 L of a dioxane/water 1/1 mixture was stirred at room temperature for 1 h, and then a solution of 23 mL (~160 mmol) of CBZ-Cl in 100 mL of dry THF was added dropwise over 30 min. After being stirred at room temperature overnight, the reaction mixture was poured into a stirred mixture of EtOAc/H₂O 1/1 (1.5 L). The aqueous phase was adjusted at pH 3 with 1 N HCl, the organic layer was separated and dried over Na₂SO₄, and then the solvent was evaporated at room temperature under reduced pressure to give an oily residue which was slurried with Et₂O. The resulting solid material was collected to yield 27 g of per-CBZ derivative Zn-di-BOC-RH-TD as a crude mixture of two main compounds (HPLC, method C, $t_{\rm R}$ 29.8, 32.3 min).²¹ This product was dissolved in 400 mL of THF, and 90 mL of Jones reagent, "standard" solution,¹⁵ was added dropwise under vigorous stirring, in 1.5 h, while the temperature was maintained at $20{-}25\ ^\circ C.$ After 30 min, the

⁽²¹⁾ It was assessed that all per-CBZ derivatives of **di-BOC-RH-TD** with $t_{\rm R} > 20$ min (HPLC, method C) were suitable for the next oxidation step, while more hydrophilic homologous compounds were degraded upon treatment with the Jones reagent.

resulting dark suspension was poured into 2.5 L of a stirred mixture EtOAc/H₂O 1/1. The organic layer was separated, washed several times with a 1 N solution of Na₂S₂O₅ (to complete decomposion of peroxides), and then dried over Na₂-SO₄. Evaporation of solvents at room temperature under reduced pressure yielded 25 g of **Z**_n-di-BOC-TDPP as a crude mixture of two main compounds (HPLC, method C, t_R 21.5, 24.7 min). A solution of this product in 1 L of a MeOH/DMF/ AcOH 5/2/2 mixture was hydrogenated (1 atm, 25 °C) in the presence of 12.5 g of 5% Pd/C. About 1.5 L of H₂ was absorbed within 2 h; afterwards, the catalyst was filtered off and MeOH was evaporated at room temperature under reduced pressure. The resulting solution was diluted with 2.5 L of H_2O and extracted with 2.5 L of 1-BuOH. The organic layer was separated, washed with H_2O (2 \times 1 L), and then concentrated at 45 °C under reduced pressure to a final volume of ~ 100 mL. Upon addition of Et₂O (500 mL), the precipitated solid was collected (\sim 15 g) and purified by reversed-phase column chromatography, yielding 5.6 g (\sim 25%) of the title compound: HPLC, method B, $t_{\rm R}$ 6.0 min.

TDPP. To remove the BOC protective groups, the above compound (5.5 g) was dissolved in 50 mL of dry TFA and the resulting solution was stirred at room temperature for 1.5 h. Then, the solvent was evaporated at room temperature under reduced pressure and the oily residue was slurried with EtOAc to obtain a solid product which was collected, washed several times with Et₂O, and dried *in vacuo* at room temperature (over KOH) to give the title compound (5.5 g, ~100%), as the ditrifluoroacetate: HPLC, method A, $t_{\rm R}$ 9.0 min.

TDTP (by double Edman degradation of TDPP). To a stirred solution of the above product (5.5 g, ${\sim}4$ mmol) in 75 mL of a pyridine/water 1/1 mixture was added 1.1 mL (~9 mmol) of phenyl isothiocyanate at room temperature. After 3 h, the reaction mixture was poured into 200 mL of H₂O, and the resulting cloudy solution was adjusted at pH 3 with 1 N HCl and then was extracted with EtOAc (2 \times 200 mL). The organic layer was discarded, and the aqueous phase was extracted again with 1-BuOH (200 mL). The butanol layer was separated, washed with H_2O (2 \times 200 mL), and then concentrated at 40 °C under reduced pressure to a small volume (~20 mL). Upon addition of Et₂O (100 mL), the precipitated solid was collected (5.8 g, crude diisothiourea: HPLC, method A, $t_{\rm R}$ 11.3 min) and redissolved in 100 mL of dry TFA. The resulting solution was stirred at room temperature for 1.5 h, and then the solvent was evaporated at 30 °C under reduced pressure. The oily residue was purified by reversed-phase chromatography under the usual conditions, yielding 0.95 g (\sim 23%) of the title compound: HPLC, method A, $t_{\rm R}$ 6.8 min.

Preparation of TDTP Following Procedure B (Scheme 2). TDTPA (by double Edman degradation of RH-TD). To a stirred solution of 13.5 g (\sim 11 mmol) of RH-TD in 270 mL of a pyridine/water 1/1 mixture was added 2.8 mL (~23 mmol) of phenyl isothiocyanate at room temperature. After 7 h, the reaction mixture was poured into 500 mL of H₂O, and the resulting cloudy solution was adjusted at pH 3 with 1 N HCl and then extracted with EtOAc (2×500 mL). The organic layer was discarded, and the aqueous phase was extracted again with 1-BuOH (500 mL). The butanolic layer was separated, washed with H_2O (2 \times 300 mL), and then concentrated at 40 °C under reduced pressure to a small volume (~50 mL). Upon addition of Et₂O (300 mL), the precipitated solid was collected (14.3 g, crude diisothiourea: HPLC, method A, $t_{\rm R}$ 13.5 min) and redissolved in 200 mL of dry TFA. The resulting solution was stirred at room temperature for 1.5 h, and then the solvent was evaporated at 30 °C under reduced pressure. The oily residue was purified by reversed-phase chromatography under the usual conditions, yielding 7.5 g (~75%) of the title compound: HPLC, method A, $t_{\rm R}$ 8.3 min.

Di-BOC-TDTPA. To a stirred solution of 7.2 g (~8 mmol) of the above compound and 11 g of NaHCO₃ in 250 mL of a dioxane/water 1/1 mixture was added a solution of 4 g (~18.5 mmol) of $(BOC)_2O$ in 30 mL of dioxane dropwise at 0-5 °C. Stirring was continued at room temperature for 5 h, and then the reaction mixture was adjusted at pH 4 with 1 N HCl and extracted with 300 mL of EtOAc. The organic layer was

separated, washed with H₂O (2 × 250 mL), dried over Na₂-SO₄, and then concentrated at 30 °C under reduced pressure to a small volume (~25 mL). Upon addition of Et₂O (250 mL), the precipitated solid was collected and dried *in vacuo* at room temperature overnight to yield 8.7 g (100%) of title compound pure enough for the next step: HPLC, method B, $t_{\rm R}$ 12.2 min.

Di-BOC-TDTP. To a stirred suspension of 6 g (\sim 5.5 mmol) of the above compound in 500 mL of dry Me₂CO were added 120 mL of 2,2-dimethoxypropane and 0.27 g (~1.4 mmol) of *p*-toluenesulfonic acid. After the mixture was stirred at room temperature for 1.5 h, a solution of 0.24 g of NaHCO₃ in 4 mL of H₂O was added and solvents were evaporated at 35 °C under reduced pressure. The solid residue (di-BOC-TDTPA-ox**azolidine**, 6.4 g: HPLC, method b, $t_{\rm R}$ 17.9 min) was collected and dissolved in 300 mL of a dioxane/water 1/1 mixture, and 5.5 g (\sim 17 mmol) of Cs₂CO₃ was added. The resulting solution was stirred at room temperature for 1 h, and then a solution of 7.5 mL (~50 mmol) of CBZ-Cl in 50 mL of dry THF was added dropwise in 45 min while the mixture cooled to 5-10°C. After being stirred at room temperature overnight, the reaction mixture was poured into a stirred mixture EtOAc/ $H_2O 1/1$ (500 mL). The aqueous phase was adjusted at pH 4.3 with glacial AcOH, the organic layer was separated and dried over Na₂SO₄, and then the solvent was evaporated at room temperature under reduced pressure. The oily residue was suspended in 250 mL of MeCN, and 25 mL of 1 N HCl was added at room temperature. After being stirred at room temperature for 1.5 h, the reaction mixture was poured into 500 mL of H₂O and the resulting suspension was extracted with EtOAc (500 mL). The organic layer was washed with 1 N NaHCO₃ until the pH of the aqueous washings was neutral, and then it was washed with H_2O (2 \times 250 mL), dried over Na₂SO₄, and concentrated at 30 °C under reduced pressure to a small volume (\sim 30 mL). Upon addition of Et₂O (300 mL), the precipitated solid was collected (Z_n -di-BOC-TDTPA, 5.7 g: HPLC, method C, $t_{\rm R}$ 27.1 min) and oxidized with the Jones reagent as described above (procedure A), obtaining 5.3 g of crude (85% HPLC titer) per-CBZ derivative Zn-di-BOC-TDTP (HPLC, method C, $t_{\rm R}$ 18.7 min). Removal of the CBZ protective groups under the previously described conditions (1 atm, 25 C, 2.5 g of 5% Pd/C) yielded a 80/15/5 mixture (3.5 g) of crude (~85%, by HPLC) di-BOC-TDTP and corresponding monoand didechlorinated derivatives, respectively. Purification by reversed-phase chromatography gave 1.1 g (~17%) of pure title compound: HPLC, method b, $t_{\rm R}$ 7.9 min).

TDTP. A solution of the above compound (1.1 g) in 25 mL of dry TFA was stirred at room temperature for 1.5 h, and then the solvent was evaporated at 30 °C under reduced pressure. The oily residue was slurried with EtOAc (50 mL) and then with Et₂O (100 mL), obtaining a solid product which was collected, washed with Et₂O, and dried *in vacuo* at room temperature overnight, yielding 1.1 g (~100%) of pure title compound as the bistrifluoroacetate: HPLC, method B, $t_{\rm R}$ 6.8 min.

Preparation of N²-CBZ-TDTP-Me (Scheme 3). TDPP-Me. To a stirred solution of 30 g (~21 mmol) of di-BOC-RH-TD in 200 mL of DMF was added 2.5 g of KHCO3 followed by a solution of 22 mL (~23 mmol) of MeI in 30 mL of DMF. After being stirred at room temperature overnight, the reaction mixture was poured into 1 L of H₂O. The resulting cloudy solution was adjusted at pH 3 with 1 N HCl and extracted with 1 L of a EtOAc/1-BuOH 1/1 mixture. The organic layer was separated, washed several times with H₂O to neutral pH, and then concentrated at 40 °C under reduced pressure to a small (\sim 50 mL) volume. Upon addition of Et₂O (300 mL), the precipitated solid was collected and dried in vacuo at room temperature overnight, yielding 30 g (~100%) of di-BOC-RH-**TD-Me** pure enough for the next step. HPLC, method B, $t_{\rm R}$ 16.1 min. The above compound was protected at the phenolic hydroxy groups following the same procedure described previously for Z_n-di-BOC-RH-TD, obtaining 36 g of Z_n-di-BOC-RH-TD-Me as crude mixture of two main compounds (HPLC, method C, $t_{\rm R}$ 30.3, 32.5 min), which was submitted to oxidation with the Jones reagent as described above, yielding 34.3 g of crude Zn-di-BOC-TDPP-Me (HPLC, method C, tR 22.3, 25.8 min). Then the CBZ groups were removed from this product

Deglucoteicoplanin-Derived Tetrapeptide

by hydrogenolysis (1 atm, room temperature, in the presence of 15 g of 5% Pd/C added in two portions), obtaining 24.5 g of crude **di-BOC-TDPP-Me** (HPLC, method B, $t_{\rm R}$ 8.3 min). This compound was dissolved in 300 mL of TFA, and the resulting solution was stirred at room temperature for 30 min. Evaporation of the solvent under reduced pressure at 30 °C yielded an oily residue which was slurried with EtOAc to give a solid (~21 g) which was purified by reversed-phase column chromatography, obtaining 9.7 g (~38%, overall yield) of the title compound (HPLC, method A, $t_{\rm R}$ 11.3 min).

TDTP-Me. Edman degradation of 6.5 g of **TDPP-Me** (6.5 g) was carried out as described previously for **TDTP**, yielding 1.35 g (\sim 25%) of title compound (HPLC, method A, $t_{\rm R}$ 10.3 min), as the bistrifluoroacetate.

N⁴-BOC-TDTP-Me. A solution of 2.8 g (~3 mmol) of TDTP-Me (2TFA) and of 0.75 g of NaHCO₃ in 100 mL of a dioxane/water 1/1 mixture was stirred at -5 °C while a solution of 0.62 g of (\sim 3 mmol) of (BOC)₂O was added dropwise, in 1 h, in 20 mL of dioxane. Stirring was continued at -5 °C for an additional 7 h, and then the reaction mixture was poured into 300 mL of H₂O. The resulting cloudy solution was adjusted at pH 3 with 1 N HCl and extracted with 150 mL of EtOAc. The organic layer was separated, dried over Na₂SO₄, and evaporated at 30 °C under reduced pressure, obtaining 0.9 g of **di-BOC-TDTP-Me** (HPLC, method A, $t_{\rm R}$ 21.5 min) which was treated with 10 mL of TFA to regenerate starting TDTP-Me. The aqueous phase was extracted with 100 mL of 1-BuOH, obtaining, after evaporation of butanol at 45 °C under reduced pressure, 1.6 g (\sim 50%) of pure title compound (HPLC, method A, $t_{\rm R}$ 15.0 min).

N²-CBZ-N⁴BOC-TDTP-Me. To a stirred solution of 1.55 g (~1.5 mmol) of **N⁴-BOC-TDTP-Me** in 50 mL of a dioxane/ water 1/1 mixture was added 1.4 g of NaHCO₃ followed by a solution of 0.23 mL of CBZ-Cl in 5 mL of dioxane (added dropwise at room temperature in 5 min). After 10 min, the reaction mixture was poured into 200 mL of a stirred H₂O/ EtOAc 1/1 mixture. After the aqueous phase was adjusted at pH 3 with 1 N HCl, the organic layer was separated, dried over Na₂SO₄, and concentrated at 30 °C under reduced pressure to a small (~20 mL) volume. Upon addition of Et₂O (100 mL), the precipitated solid was collected, obtaining 1.75 g (~100%) of pure title compound (HPLC, method B, $t_{\rm R}$ 12.7 min).

N²-CBZ-TDTP-Me. A solution of 0.6 g of the above compound in 10 mL of TFA was stirred at room temperature for 15 min. Afterwards, the solvent was evaporated at 30 °C under reduced pressure. The oily residue was slurried with Et₂O, and the solid which separated was collected, washed with Et₂O, and dried *in vacuo* at room temperature overnight to yield 0.65 g (~100%) of pure title compound (HPLC, method B, $t_{\rm R}$ 8.0 min), as the trifluoroacetate.

Supporting Information Available: Combustion analysis data (1 page). This material is contained in libraries on microfiche, immediately follows this article in the microfilm version of the journal, and can be ordered from the ACS; see any current masthead page for ordering information.

JO9506746