

Supporting Information

© Copyright Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, 2014

A Simple and Direct Method for the Palladium-Catalyzed Oxidative Coupling of Unactivated Allylarenes with Classic Arenes

Weiwei Jin, Wing-Tak Wong,* and Ga-Lai Law*^[a]

cctc_201402075_sm_miscellaneous_information.pdf

Experimental procedures and analytical data

Contents:

1. General consideration	2
2. Experimental procedures	3
3. Intermolecular competition experiment	4
4. Kinetic isotopic effect study	5
5. Analytical data	6
6. The crystal structure of (E)-3i	3
7. Copies of ¹ H, ¹³ C and ¹⁹ F NMR spectra	14

1. General consideration

¹H and ¹³C NMR spectra were recorded on a Bruker DPX400 NMR spectrometer, the chemical shift values are refered to $\delta_{TMS} = 0.00$ ppm and solvent residues of CDCl₃ are (δ (¹H), 7.26 ppm and δ (¹³C), 77.16 ppm). ¹⁹F NMR was recorded on a Bruker DPX400 NMR spectrometer (CFCl₃ as outside standard and positive low field). Chemical shifts (δ) are reported in ppm; coupling constants (*J*) are reported in Hz. Standard abbreviations are used: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet. HRMS analysis was carried out on a Waters-Micromass GCT permier mass spectrometer operated in electron ionization mode. X-ray crystallographic study was performed by a Bruker CCD area detector diffractometer. Analytical TLC plates, Merck KGaA silica gel 60_{F254} were viewed by UV light (254 nm). Column chromatographic purification was performed on SDZF silica gel 160.

All the chemical reagents were purchased from commercial sources and used as received unless otherwise indicated. Benzene, toluene, *o*-xylene, *m*-xylene and *p*-xylene were freshly distilled from sodium/benzophenone and stored over 4A molecular sieve.

2. Experimental procedures

2.1. A typical procedure for the direct oxidative coupling of unactivated allylarenes 1 with classic arenes 2-Synthesis of (E)-prop-1-ene-1,3-diyldibenzene (3a): A mixture of 1a (59 mg, 0.5 mmol), Pd(TFA)₂ (17 mg, 0.05 mmol), AgOAc (125 mg, 0.75 mmol) and PivOH (204 mg, 2 mmol) in benzene 2a (3 mL) was stirred at 80 °C for 12 h. After cooling to ambient temperature, the resultant mixture was filtered through a short pad of celite and rinsed with 10 mL DCM. The organic phase was removed under reduced pressure. The resultant residue was purified by silica gel column chromatography (eluent: petroleum ether (35-60 °C)) to afford 3a as a colorless liquid (58 mg, 60%).

2.2. A typical procedure for the hydrogenation of 3/3'-Synthesis of *1-methyl-4-(3-phenylpropyl)benzene (3d'')*: The mixture of 3d/3d' (40 mg, 0.19 mmol) was dissolved in EtOH (5 mL), and a catalytic amount of Pd/C (5 mg, 10 mol%) was added. The air in the flask was exchanged to hydrogen, using a pump and a hydrogen balloon, repeated thrice. Another hydrogen balloon was connected to the flask and the mixture was stirred vigorously for 12 hours. After the reaction had finished, the crude mixture was filtered, concentrated in vacuo and purified by silica gel column chromatography (eluent: petroleum ether (35-60 °C)) to afford 3d'' as a colorless liquid (36 mg, 90%). 3f'' was obtained in 94% yield under the same method.

2.3. A typical procedure for the direct oxidative coupling of homoallylbenzene 1j with benzene 2a-Synthesis of (E)-but-1-ene-1,4-diyldibenzenee (3j): A mixture of 1j (66 mg, 0.5 mmol), Pd(TFA)₂ (17 mg, 0.05 mmol), AgOAc (125 mg, 0.75 mmol) and PivOH (204 mg, 2 mmol) in benzene **2a** (3 mL) was stirred at 80 °C for 12 h. After cooling to ambient temperature, the resultant mixture was filtered through a short pad of celite and rinsed with 10 mL DCM. The organic phase was removed under reduced pressure. The resultant residue was purified by silica gel column chromatography (eluent: petroleum ether (35-60 °C)) to afford **3j** as a colorless liquid (54 mg, 52%).

2.4. A typical procedure for the control experiment

A mixture of **5c** (63 mg, 0.32 mmol), $Pd(TFA)_2$ (11 mg, 0.032 mmol), AgOAc (80 mg, 0.48 mmol) and PivOH (131 mg, 1.28 mmol) in benzene (2 mL) was stirred at 80 °C for 40 h. After cooling to ambient temperature, the resultant mixture was filtered through a short pad of celite and rinsed with 10 mL DCM. The organic phase was removed under reduced pressure. The resultant residue was purified by silica gel column chromatography (eluent: petroleum ether (35-60 °C)) to afford **3a** as a colorless liquid (3 mg, 5%).

3. Intermolecular competition experiment

A mixture of **1a** (30 mg, 0.25 mmol), **1e** (37 mg, 0.25 mmol), $Pd(TFA)_2$ (17 mg, 0.05 mmol), AgOAc (125 mg, 0.75 mmol) and PivOH (204 mg, 2.0 mmol) in benzene (3.0 mL) was stirred at 80 °C for 12 h. After cooling to ambient temperature, the resultant mixture was filtered through a short pad of celite and rinsed with 10 mL DCM. The organic phase was removed under reduced pressure. The resultant residue was purified by silica gel column chromatography (eluent: petroleum ether (35-60 °C)) to afford **3a** (24 mg, 48%) and **3e/3e'** (32 mg, 57%).

A mixture of **1e** (37 mg, 0.25 mmol), **1g** (52 mg, 0.25 mmol), Pd(TFA)₂ (17 mg, 0.05 mmol), AgOAc (125 mg, 0.75 mmol) and PivOH (204 mg, 2.0 mmol) in benzene (3.0 mL) was stirred at 80 °C for 12 h. After cooling to ambient temperature, the resultant mixture was filtered through a short pad of celite and rinsed with 10 mL DCM. The organic phase was removed under reduced pressure. The resultant residue was purified by silica gel column chromatography (eluent: petroleum ether (35-60 °C)) to afford **3e/3e'** (36 mg, 65%) and **3g** (37 mg, 52%).

A mixture of **1a** (59 mg, 0.5 mmol), Pd(TFA)₂ (17 mg, 0.05 mmol), AgOAc (125 mg, 0.75 mmol) and PivOH (204 mg, 2.0 mmol) in anisole (1.5 mL)/fluorobenzene (1.5 mL) was stirred at 80 °C for 12 h. After cooling to ambient temperature, the resultant mixture was filtered through a short pad of celite and rinsed with 10 mL DCM. The organic phase was removed under reduced pressure. The resultant residue was purified by silica gel column chromatography (eluent: petroleum ether (35-60 °C)) to afford **4i** (34 mg, 30%) and **4j** (14 mg, 13%).

4. Kinetic isotopic effect study

A mixture of **1a** (64 mg, 0.54 mmol), Pd(TFA)₂ (18 mg, 0.054 mmol), AgOAc (135 mg, 0.81 mmol) and PivOH (221 mg, 2.16 mmol) in benzene- d_6 (3 mL) was stirred at 80 °C for 12 h. After cooling to ambient temperature, the resultant mixture was filtered through a short pad of celite and rinsed with 10 mL DCM. The organic phase was removed under reduced pressure. The resultant residue was purified by silica gel column chromatography (eluent: petroleum ether (35-60 °C)) to afford **3a**- d_5 as a colorless liquid (18 mg, 17%).

A mixture of **1i** (96 mg, 0.57 mmol), Pd(TFA)₂ (19 mg, 0.057 mmol), AgOAc (143 mg, 0.85 mmol) and PivOH (233 mg, 2.3 mmol) in toluene- d_8 (3 mL) was stirred at 80 °C for 12 h. After cooling to ambient temperature, the resultant mixture was filtered through a short pad of celite and rinsed with 10 mL DCM. The organic phase was removed under reduced pressure. The resultant residue was purified by silica gel column chromatography (eluent: petroleum ether (35-60 °C)) to afford **4i**- d_7 as a colorless liquid (27 mg, 18%).

5. Analytical data

3a Colorless liquid. ¹H NMR (CDCl₃, 400 MHz) \Box δ 7.47-7.28 (m, 10 H), 6.56 (d, J = 15.8 Hz, 1 H), 6.46 (dt, J = 15.7, 6.6 Hz, 1 H), 3.65 (d, J = 6.6 Hz, 2 H); ¹³C NMR (CDCl₃, 100 MHz) δ 140.3, 137.6, 131.2, 129.3, 128.8, 128.6, 127.2, 126.3, 126.2, 39.5. HRMS Cacld for C₁₅H₁₄: 194.1096; Found: 194.1094.

3b/**3b**' = 42:58. Colorless liquid. ¹H NMR (CDCl₃, 400 MHz) \Box δ 7.55-7.24 (m, 9 H), 6.78 (d, *J* = 15.6 Hz, 0.4 H), 6.51-6.31 (m, 1.6 H), 3.69 (d, *J* = 6.9 Hz, 0.8 H), 3.64 (d, *J* = 4.8 Hz, 1.2 H), 2.46 (s, 1.3 H), 2.45 (s, 1.7 H); ¹³C NMR (CDCl₃, 100 MHz) δ 140.4, 138.3, 137.6, 136.7, 136.5, 135.2, 131.0, 130.6, 130.3 x 2, 129.3, 129.1, 128.7, 128.6 x 2, 127.2, 126.5, 126.3, 126.2 x 3, 125.7, 39.8, 37.0, 20.0, 19.6. HRMS Cacld for C₁₆H₁₆: 208.1252; Found: 208.1244.

3c/3c' Colorless liquid. The ratio of **3c/3c'** can not be determined by ¹H NMR spectroscopy. ¹H NMR (CDCl₃, 400 MHz) \Box δ 7.47-7.28 (m, 7 H), 7.16-7.14 (m, 2 H), 6.57-6.41 (m, 2 H), 3.64-3.60 (m, 2 H), 2.43 (s, 2 H), 2.42 (s, 1 H); ¹³C NMR (CDCl₃, 100 MHz) δ 140.4, 140.2, 138.2, 138.1, 137.6, 137.5, 131.2, 131.1, 129.6, 129.5, 129.1, 128.8, 128.6, 128.5, 128.0, 127.2, 127.0 x 2, 126.2, 125.8, 123.4, 39.5, 39.4, 21.5. HRMS Cacld for C₁₆H₁₆: 208.1252; Found: 208.1253.

3d/3d' = 47:53. Colorless liquid. ¹H NMR (CDCl₃, 400 MHz) \Box δ 7.45-7.18 (m, 9 H), 6.56-6.36 (m, 2 H), 3.63 (d, *J* = 6.8 Hz, 1.1 H), 3.60 (d, *J* = 6.7 Hz, 0.9 H), 2.43 (s, 1.4 H), 2.41 (s, 1.6 H); ¹³C NMR (CDCl₃, 100 MHz) δ 140.5, 137.7, 137.2, 136.9, 135.8, 134.8, 131.0 x 2, 129.6, 129.3 x 2, 128.8, 128.7, 128.6 x 2, 128.3, 127.2, 126.2 x

2, 126.1, 39.5, 39.1, 21.3, 21.2. HRMS Cacld for C₁₆H₁₆: 208.1252; Found: 208.1260.

3d'' Colorless liquid. ¹H NMR (CDCl₃, 400 MHz) δ 7.33-7.29 (m, 2 H), 7.23-7.19 (m, 3 H), 7.14-7.09 (m, 4 H), 2.70-2.63 (m, 4 H), 2.35 (s, 3 H), 2.01-1.94 (m, 2 H); ¹³C NMR (CDCl₃, 100 MHz) δ 142.5, 139.3, 135.3, 129.1, 128.6, 128.5, 128.4, 125.8, 35.6, 35.1, 33.2, 21.1. HRMS Cacld for C₁₆H₁₈: 210.1409; Found: 210.1405.

3e/3e' = 48:52. Colorless liquid. ¹H NMR (CDCl₃, 400 MHz) □ δ 7.43-7.22 (m, 7 H), 6.94-6.89 (m, 2 H), 6.52-6.25 (m, 2 H), 3.85 (s, 3 H), 3.59 (d, *J* = 6.8 Hz, 1 H), 3.56 (d, *J* = 6.4 Hz, 1 H); ¹³C NMR (CDCl₃, 100 MHz) δ 159.0, 158.2, 140.6, 137.6, 132.3, 130.8, 130.5, 130.4, 129.8, 129.7, 128.8, 128.6 x 2, 127.3, 127.2, 126.2, 114.0, 55.4, 39.4, 38.6. HRMS Cacld for C₁₆H₁₆O: 224.1201; Found: 224.1205.

3f/3f' = 56:44. Colorless liquid. ¹H NMR (CDCl₃, 400 MHz)□ δ 7.46-7.26 (m, 7 H), 7.10-7.04 (m, 2 H), 6.55-6.32 (m, 2 H), 3.62 (d, J = 7.1 Hz, 0.9 H), 3.60 (d, J = 6.8 Hz, 1.1 H); ¹³C NMR (CDCl₃, 100 MHz) δ 163.4, 162.8, 160.9, 160.4, 140.2, 137.4, 135.9, 135.8, 133.8, 133.7, 131.3, 130.2, 130.1, 130.0, 129.1 x 3, 128.8, 128.7, 127.7, 127.6, 127.3, 126.4, 126.3, 115.6, 115.4 x 2, 115.2, 39.4, 38.6; ¹⁹F NMR (CDCl₃, 373 MHz) δ -115.2 (d, J = 2.2 Hz), -117.1 (d, J = 2.5 Hz). HRMS Cacld for C₁₅H₁₃F: 212.1001; Found: 212.0991.

3f" Colorless liquid. ¹H NMR (CDCl₃, 400 MHz) δ 7.34-7.28 (m, 2 H), 7.24-7.14 (m, 5 H), 7.01-6.97 (m, 2 H), 2.69-2.63 (m, 4 H), 2.01-1.93 (m, 2 H); ¹³C NMR (CDCl₃, 100 MHz) δ 162.4, 142.3, 138.0, 129.9, 129.8, 128.6, 128.5, 125.9, 115.3, 115.0, 35.5, 34.7, 33.2; ¹⁹F NMR (CDCl₃, 373 MHz) δ -117.9. HRMS Cacld for C₁₅H₁₅F: 214.1158; Found: 214.1160.

3g White solid. ¹H NMR (CDCl₃, 400 MHz) □ δ 7.42-7.26 (m, 5 H), 6.53 (d, J = 15.7 Hz, 1 H), 6.27 (dt, J = 15.6, 6.8 Hz, 1 H), 3.64 (dd, J = 6.6, 1.0 Hz, 2 H); ¹³C NMR (CDCl₃, 100 MHz) δ 146.4, 143.9, 138.9, 136.7, 132.6, 128.7, 127.8, 126.4, 124.4, 113.4 x 2, 113.2 x 2, 25.8; ¹⁹F NMR (CDCl₃, 373 MHz) δ -143.9 (dd, J = 22.4, 8.5 Hz), -157.3 (t, J = 20.8 Hz), 162.6 (td, J = 22.1, 8.4 Hz). HRMS Cacld for C₁₅H₉F₅: 284.0624; Found: 284.0621.

3h/3h' = 66:34. Colorless liquid. ¹H NMR (CDCl₃, 400 MHz) \Box δ 7.66-7.61 (m, 2 H), 7.51-7.28 (m, 7 H), 6.58-6.54 (m, 1.3 H), 6.44-6.37 (m, 0.6 H), 3.68-3.65 (m, 2 H); ¹³C NMR (CDCl₃, 100 MHz) δ 144.4, 143.6, 141.1, 140.0, 137.3, 132.3, 132.1, 129.9, 129.1, 128.9, 128.8, 128.7 x 2, 128.6, 128.5, 128.0, 127.5, 126.5, 126.4, 126.3, 125.8, 125.7, 125.6 x 3, 125.5 x 2, 123.1 x 2, 39.5, 39.2; ¹⁹F NMR (CDCl₃, 373 MHz) δ -62.2 (d, *J* = 40.0 Hz). HRMS Cacld for C₁₆H₁₃F₃: 262.0969; Found: 262.0974.

3i/3i' = 69:31. White solid. ¹H NMR (CDCl₃, 400 MHz) \Box δ 8.27-8.20 (m, 1 H), 8.01-7.95 (m, 1 H), 7.90-7.86 (m, 1 H), 7.72-7.28 (m, 9 H), 6.68-6.48 (m, 1.5 H), 4.11 (d, *J* = 4.7 Hz, 1.3 H), 3.80 (d, *J* = 6.8 Hz, 0.6 H); ¹³C NMR (CDCl₃, 100 MHz) δ 140.3, 137.6, 136.3, 135.4, 134.0, 133.7, 132.5, 132.1, 131.4, 131.3, 129.0, 128.8, 128.7, 128.6 x 2, 128.5, 128.4, 127.6, 127.2, 126.5, 126.3, 126.2, 126.1, 126.0, 125.8 x 2, 125.7, 124.1, 124.0, 123.8, 39.8, 36.5. HRMS Cacld for C₁₉H₁₆: 244.1252; Found: 244.1258.

3j Colorless liquid.¹H NMR (CDCl₃, 400 MHz) \Box δ 7.43-7.35 (m, 6 H), 7.32-7.28 (m, 4 H), 6.50 (d, J = 15.8 Hz, 1 H), 6.34 (dt, J = 15.8, 6.7 Hz, 1 H), 2.88 (t, 2 H), 2.62 (q, 2 H); ¹³C NMR (CDCl₃, 100 MHz) δ 141.9, 137.8, 130.6, 130.1, 128.6, 128.5, 127.1, 126.1, 126.0, 36.0, 35.0. HRMS Cacld for C₁₆H₁₆: 208.1259; Found: 208.1252.

4a/4a' Colorless liquid. ¹H NMR (CDCl₃, 400 MHz) \Box δ 7.43-7.11 (m, 9 H), 6.53-6.39 (m, 2 H), 3.66-3.58 (m, 2 H), 2.41-2.40 (m, 2 H); ¹³C NMR (CDCl₃, 100 MHz) & 140.4, 140.3, 138.1, 137.7, 137.6, 136.9, 134.8, 131.3, 131.1, 129.6, 129.5, 129.3, 129.1, 128.8, 128.7, 128.6, 128.5, 128.3, 128.0, 127.2, 127.0, 126.3, 126.2, 123.4, 39.5, 39.1, 21.5, 21.3. HRMS Cacld for C₁₆H₁₆: 208.1252; Found: 208.1259.

4b/4b' Colorless liquid. ¹H NMR (CDCl₃, 400 MHz) \Box δ 7.48-7.09 (m, 8 H), 6.85 (d, J = 15.4 Hz, 0.1 H), 6.57 (d, J = 16.4 Hz, 0.5 H), 6.51-6.38 (m, 1.2 H), 3.70-3.59 (m, 1 H), 2.42 -2.35 (m, 6 H); ¹³C NMR (CDCl₃, 100 MHz) δ 140.5, 137.7 x 2, 136.7, 136.6, 135.6, 135.3, 134.4, 131.1, 130.1, 129.9 x 2, 129.7, 129.1, 128.8, 128.6 x 2, 128.1, 127.5, 127.4, 127.1, 126.2 x 2, 126.1, 123.7, 39.5, 39.1, 19.9, 19.6, 19.5. HRMS Cacld for C₁₇H₁₈: 222.1409; Found: 222.1419.

:/4c'

4c/4c' Colorless liquid. ¹H NMR (CDCl₃, 400 MHz) \Box δ 7.47-6.98 (m, 8 H), 6.76 (d, J = 15.6 Hz, 0.3 H), 6.59-6.40 (m, 1.3 H), 6.34-6.27 (m, 0.3 H), 3.69-3.59 (m, 2 H), 2.43 -2.41 (m, 6 H); ¹³C NMR (CDCl₃, 100 MHz) δ 140.6, 138.1, 138.0, 137.7, 136.8, 136.3, 136.0, 135.2, 135.0, 133.9, 131.3, 131.2, 131.1, 130.9, 130.8, 129.7, 129.6, 129.3, 129.0, 128.8, 128.7, 128.6, 127.9, 127.1, 126.9, 126.8, 126.6, 126.2 x 3, 125.6, 124.2, 39.8, 39.5, 39.4, 36.6, 21.4, 21.2, 21.1, 19.9, 19.5. HRMS Cacld for C₁₇H₁₈:

222.1409; Found: 222.1413.

4d/4d' = 53:47. Colorless liquid. ¹H NMR (CDCl₃, 400 MHz) □ δ 7.46-7.28 (m, 6 H), 7.18-7.13 (m, 1.6 H), 7.09-7.05 (m, 1 H), 6.77 (d, J = 15.6 Hz, 0.4 H), 6.51-6.30 (m, 1.5 H), 3.68 (d, J = 7.0 Hz, 1 H), 3.60 (d, J = 5.3 Hz, 1 H), 2.42 (s, 3.3 H), 2.40 (s, 2.7 H); ¹³C NMR (CDCl₃, 100 MHz) δ 140.5, 138.1, 137.7, 136.4, 135.6, 135.4, 133.3, 132.1, 130.9, 130.3, 130.2, 130.1, 129.2, 128.8 x 2, 128.6, 127.9, 127.2, 127.1, 126.3 x 2, 126.2, 39.8, 37.0, 21.1 x 2, 19.5, 19.1. HRMS Cacld for C₁₉H₁₆: 222.1409; Found: 222.1413.

4e/4e' = 58:42. Colorless liquid. ¹H NMR (CDCl₃, 400 MHz)□ δ 7.32-7.00 (m, 7 H), 6.91 (d, 0.4 H, *J* = 15.6 Hz), 6.44-6.23 (m, 1.5 H), 3.59 (d, 0.8 H, *J* = 6.9 Hz), 3.54 (d, 1.2 H, *J* = 6.0 Hz), 2.40-2.35 (m, 9 H); ¹³C NMR (CDCl₃, 100 MHz) δ 138.3, 137.4, 136.8, 136.5, 135.7, 135.6, 135.4, 134.9, 133.3, 132.1, 130.8, 130.6, 130.2, 130.1, 129.3, 129.0, 128.6, 127.9, 127.7, 127.1, 126.4, 126.1, 39.4, 37.0, 21.3, 21.1 x 3, 19.5, 19.1. HRMS Cacld for C₁₈H₂₀: 236.1565; Found: 236.1566.

4f Colorless liquid. ¹H NMR (CDCl₃, 400 MHz) \Box δ 7.24 (s, 1 H), 7.08 (d, *J* = 7.6 Hz, 1 H), 7.02 (d, *J* = 7.6 Hz, 1 H), 6.77 (d, *J* = 15.5 Hz, 1 H), 6.12 (dt, *J* = 15.2, 6.8 Hz, 1 H), 3.67 (d, *J* = 6.8 Hz, 2 H), 2.35 (d, *J* = 5.7 Hz, 6 H); ¹³C NMR (CDCl₃, 100 MHz) δ 146.4, 144.0, 141.2, 138.8, 136.4, 135.6 x 2, 132.4, 130.8, 130.3, 128.5, 126.3, 125.4, 113.7, 113.6, 113.5, 29.9, 21.0, 19.3; ¹⁹F NMR (CDCl₃, 373 MHz) δ -144.0 to -144.1 (m, 2 F), -157.4 to -157.5 (m, 1 F), -162.6 to -162.7 (m, 2 F). HRMS Cacld for

C₁₇H₁₃F₅: 312.0937; Found: 312.0933.

4g/4g' Colorless liquid. ¹H NMR (CDCl₃, 400 MHz) \Box δ 7.45-7.14 (m, 9 H), 6.55-6.28 (m, 2 H), 3.67-3.59 (m, 2 H), 2.79-2.67 (m, 2 H), 1.34-1.29 (m, 3 H); ¹³C NMR (CDCl₃, 100 MHz) δ 144.6 x 2, 143.4, 142.2, 140.5, 140.3, 137.7, 137.6, 137.5, 135.1, 131.4, 131.1, 131.0, 129.6, 129.5, 129.1, 128.8 x 2, 128.7, 128.6, 128.4, 128.1 x 2, 127.2, 126.9, 126.2, 126.1, 125.8, 123.7, 39.5 x 2, 39.1, 29.0. 28.7, 28.6, 15.8 x 2, 15.7. HRMS Cacld for C₁₇H₁₈: 222.1409; Found: 222.1415.

4h/4h' Colorless liquid. ¹H NMR (CDCl₃, 400 MHz) \square δ 7.45-7.12 (m, 9 H), 6.57-6.29 (m, 2 H), 3.67-3.60 (m, 2 H), 2.75-2.63 (m, 2 H), 1.75-1.69 (m, 2 H), 1.10-1.01 (m, 3 H); ¹³C NMR (CDCl₃, 100 MHz) δ 143.1, 143.0, 141.8, 140.7, 140.5, 140.4, 140.1, 137.7, 137.5, 135.1, 131.4, 131.1 x 2, 130.9, 129.6, 129.5, 129.1, 129.0, 128.8 x 3, 128.7, 128.6, 128.5, 128.3, 127.5, 127.2, 126.4, 126.2, 126.1, 123.7, 39.5 x 2, 39.1, 38.2 x 2, 37.9, 37.8, 24.8, 24.7 x 2, 14.1, 14.0, 13.9. HRMS Cacld for C₁₈H₂₀: 236.1565; Found: 236.1570.

4i/4i' = 58:42. Colorless liquid. ¹H NMR (CDCl₃, 400 MHz) \Box δ 7.43-7.21 (m, 7 H), 7.03-6.82 (m, 2 H), 6.52-6.37 (m, 1.4 H), 6.32-6.25 (m, 0.4 H), 3.85 (s, 3 H), 3.59 (d, *J* = 7.0 Hz, 1.1 H), 3.55 (d, *J* = 6.4 Hz, 0.8 H); ¹³C NMR (CDCl₃, 100 MHz) δ 158.9, 158.1, 140.5, 137.6, 130.5, 129.7 x 2, 128.7, 128.5 x 2, 127.3, 127.1, 126.2, 114.0, 55.3, 39.4, 38.5. HRMS Cacld for C₁₆H₁₆O: 224.1201; Found: 224.1209.

4j/4j' Colorless liquid. ¹H NMR (CDCl₃, 400 MHz) □ δ 7.45-7.19 (m, 7 H), 7.16-6.94 (m, 2 H), 6.80 (d, *J* = 16.0 Hz, 0.2 H), 6.52-6.29 (m, 1.7 H), 3.62-3.55 (m, 2 H); ¹³C NMR (CDCl₃, 100 MHz) δ 162.4, 161.9, 137.5, 131.6, 128.8, 128.7, 128.6, 128.4, 127.7, 127.3, 126.3, 115.5 x 2, 39.9, 39.4, 38.6, 32.4, 32.3; ¹⁹F NMR (CDCl₃, 373 MHz) δ -113.5, -113.7, -115.3, -117.2, -118.4, -118.6. HRMS Cacld for C₁₅H₁₃F: 212.1001; Found: 212.1006.

4k/**4k**′ Colorless liquid. ¹H NMR (CDCl₃, 400 MHz) □ δ 7.49-7.16 (m, 9 H), 6.92 (d, J = 15.7 Hz, 0.1 H), 6.53-6.34 (m, 1.8 H), 3.79-3.55 (m, 2 H); ¹³C NMR (CDCl₃, 100 MHz) δ 140.0, 139.8, 139.5, 138.0, 137.5, 137.3, 131.8, 130.1, 129.8, 129.6, 128.9, 128.8 x 2, 128.7, 128.6, 128.3, 127.4 x 2, 127.3, 127.2, 127.0 x 2, 126.5, 126.4 x 2, 126.3 x 2, 126.2, 124.5, 39.4 x 2, 39.1, 38.7, 36.9. HRMS Cacld for C₁₅H₁₃Cl: 228.0706; Found: 228.0702.

3a- d_5 Colorless liquid. ¹H NMR (CDCl₃, 400 MHz) \Box δ 7.36-7.12 (m, 6 H), 6.46 (d, J = 15.7 Hz, 1 H), 6.39-6.32 (m, 1 H), 3.55 (d, J = 6.6 Hz, 2 H); ¹³C NMR (CDCl₃, 100 MHz) δ 140.3, 137.6, 131.2 x 2, 129.4, 129.3, 128.8, 128.6, 127.2, 126.3 x 2, 39.5, 39.4. HRMS Cacld for C₁₅H₉D₅: 194.1409; Found: 194.1410.

41- d_7 Colorless liquid. ¹H NMR (CDCl₃, 400 MHz) \Box δ 8.20-8.11 (m, 1.5 H), 7.94-7.89 (m, 3 H), 7.67-7.45 (m, 6 H), 7.28-7.16 (m, 1 H), 6.76 (d, J = 15.7 Hz, 0.2 H), 6.58-6.40 (m, 2 H), 4.10-4.05 (m, 2 H), 3.72-3.69 (m, 1 H); ¹³C NMR (CDCl₃, 100 MHz) δ 138.1, 137.5, 136.9, 136.8, 136.5, 136.4, 135.2, 134.8, 134.0, 132.2, 131.5, 131.3, 130.4, 130.3, 129.6, 129.5, 129.3 x 2, 128.8, 128.7 x 2, 128.6, 128.5, 128.0, 127.9, 127.8, 127.6, 127.2, 127.1 x 2, 127.0, 126.6, 126.5 x 2, 126.4, 126.3, 126.1, 126.0 x 3, 125.8 x 2, 125.7, 124.2, 124.0, 123.8, 123.4, 36.9, 36.5, 21.5, 21.3, 19.9. HRMS Cacld for C₂₀H₁₁D₇: 265.1848; Found: 265.1850.

6. The crystal structure of (*E*)-3i

X-Ray crystallographic study: Single crystal X-ray diffraction study for compound (E)-3i was carried out on a Bruker CCD area detector diffractometer with graphite-monochromated Mo K α radiation (λ = 0.71073 Å). Cell parameters were obtained by global refinement of the positions of all collected reflections. Intensities were corrected for Lorentz and polarization effects and empirical absorption. The structure was solved by direct methods and refined by full-matrix least squares on F2. All non-hydrogen atoms were refined anisotropically. All hydrogen atoms were placed in calculated positions. Structure solution and refinement were performed by using the SHELXL-97 package. The X-ray crystallographic files, in CIF format, are available from the Cambridge Crystallographic Data Centre on quoting the deposition numbers CCDC 969149 for (E)-3i. Copies of this information may be obtained free of charge from The Director, CCDC, 12 Union Road, Cambridge CB2 IEZ, UK (Fax: +44-1223-336033; deposit@ccdc.cam.ac.ukor e-mail: www: http://www. ccdc.cam.ac.uk).

Figure 1. Molecular structure of (*E*)-3i.

7. Copies of NMR and HRMS spectra

+157 2495 +157 3048 +157 3048 +157 3048 +157 3048 +157 3048 +162 507 +162 5037 +162 5037 +162 5037 +162 5037

jw217 19F

jw307 19F

8, 1196 8, 119

jw319c Standard 13C

