# Indium Triiodide (InI<sub>3</sub>)-Catalyzed Allylation of Carbonyl Compounds by Allylic Tins

Takashi Miyai, Katsuyuki Inoue, Makoto Yasuda, Akio Baba\*

Department of Applied Chemistry, Faculty of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565, Japan Received 27 March 1997

Abstract: Indium triiodide is an effective catalyst for the allylation of aldehydes via the transmetallation with allylic tin compounds. Moreover, the chelation-controlled allylation of α-alkoxyketones proceeded with a catalytic amount of indium triiodide.

Organotin compounds are versatile reagents for organic synthesis because of their manifold availability. An appropriate activation, however, is often required for their synthetic use. A generation of other metallic species by transmetallation is one of promising activation methods.<sup>2</sup> The transmetallation between indium trichloride (InCl<sub>3</sub>) and organotin compounds has recently attracted much attention<sup>3</sup> because of the unique reactivities of organoindium reagents.<sup>4</sup> The reaction using the transmetallation, however, needs an equimolar amount of InCl<sub>3</sub>.<sup>3</sup> In a previous paper we have reported that InCl3-catalyzed alkynylation of aldehydes with alkynyltins took place via the solvent-controlled transmetallation in the presence of chlorotrimethylsilane (Me<sub>3</sub>SiCl).<sup>5</sup> In the course of extending this method to allylation of carbonyl compounds, we found that a catalytic amount of indium triiodide (InI<sub>3</sub>) was sufficient to promote the allylation even in the absence of Me<sub>3</sub>SiCl (Scheme 1). In addition, this InI3-catalyzed system promoted the stereoselective allylations; predominant formation of anti-adducts from E-form of allylic tins and a chelation-controlled allylation of αalkoxyketones.

Scheme 1

6<sup>f</sup>

7<sup>c</sup>

Table 1 shows the results of InCl<sub>3</sub>-catalyzed allylation of aldehydes assisted by Me<sub>3</sub>SiCl. Allyltributyltin (1a) and Me<sub>3</sub>SiCl were subsequently added to a solution of aldehydes and InCl<sub>3</sub> (10 mol%) in acetonitrile, furnishing homoallyl trimethylsilyl ethers 3 in excellent yields (entries 1, 4 and 6). An equimolar amount of Me<sub>3</sub>SiCl appeared Table 1. Indium Trichloride Catalyzed Allylation of Aldehydes.

Aldehyde Entry Temp /°C Time /min Yield /%a 1 99<sup>b</sup> 2a: trimethylacetaldehyde 15 2<sup>c</sup> 35<sup>d</sup> 2a: trimethylacetaldehyde 25 15 3e 2a: trimethylacetaldehyde 92<sup>d</sup> 25 15 4 2b: benzaldehyde 0 10 99b 5° 2b: benzaldehyde 25 94<sup>d</sup>

10

15

92b

 $23^d$ 

<sup>a</sup> GLC yield. <sup>b</sup> Homoallyl trimethylsilyl ether was obtained. <sup>c</sup> Without Me<sub>3</sub>SiCl.

2c: 3-phenylpropionaldehyde

2c: 3-phenylpropionaldehyde

25

to be essential for the catalytic use of InCl<sub>3</sub>, because in the absence of Me<sub>3</sub>SiCl, the formation of homoallyl alcohols 4 was strikingly depressed (entries 2 and 7) except for the allylation of benzaldehyde (entry 5). This method has a synthetic advantage for the facile isolation of silyl ethers produced after usual aqueous workup perhaps because of the weak acidic conditions and sluggishness of InCl<sub>3</sub> for water. In many cases, the isolation has required the addition of a base under carefully controlled conditions.<sup>6</sup> When an equimolar amount of InCl<sub>3</sub> was used without Me<sub>3</sub>SiCl, 92% yield of homoallyl alcohol 4a was obtained (entry 3).

Next, InI<sub>3</sub> was employed as a catalyst instead of InCl<sub>3</sub>, which was found to effectively promote the allylation even in the absence of Me<sub>3</sub>SiCl as shown in Table 2.

To a mixture of InI<sub>3</sub> (10 mol%) and allylic tin 1a in acetonitrile was added aldehyde 2a at 25 °C. After 60 min, homoallyl alcohol 4a was obtained in 92% yield (entry 1). Premixing of aldehydes and InI<sub>3</sub> resulted in decline of yield (entry 3). In this catalyst system, either aromatic (entry 6) or alkyl aldehyde (entry 7) gave the corresponding adducts 4 in high yields. When Me<sub>3</sub>SiCl was added, the corresponding silyl ether 3a was obtained in 85% yield (entry 2). The generation of allylic indium species is plausibly involved because fast transmetallation between InI<sub>3</sub> and allyltributyltin 1a was confirmed by <sup>119</sup>Sn NMR in which quantitative formation of tributyltin iodide (Bu<sub>3</sub>SnI) was observed in acetonitrile at 25 °C. Although the activation of carbonyl moieties by InI<sub>3</sub> as a Lewis acid can not be completely excluded at this stage, the acidity of InI3 being weaker than InCl3 supposed the participation of the transmetallation. A plausible catalytic cycle by InI<sub>3</sub> requiring no trap reagents like Me<sub>3</sub>SiCl is shown in Scheme 2.

Table 2. Indium Triiodide Catalyzed Allylation.

| Entry           | Carbonyl Compound           | Time   | Yield /%a                  |
|-----------------|-----------------------------|--------|----------------------------|
| 1               | 2a: trimethylacetaldehyde   | 1 h    | 92                         |
| $2^{b}$         | 2a: trimethylacetaldehyde   | 15 min | 85°                        |
| $3^d$           | 2a: trimethylacetaldehyde   | 1 h    | 71                         |
| 4 <sup>e</sup>  | 2a: trimethylacetaldehyde   | 1 h    | 39                         |
| 5 <sup>f</sup>  | 2a: trimethylacetaldehyde   | 1 h    | 38                         |
| 6               | 2b: benzaldehyde            | 5 min  | 98                         |
| 7 <sup>g</sup>  | 2c: 3-phenylpropionaldehyde | 30 min | 88                         |
| 8               | 2d: 2-methoxyacetophenone   | 10 min | 89                         |
| 9               | 2e: acetophenone            | 17 h   | 48                         |
| 10              | 2f: benzoin methyl ether    | 2 h    | 88 (94% de) <sup>h</sup>   |
| 11              | 2g: benzoin                 | 16 h   | $80~(80\%~\text{de})^h$    |
| 12              | 2h: benzoin i-propyl ether  | 3 h    | 81 (24% de) <sup>h</sup>   |
| 13 <sup>i</sup> | 2f: benzoin methyl ether    | 30 min | 76 (99% de) <sup>c,h</sup> |
| لٰ41            | 2g: benzoin                 | 30 min | 81 (99% de) <sup>c,h</sup> |

<sup>&</sup>lt;sup>a</sup> GLC yield. <sup>b</sup> An equimolar amount of Me<sub>3</sub>SiCl was added. <sup>c</sup> Homoallyl trimethylsilyl ether was obtained. d Aldehyde and InI3 were premixed. e An equimolar amount of InCl<sub>3</sub> was used. f An equimolar amount of Bu<sub>3</sub>SnI was added. g 0.2 equiv of InI<sub>3</sub> was added. h NMR yield. Instead of InI3, 0.1 equiv of InCl3 was added with an equimolar amount of Me<sub>3</sub>SiCl. J Me<sub>3</sub>SiCl was added via an addition funnel over 30 min.

<sup>&</sup>lt;sup>d</sup> Homoallyl alcohol was obtained. <sup>e</sup> An equimolar amount of InCl<sub>3</sub> was used without Me<sub>3</sub>SiCl. <sup>f</sup> Me<sub>3</sub>SiCl was added *via* an addition funnel over 15 min.

700 LETTERS SYNLETT

#### Scheme 2

In this cycle, effective trap by Bu<sub>3</sub>SnI formed in the first transmetallation between InI<sub>3</sub> and allyltributyltin is postulated. It was a little surprising that the addition of an equimolar amount of InI<sub>3</sub> (entry 4) or that of Bu<sub>3</sub>SnI (entry 5) suppressed the allylation in contrast to the case of InCl<sub>3</sub> where a quantitative allylation was observed as aforementioned (Table 1, entry 3). A large amount of Bu<sub>3</sub>SnI might depress the transmetallation or decompose an intermediate. In any way, the use of a catalytic amount of InI<sub>3</sub>, not stoichiometric, is essential for the effective allylation.

The more effective allylation of 2-methoxyacetophenone (89% yield in 10 min, entry 8) compared to that of acetophenone (48% yield in 17 h, entry 9) indicated the presence of strong chelation between indium center and methoxy oxygen (Scheme 3).

Scheme 3

As expected, the chelation-controlled allylation of benzoin methyl ether 2f took place, giving syn adduct 4f in 94% d.e. (entry 10). In general, stoichiometric Lewis acids have been indispensable chelation-controlled addition. Moreover, benzoin bearing free hydroxy group which is incompatible with Lewis acids like AlCl<sub>3</sub> and BF<sub>3</sub> could be successfully applicable although a long reaction time was needed (entry 11). A sterically hindered benzoin isopropyl ether 2h, however, decreased the diastereoselectivity to 24% d.e. (entry 12). The catalytic system, InCl<sub>3</sub>-Me<sub>3</sub>SiCl, promoted the chelation-controlled allylation more effectively perhaps due to the stronger acidity of indium chloride compounds than the iodide (99% d.e., entries 13 and 14), completing even the allylation of benzoin within 30 min by dropwise addition of Me<sub>3</sub>SiCl (entry 14).

Next the stereochemistry in the reaction of  $\gamma$ -substituted *E*-allylic tins like **1b** and **1c** with isobutyraldehyde **2i** was investigated, in which *anti* 

adducts were predominantly produced (Scheme 4). This stereochemical outcome strongly suggests the idea that allylindium species generated by the transmetallation react with aldehydes through a cyclic transition state. A similar example of the InCl<sub>3</sub>-Me<sub>3</sub>SiCl system has been briefly reported in our previous paper. 5

### Scheme 4

In conclusion, InI<sub>3</sub> proved unique catalysts in the allylation using allylic tin compounds, demonstrating some synthetic advantages; convenient synthesis of homoallyl alcohol and highly chelation-controlled allylation even by a catalytic amount of indium triiodide.

## Acknowledgements

This work was supported by the Grant-in-Aid for Science Research on Priority Area No. 08245104 from the Ministry of Education, Science, Sports and Culture of Japan.

### References and Notes

- Pereyre, M.; Quintard, J.-P.; Rahm, A. Tin in Organic Synthesis; Butterworth: London, 1987. Pereyre, M.; Quintard, J.-P. Pure Appl. Chem. 1981, 53, 2401.
- Seyferth, D.; Weiner, M. A. J. Am. Chem. Soc. 1961, 26, 4797.
   Milstein, D.; Stille, J. K. J. Am. Chem. Soc. 1978, 100, 3636.
   Kosugi, M.; Shimizu, Y.; Migita, T. Chem. Lett. 1977, 1423. Keck,
   G. E.; Abbott, D. E.; Borden, E. P.; Enholm, E. J. Tetrahedron Lett. 1984, 25, 3927. Farina, V.; Kapadia, S.; Krishnan, B.; Wang,
   C.; Liebeskind, L. S. J. Org. Chem. 1994, 59, 5905. Nakamura,
   H.; Asao, N.; Yamamoto, Y. J. Chem.Soc. Chem.Commun. 1995,
   1273. Yasuda, M.; Sugawa, Y.; Yamamoto, A.; Shibata, I.; Baba,
   A. Tetrahedron Lett. 1996, 37, 5951.
- (3) Marshall, J. A.; Hinkle, K. W. J. Org. Chem. 1995, 60, 1920. Li, X-R.; Loh, T-P. Tetrahedron Asymmetry, 1996, 7, 1535.
- (4) Gilman, H.; Jones, R. G. J. Am. Chem. Soc. 1940, 62, 2353.
  Maeda, T.; Tada, H.; Okawara, R. J. Organomet. Chem. 1971, 27, 13. Chao, L-C.; Rieke, R. D. J. Org. Chem. 1975, 40, 2253. Araki, S.; Ito, H.; Butsugan, Y. J. Org. Chem. 1988, 53, 1831. Chan, T. H.; Li, C. J.; Wei, Z. Y. J. Chem. Soc. Chem. Commun. 1990, 505.
  Nomura, R.; Miyazaki, S.; Matsuda, H. J. Am. Chem. Soc. 1992, 114, 2738. Schick, H.; Ludwig, R.; Schwarz, K-H.; Kleiner, K.; Kunath, A. J. Org. Chem. 1994, 59, 3161. Chan, T. H.; Lee, M. C. J. Org. Chem. 1995, 60, 4228.
- (5) Yasuda, M.; Miyai, T.; Shibata, I.; Nomura, R.; Matsuda, H.; Baba, A. Tetrahedron Lett. 1995, 36, 9497.
- (6) Asao, N.; Yoshikawa, E.; Yamamoto, Y. J. Org. Chem. 1996, 61, 4874.
- (7) Reetz, M. T. Acc. Chem. Res. 1993, 26, 462.
- (8) Yamamoto, Y. Acc. Chem. Res. 1987, 20, 243,