Nachweis und thermochemische Charakterisierung des Gasphasenmoleküls VOCl₂

A. Hackert [1], V. Plies und R. Gruehn*

Gießen, Institut für Anorganische und Analytische Chemie der Justus-Liebig-Universität

Bei der Redaktion eingegangen am 28. März 1996.

Professor Hans Georg von Schnering zum 65. Geburtstag gewidmet

Inhaltsübersicht. Mit Hilfe der Knudseneffusions-Massenspektrometrie wird die Existenz von VOCl₂(g) nachgewiesen. Fragmentierungsreihen für VOCl₃(g) werden aufgestellt. Die Gasphase über $V_2O_3(s)$ mit Cl₂(g) wird untersucht. Im Temperaturbereich von 550-620 K wird die Sublimation von VOCl₂ gemessen. Nach dem 2. Hauptsatz wird die Sublimationsenthalpie bestimmt. Die Bildungsenthalpie des gasförmigen VOCl₂ ergibt sich zu: $\Delta_{B}H^{\circ}(\text{VOCl}_{2}(g), 298 \text{ K}) = -(130,4 \pm 1,5) \text{ kcal} \cdot \text{mol}^{-1}$. Anhand von Rechnungen zur Zusammensetzung der Gleichgewichtsgasphase wird der Einfluß des Gasteilchens VOCl₂ auf Transportreaktionen von Vanadiumoxiden mit Zusatz von Chlor diskutiert.

Proof of Existence and Thermochemical Characterization of the Gaseous Molecule VOCl₂

Abstract. By use of the Knudsen-cell mass spectrometry the existence of VOCl₂(g) is proven. Lines of fragmentation are set up for VOCl₃(g). The vapor above V₂O₃(s) with Cl₂(g) is examined. The sublimation of VOCl₂ is measured at a temperature of 550-620 K. By 2nd law calculations the heat of sublimation is defined. The calculation for the gaseous VOCl₂ leads to $\Delta_B H^{\circ}(\text{VOCl}_2(g), 298 \text{ K}) = -(130,4 \pm 1,5) \text{ kcal} \cdot \text{mol}^{-1}$. The

influence of $VOCl_2(g)$ for chemical vapor transport reactions of vanadium oxides with Cl_2 is discussed by equilibrium calculations.

Keywords: Vanadium oxide chlorides; mass spectrometry; thermochemical calculations

1 Einleitung

Ausgehend von einem V_2O_3 -Bodenkörper wurden mit Zusatz von Cl₂ Transportexperimente [2, 3] ausgeführt, bei denen $V_2O_3(s)$ und $V_3O_5(s)$ in die kältere Zone wanderten. Experimentelle und mit den seinerzeit verfügbaren Daten ohne Berücksichtigung von VOCl₂(g) gerechnete Transportrichtung verliefen gegenläufig.

Schwerwiegende Abweichungen eines gerechneten Transportmodells werden meist auf unvollständige Kenntnisse der Gasphasenzusammensetzung, welche für den Transport verantwortlich ist oder auf mangelnde Zuverlässigkeit der verwendeten thermodynamischen Daten zurückgeführt.

Für die vorangehenden Modellrechnungen zum System V/O/Cl wurden die Literaturdaten der bekannten Vanadiumhaltigen Gasteilchen VCl₂, VCl₃, VCl₄ und VOCl₃ berücksichtigt. Für VOCl(g) lagen in der Literatur keine Daten vor.

Das im System Cr/O/Cl bei hohen Temperaturen massenspektrometrisch nachgewiesene Teilchen $CrOCl_2(g)$ [4] gab $Ro\beta$ [2] den Anstoß, die Existenz von VOCl₂(g) zu postulieren. Aus den bekannten thermodynamischen Daten von TiOCl₂(g) und CrOCl₂(g) wurde eine Bildungsenthalpie von -110 kcal \cdot mol⁻¹ abgeschätzt. Mit diesem Wert lieferte die Modellrechnung die richtige Transportrichtung für V₂O₃(s) und V₃O₅(s), wenngleich die Transportraten zu niedrig ausfielen.

Ein erster Nachweis von $VOCl_2(g)$ gelang im Massenspektrometer durch Reaktion von Vanadium(III)-oxid mit Chlor. Zur Absicherung der auf diesem Weg erhaltenen Daten sollte die Bildungsenthalpie von $VOCl_2(g)$ durch Sublimation von $VOCl_2(s)$ bei niedrigen Drücken und Temperaturen auf einem zweiten Weg verifiziert werden.

Das Fraktionierungsverhalten von $VOCl_3(g)$ bei niedrigen und hohen Temperaturen spricht ebenfalls dafür, daß $VOCl_2(g)$ Bestandteil der neutralen (nicht ionisierten) Gasphase darstellt.

2 Arbeitsweise

2.1 Experimentelle Angaben

Die Messungen wurden mit einem Massenspektrometer mit Knudsenzelleneinlaßsystem (CH5, Fa. VARIAN MAT) durchgeführt, das mit 90°-Magnetsektorfeld, Knudsenzellen-Einlaßsystem, Elektronenstoßionenquelle (70 eV bzw. 4,5-29,5 eV Stoßenergie) und einem Sekundärelektronenvervielfacher (SEV) als Ionendetektor ausgerüstet ist. Ein spezielles Einlaßsystem ermöglicht es, Gase wie z. B. Cl₂ in die Knudsenzelle einzulassen, um Reaktionen zwischen Gasphase und Bodenkörper zu untersuchen. Über die Meßanordnung wurde bereits früher berichtet [5, 6].

Als Knudsenzellen dienten zylindrische Graphittiegel mit Sinterkorund-Innentiegel (Effusionsöffnung 0,45 mm Durchmesser). Bei niedrigeren Temperaturen ist die Verwendung von Graphittiegeln ohne Korundeinsatz möglich.

Für die Reaktionen mit V_2O_3 wurde Chlor aus der thermischen Zersetzung von PtCl₂ eingelassen.

2.2 Chemikalien

PtCl₂(s) (über H₂PtCl₆ · aq) [7], VOCl₃(l), VOCl₂(s) und V₂O₃(s) wurden nach Vorschriften aus *Brauer* [8] hergestellt. Reagenzien: V₂O₅ reinst (Strem Chemicals Inc.), H₂ (Messer Griesheim), SOCl₂ zur Synthese (Merk-Schuchardt), Pt (Ampullenreste), HCl Techn. (Bayer), HNO₃ Techn. (BASF).

2.3 Thermodynamische Daten

In den Modellrechnungen wurden berücksichtigt:

Kondensierte Phasen; V, VCl₂, VCl₃, VCl₄(l), VOCl, VOCl₂, VOCl₃, VO, V₂O₃, V₃O₅, V₄O₇, β -VO₂ und V₂O₅

Gasförmige Spezies; VCl₂, VCl₃, VCl₄, VOCl, VOCl₂, VOCl₃, VO, H, H₂, O, O₂, H₂O, Cl, Cl₂ und HCl.

Für die genannten Stoffe, außer den in Tabelle 1 aufgeführten, wurden die thermodynamischen Daten, wie bei Knacke, Kubaschewski, Hesselmann [9] angegeben, verwendet.

2.4 Durchführung der Messungen

Steuerung des Massenspektrometers und Messung erfolgte mit Hilfe eines entsprechend modifizierten Personalcomputers [10] und eines Zweikanalschreibers. Um Fragmentierungen durch Ionisation (z. B. von VOCl₃(g)) zu vermeiden, wurde teilweise bei reduzierter Ionisierungsspannung gearbeitet. Die Auftrittspotentiale AP wurden durch Variation der Ionisierungsspannung und Aufzeichnen des SEV-Signals bei m/z = const. bestimmt. Kalibrierung erfolgte mit Hilfe der Auftrittspotentiale $AP(N_2)$ und/oder AP(Ar).

2.5 Bestimmung von $\Delta_B H$ aus Messung der Auftrittspotentiale

Die minimal notwendige Energie des Ionisierungsprozesses gemäß Gl. (1),

$$AB(g) + e^{-} = AB^{+} + 2e^{-}$$
 (1)

wird, da AB(g) Muttermolekül sei, als Ionisierungspotential IP bezeichnet.

Das Auftrittspotential eines Bruchstückes nach Gl. (2),

$$AB(g) + e^{-} = A^{+} + B(g) + 2e^{-}$$
 (2)

berechnet sich nach Gl. (3)

$$AP(A^+) \ge IP(AB^+) + D(AB) \tag{3}$$

wobei D(AB) die Dissoziationsenergie des Moleküls AB ist.

Die Ungleichung resultiert daraus, daß sowohl A^+ als auch B(g) kinetische Energie (oder innere Energie, falls mehratomig) besitzen können.

Bestimmt man nach obigem Verfahren das AP (besser IP) eines Molekülions und das AP eines zugehörigen Bruchstückes, so kann man näherungsweise die Dissoziationsenergie berechnen nach Gl. (4).

$$D(AB) \approx AP(A^{+}) - AP(-AB^{+})$$
(4)

Ist $\Delta_B H^\circ$ von AB(g) bekannt, kann $\Delta_B H(A(g))$ abgeschätzt werden [11].

2.6 Auswertung der Messungen

Aus der Summe der zu einer Gasspezies gehörenden massenspektrometrisch beobachteten Ionenintensitäten lassen sich nach Gl. (5) Partialdrücke p_i bestimmen [11].

$$p_i = \frac{A}{\gamma_i \sigma_i} \cdot I_i^+ T \tag{5}$$

Tabelle 1 Thermodynamische Daten, zur Berechnung mit EPCBN

Substanz	$\Delta_B H^{\circ}(298)$ /kcal · mol ⁻¹	$S^{\circ}(298)$ /cal · (mol · K) ⁻¹		$\frac{B^{a}}{/cal} \cdot mol^{-1} \cdot K^{-2}$	$\frac{C^{a}}{/cal \cdot K \cdot mol^{-1}}$	Quelle
VCl _a (g)	-48,680	67.882	18.2		_	[21]
$VC_{12}(g)$	-91	86	20,03	0,342	-1,181	[20] ^{b, c})
VOCI(s)	-144,98	17,90	13,221	8,205	-1,858	[21], [9] ^d)
VOCl(g)	-76,3°)	69	14,5	0,25	-2,4	[1], [9] ^f)
VOC _b (s)	-165,0	28,5	22,72	3,57	-2,03	[9], [12]
VOCl ₂ (g)	$-130,4^{g}$)	74,4	19,5	0,2	-2,1	[1], [15] ^h)

^a) $c_p(T) = A + B \cdot 10^{-3} \cdot T + C \cdot 10^5 \cdot T^{-2}$; ^b) berechnet aus der dort bestimmten Sublimationsenthalpie und den Daten des VCl₃(s) [9]; ^c) c_p -Funktion von GaCl₃(g); ^d) c_p -Funktion von AlOCl(s); ^e) für 578 K; ^f) S^o und c_p -Funktion von AlOCl(g); ^g) diese Arbeit, vergleiche Text; ^h) S^o und c_p -Funktion analog CrOCl₂(g)

Mit: p_i : Partialdruck der Komponente *i* in der Knudsenzelle, I_i^+ : beobachtete Ionenintensität, *T*: Temperatur der Knudsenzelle, *A*: Gerätekonstante, γ_i : SEV-Ausbeutefaktor für *i*, σ_i : relativer Ionisationsquerschnitt von *i*.

Die Sublimationsenthalpie des VOCl₂(s) wurde nach der Clausius-Clapeyronschen Gleichung (2. Hauptsatz) berechnet.

$$\Delta_R H = -R \frac{d \ln p_i}{dT^{-1}} \tag{6}$$

Zur Auswertung kann p_i durch I^+ (VOCl₂) · T ersetzt werden, da das Produkt aus I_i^+ · T nach Gl. (5) dem Partialdruck p_i der Komponente *i* proportional ist.

3 Ergebnisse

3.1 Reaktion von V_2O_3 mit Cl_2

Versuchsanordnung: Korundzelle (Graphitmantel) mit $V_2O_3(s)$ und Gaseinlaßsystem für Cl_2 , aus thermischer Zersetzung von $PtCl_2(s)$.

Versuchsdurchführung: Es wurden mehrere Meßreihen im Temperaturbereich von 600 bis 1000 °C sowohl bei 70 eV als auch bei 15 eV Ionisationsenergie (zur Reduktion der Bruchstückbildung) gefahren. Zur Bestimmung der Zusammensetzung der neutralen Gasphase wurden darüber hinaus die Auftrittspotentiale der gemessenen Ionen ermittelt.

Ergebnis: Im gesamten gemessenen Temperaturbereich konnten als Bestandteile der neutralen Gasphase die chlorhaltigen Gasteilchen Cl_2 , $VOCl_2$, VCl_3 und $VOCl_3$ nachgewiesen werden. VCl_2^+ -Ionen waren meßbar, konnten jedoch wegen der geringen Intensitäten nicht eindeutig als Muttermoleküle identifiziert werden. VCl_4^+ wurde unter den hier gewählten experimentellen Bedingungen nicht beobachtet.

In mehreren Meßreihen wurden die Temperaturabhängigkeiten der Ionenintensitäten des $VOCl_2(g)$ bestimmt und eine Auswertung nach dem 2. HS gemäß folgender Reaktionsgleichung durchgeführt:

$$V_2O_3(s) + 2Cl_2(g) = 2VOCl_2(g) + 0.5O_2(g)$$
 (7)

Die Reaktionsenthalpie bei einer mittleren Temperatur von 1200 K betrug $\Delta_R H^\circ = 40 \text{ kcal} \cdot \text{FU}^{-1}$. Hieraus folgt für VOCl₂(g) eine Bildungsenthalpie $\Delta_B H^{\circ}(1200 \text{ K}) =$ -111,5 kcal \cdot mol⁻¹ und nach Umrechnung mit den Werten der c_p -Funktion von CrOCl₂(g), $\Delta_B H^{\circ}(298 \text{ K}) =$ -129.5 ± 5 kcal \cdot mol⁻¹. Die Bestimmung der Bildungsenthalpie von VOCl₂(g) nach Gleichung (7) ist u.U. mit relativ großen Fehlern behaftet, da die Intensität des bei der Reaktion entstehenden Sauerstoffs sich zum immer vorhandenen Restsauerstoff im Knudsenzellenraum bzw. Analysatorsystem des Massenspektrometers addiert. Es sollte deshalb versucht werden, die auf diesem Wege ermittelte Bildungsenthalpie von VOCl₂(g) mit Hilfe zusätzlicher massenspektrometrischer Messungen abzusichern. Um eine Entstehung des nachgewiesenen Ions VOCl₂⁺ durch Fragmentierung von VOCl₃(g), das aus der Reaktion von $V_2O_3(s)$ mit $Cl_2(g)$ entsteht, auszuschließen, wurden zunächst Messungen zur thermischen Zersetzung von VOCl₃(g) angeschlossen.

3.2 Thermische Zersetzung von VOCl₃(g)

Experimentelles: Knudsenzelle aus Korund (Graphitmantel), Tieftemperaturgaseinlaß für VOCl₃, d.h., der VOCl₃(g)-Einlaßdruck in der Knudsenzelle wird über die Temperatur eines VOCl₃(l)-Vorrates eingestellt.

Zur Bestimmung der Fragmentierung und des thermischen Verhaltens von VOCl₃(g) wurden Massenspektren bei Raumtemperatur als auch bei 1000 °C aufgenommen.

Versuchsdurchführung: Es wurden Übersichtsspektren sowohl mit 70 eV als auch mit 15 eV Ionisationsenergie aufgenommen und bei den beiden Versuchstemperaturen die Auftrittspotentiale zur Bestimmung der Zusammensetzung der neutralen Gasphase gemessen.

Ergebnis: Bei Raumtemperatur wurde als Bestandteil der neutralen Gasphase nur VOCl₃(g) gefunden.

Bei 1000 °C treten in der Gasphase neben $VOCl_3(g)$ auch $VCl_2(g)$, $VCl_3(g)$ und $VOCl_2(g)$ auf.

 $VCl_4(g)$ war auch in diesem Fall nicht nachweisbar. Das Auftreten von $VOCl_2(g)$ (neben $VCl_2(g)$ und $VCl_3(g)$) bestätigt, daß es sich bei diesem Gasteilchen um ein thermisches Zersetzungsprodukt von $VOCl_3(g)$ handelt.

3.3 Fragmentierungsreihe von VOCl₃(g)

Um entscheiden zu können, ob die Gasphase über VOCl₂(s) unter den experimentellen Bedingungen des Massenspektrometers durch die Sublimation oder das von *Oppermann* [12] untersuchte Zersetzungsgleichgewicht Gl. (8) bestimmt ist,

$$2 \operatorname{VOCl}_2(s) = \operatorname{VOCl}(s) + \operatorname{VOCl}_3(g)$$
(8)

wurden orientierende Messungen an einer partiell oxidierten (braunen) Probe von $VOCl_2(s)$ ausgeführt.

Experimentelles: Knudsenzelle aus Graphit, etwa 150 mg des ,,VOCl₂(s)^(*) Präparats.

Versuchsdurchführung: Übersichtsspektren bei 70 eV, AP-Messungen aller Ionen und der Untergrundmoleküle H₂O, N₂, O₂, Ar und CO₂ (zur Fehlerabschätzung).

Ergebnis: Die Gasphase über dem Festkörper setzte sich aus VOCl₃ und HCl zusammen, wobei HCl Hydrolyseprodukt ist.

Erste Messungen bei einer Ionisierungsenergie von 70 eV führten zum Nachweis von $VOCl_3^+$, VCl_3^+ , $VOCl_2^+$, VCl_2^+ und $VOCl^+$. Bei höherer Temperatur (T ≥ 400 °C) konnten auch VO^+ und V⁺ beobachtet werden.

Die Auftrittspotentiale der Ionen VO⁺, VOCl⁺, VOCl₂⁺, VOCl₃⁺, VCl⁺ und VCl₂⁺ wurden bestimmt. Bei den Bruchstücken VCl₃⁺ und V⁺ waren die Intensitäten für eine AP-Messung zu gering (Tabelle 2).

3.4 Abschätzung von Bildungsenthalpien aus Fragmentierungsreihen

Aus den gemessenen Auftrittspotentialen kann eine Fragmentierungsreihe, entsprechend Abb. 1, abgeleitet werden.

Über die Verknüpfung

$$1 \text{ eV} \equiv 96,5 \text{ kJ} \cdot \text{mol}^{-1} \equiv 23,0 \text{ kcal} \cdot \text{mol}^{-1}$$
 (9)

g AP/eV
lekül 12,3
k 14,0ª)
k 16,2
k 19,8
nicht meßbar ^b)
k 19,3
k 21,6

 Tabelle 2
 Meßwerte der Auftrittspotentialbestimmung zur Erstellung einer Fragmentierungsreihe

^a) Für VOCl₂⁺ als Muttermolekül wurde in einem späteren Experiment, an einer nach Ausweis von Guinieraufnahmen phasenreinen Probe AP(VOCl₂⁺) \approx 12,8 eV bestimmt

^b) Für das AP(VCl₃⁺-Bruchstück) wurde der Wert 16,6 eV bei einer späteren Messung ermittelt. Hinsichtlich der Temperatur der Ionenquelle und sonstiger Betriebsdaten ist eine Einreihung in obige Meßreihe problematisch.

Abb. 1 In dieser Meßreihe kann allein VOCl₃ als Muttermolekül angesehen werden, alle anderen Ionen sind Bruchstücke. Die Energien (in eV), die zur Spaltung der entsprechenden Bindungen notwendig waren, sind angegeben.

kann, ausgehend von der aus der Literatur [9] bekannten Bildungsenthalpie von VOCl₃(g), eine Abschätzung für die Bildungsenthalpien von VOCl₂(g) und VOCl(g) getroffen werden, deren Fehler im Bereich von $\pm 9,5$ kcal \cdot mol⁻¹, entsprechend dem Meßfehler der Bestimmung der Auftrittspotentiale von $\pm 0,4$ eV, liegt.

Die Muttermoleküle, welche Grundlage der diskutierten Fragmentierungsreihe sind, effundierten aus einer Knudsenzelle mit einer Temperatur von $305 \,^{\circ}\text{C} \pm 2 \,\text{K}$, die Temperatur der Ionenquelle (Ort der Messung) lag bei 150 $^{\circ}\text{C}$. Da im Molekularstrahl keine thermodynamische Temperatureinstellung zu erwarten ist, wurde $\Delta_R H^{\circ}$ auf die Knudsenzellentemperatur von 578 K bezogen.

3.4.1 Abschätzung thermodynamischer Daten für VOCl(g)

Für das gasförmige Teilchen VOCl(g), dessen thermodynamische Daten nicht verfügbar waren, wurde eine Abschätzung vorgenommen.

Die Auftrittspotentiale von VOCl⁺ und VOCl₃⁺ unterscheiden sich um rund 3,9 eV, dies entspricht rund 90 kcal \cdot mol⁻¹. Ausgehend von der bekannten [9] Bildungsenthalpie von VOCl₃(g) (-166,3 kcal \cdot mol⁻¹), errechnet sich:

 $\Delta_B H^{\circ}(\text{VOCl}(g), 578 \text{ K}) = -(76,3 \pm 9,5) \text{ kcal} \cdot \text{mol}^{-1}$

Für Rechnungen mit EPCBN [13, 14] wurden S° und c_{p} -Koeffizienten von AlOCl(g) [21] verwendet.

3.4.2 Abschätzung thermodynamischer Daten für VOCl₂(g)

In einer vorangegangenen Dissertation [2] wurde aus den Bildungsenthalpien von $\text{CrOCl}_2(g)$ und $\text{TiOCl}_2(g)$ als entsprechender Wert für die Vanadiumverbindung $\Delta_B H^\circ = -110 \text{ kcal} \cdot \text{mol}^{-1}$ abgeschätzt.

Eine Differenz von 1,7 eV in den Auftrittspotentialen von $VOCl_2^+$ und $VOCl_3^+$ entspricht 39,1 kcal \cdot mol⁻¹.

$$\Delta_B H^{\circ}(\text{VOCl}_2(g), 578 \text{ K}) = -(127, 2 \pm 9, 5) \text{ kcal} \cdot \text{mol}^-$$

Für Rechnungen mit EPCBN wurden S° und c_p -Koeffizienten von CrOCl₂(g) [15] verwendet.

3.5 Bestimmung der Sublimationsenthalpie von VOCI,

Da wir im Massenspektrometer nicht die Bildung des Disproportionierungsbodenkörpers VOCl(s), siehe Gl. (8), beobachten konnten, wiederholten wir die Experimente mit einer zweiten, nach Ausweis von Guinieraufnahmen phasenreinen Probe VOCl₂(s). In zwei Meßreihen (a, b) wurde das Sublimationsverhalten im Temperaturbereich von 250 °C bis 335 °C untersucht. Die Intensität I^+ (VOCl₂) wurde bei einem Ionisierungspotential von 13,25 eV bzw. 13,0 eV als Funktion der Temperatur bestimmt und hieraus die Sublimationsenthalpie von VOCl₂(s) nach dem 2. HS berechnet. Die Auftragung von $\ln(I^+$ (VOCl₂) · T) gegen T^{-1} zeigt Abbildung 2.

Experimente analog Abschnitt 3.3 lieferten als Bestandteile der neutralen Gasphase VOCl₃(g), VOCl₂(g) und geringe Mengen HCl(g). Zersetzung und Sublimation finden parallel statt, wobei, in Einklang mit EPCBN-Rechnungen, VOCl(s) der weiteren Zersetzung (siehe auch [16]) unterliegt.

Aus dem Verhältnis $p(\text{VOCl}_2(\mathbf{g}))/p(\text{VOCl}_3(\mathbf{g}))$ über $\text{VOCl}_2(\mathbf{s})$, so zeigten Rechnungen, kann geschlossen werden, daß bei geringem Druck die Sublimation überwiegt, bei höherem Druck (p > 1 Torr) jedoch die Zersetzung. Das Zersetzungsgleichgewicht wurde von *Oppermann* im Membrannullmanometer untersucht. Dabei lagen die gemessenen Drücke im Bereich von 20 bis 600 Torr [12].

Neben Druck und Temperatur, so zeigten Gleichgewichtsrechnungen, ist das Verhältnis von $p(\text{VOCl}_2(g))/p(\text{VOCl}_3(g))$ stark vom Sauerstoffgehalt des Systems abhängig.

Für die Sublimation

$$VOCl_2(s) = VOCl_2(g)$$
 (10)

wurde die Reaktionsenthalpie bestimmt zu:

a) $\Delta_R H^{\circ}(570,5 \text{ K}) = (33,9 \pm 0,7) \text{ kcal} \cdot \text{mol}^{-1}$ b) $\Delta_R H^{\circ}(580,7 \text{ K}) = (32,6 \pm 1,0) \text{ kcal} \cdot \text{mol}^{-1}$

Für 298 K bei Verwendung von $c_p(T)$ von CrOCl₂(g) erhält man:

a) $\Delta_R H^{\circ}(298 \text{ K}) = (35,2 \pm 0,7) \text{ kcal } \cdot \text{ mol}^{-1} \text{ und}$ b) $\Delta_R H^{\circ}(298 \text{ K}) = (33,9 \pm 1,0) \text{ kcal } \cdot \text{ mol}^{-1}$

Abb. 2 Meßwerte aus Messung a (\circ) mit einer Ionisierungsspannung von 13,25 eV und die Werte aus Messung b (+) mit einer Ionisierungsspannung von 13,0 eV.

Der Mittelwert aus beiden Meßreihen beträgt $\Delta_R H^{\circ}(298 \text{ K}) = 34,6 \text{ kcal} \cdot \text{mol}^{-1}$, der Fehler liegt in der Größenordnung von $\pm 1,5 \text{ kcal} \cdot \text{mol}^{-1}$.

3.6 Die Bildungsenthalpie von VOCl₂(g)

Die Bildungsenthalpie des $VOCl_2(g)$ ergibt sich aus der des $VOCl_2(s)$, siehe Tabelle 1 (nach [12] Fehler \pm 1 kcal), und der Sublimationsenthalpie (3.5) somit zu:

$$\Delta_B H^{\circ}(\text{VOCl}_2(g), 298 \text{ K}) = -(130,4 \pm 1,5) \text{ kcal} \cdot \text{mol}^{-1}$$

Wie ein Vergleich des so ermittelten Wertes mit dem über die Reaktion von V₂O₃(s) mit Cl₂(g) erhaltenen von $-(129,5 \pm 5,0)$ kcal \cdot mol⁻¹ und dem aus der Fragmentierungsreihe abgeleiteten Wert von $\Delta_B H^{\circ}(\text{VOCl}_2(g),$ $578 \text{ K}) = -(127,2 \pm 9,5)$ kcal \cdot mol⁻¹ zeigt, ist die Übereinstimmung zufriedenstellend.

3.7 Zur Bedeutung von VOCl₂(g) für Transportreaktionen

Um einen Überblick über die Bedeutung des VOCl₂(g) für den chemischen Transport von Vanadium(III)-oxid mit Chlor zu vermitteln, wurde für eine Modellampulle mit einem Volumen von 20 ml und unter Einsatz von 2×10^{-3} mol Oxid, $7.5 \cdot 10^{-4}$ mol Cl₂ und $1 \cdot 10^{-5}$ mol H₂O die Gasphasenzusammensetzung in Abhängigkeit von der Temperatur (400 °C $\leq T \leq 1200$ °C) berechnet.

3.7.1 Vanadium(III)oxid und Chlor

Im System Vanadium(III)-oxid/Chlor ist die Bedeutung des $VOCl_2(g)$ erheblich. Ab etwa 700 °C ist laut Rechnung $VOCl_2(g)$ das den Transport bestimmende Gasteilchen. Es kann somit, genauso wie $CrOCl_2(g)$, als "Hochtemperaturteilchen" angesehen werden (siehe Abb. 3).

Abb. 3 Berechnete Gasphasen- und Bodenkörperzusammensetzung des Systems $V_2O_3/Cl_2/H_2O$ (Molverh.: 200/75/1). Für die Darstellung wurden nur Partialdrücke über 10^{-10} atm berücksichtigt. Die Gleichgewichtsbodenkörper sind $V_2O_3(s)$ und $V_3O_5(s)$.

Im Einklang mit den experimentellen Ergebnissen von Busbach [3] zeigte die Rechnung, daß der Bodenkörper $V_2O_3(s)$ unter dem Einfluß des zugesetzten Chlors partiell zu VOCl₃(g), $V_3O_5(s)$ und weiteren Vanadiumchloriden umgesetzt wird. Das aufgrund der oxidierenden Wirkung des Chlors entstehende System (Bodenkörper V_2O_3/V_3O_5) ist durch simultanen Transport von $V_2O_3(s)$ und $V_3O_5(s)$ gekennzeichnet. Transportwirksam sind die Teilchen $VOCl_2(g)$, $VOCl_3(g)$ und $VCl_4(g)$.

Der Transport von $V_2O_3(s)$ kann z. B. beschrieben werden durch die Gleichung (11) [2]:

$$V_2O_3(s) + VCl_4(g) + 2VOCl_3(g) = 5VOCl_2(g)$$
 (11)

Bei hohen Temperaturen verläuft der Transport von Vanadium ausschließlich über $VOCl_2(g)$. Auch der größte Teil des Sauerstofftransports verläuft über dieses Gasteilchen. Das ursprünglich zugesetzte Transportmittel Chlor gelangt als $VOCl_3(g)$ und $VCl_4(g)$ zurück zur Quelle.

Tabelle 3 Berechnete Partialdruckdifferenzen für einzelne Gasphasenspezies unter Verwendung der bei $Ro\beta^a$) angegebenen Parameter 2×10^{-3} mol $V_2O_3(s)$, 7.5×10^{-4} mol Cl_2 , 1×10^{-5} mol H₂O, Ampullenvolumen 16,8 ml und T₂ = 950 °C, T₁ = 850 °C. Die aufgrund der hier verwendeten Daten ermittelten, normierten Partialdruckdifferenzen wurden den von $Ro\beta$ berechneten ($\Delta_B H^o$ (VOCl₂(g), 298 K) = -110.5 kcal·mol⁻¹) gegenübergestellt

VOCl ₂ (g) 3,334 3,307 $8,864 \times 10^{-3}$ $4,16 \times 10$ VOCl ₃ (g) 7,254 $\times 10^{-1}$ 7,442 $\times 10^{-1}$ $-3,986 \times 10^{-3}$ $-3,93 \times 10$	4 atm
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$)^{-3}$ $)^{-3}$ $)^{-5}$ $)^{-7}$ $)^{-9}$ $)^{-5}$ $)^{-4}$ $)^{-12}$

^a) Die in der vorliegenden Rechnung und die von $Ro\beta$ [2] verwendeten thermodynamischen Daten der kondensierten Phasen sind geringfügig (±1 kcal) unterschiedlich. Für die Transportraten ergeben sich deshalb bei tieferen Temperaturen deutliche Abweichungen.

Wie Tabelle 3 zeigt, gibt die oben formulierte Transportgleichung die Verhältnisse recht gut wieder. Die Bedeutung des VOCl₂(g) für den Transport von V₂O₃(s) wurde von $Ro\beta$ [2] bereits richtig vorausgesagt. Mit dem jetzt genauer eingegrenzten Wert der Bildungsenthalpie von VOCl₂(g) fallen die berechneten Transportraten etwa um den Faktor (1,5 bis 3) höher aus und liegen damit näher an den experimentellen Ergebnissen.

3.7.2 Vanadium(IV)- und Vanadium(V)oxid mit Chlor

Für den Transport von Vanadiumoxiden mit $O/V \ge 2,0$ sollte das Gasteilchen VOCl₂(g) nur eine untergeordnete Rolle spielen. Transportvorgänge unter Zusatz von Cl₂(g) sind für VO₂(s) und V₂O₃(s) nicht bekannt. *Oppermann* [17] konnte zeigen, daß VO₂(s) in Gegenwart von HCl(g) gut, mit Cl₂(g) jedoch nicht transportiert. Zum Einsatz von HgCl₂, NH₄Cl und HCl für den Transport von Vanadiumoxiden mit O/V > 2,0 gibt es hingegen mehrere Arbeiten, z. B. [18].

4 Diskussion

4.1 Zur Sicherheit der Daten von VOCl(g), VCl₃(g) und VCl₄(g)

Aus Auftrittspotentialmessungen innerhalb der Fragmentierungsreihe $VOCl_3^+$, $VOCl_2^+$ und $VOCl^+$ konnte die Bildungsenthalpie für VOCl(g) zu $-(76,3 \pm 9,5)$ kcal · mol⁻¹ (bei 578 K) abgeschätzt werden. Wie Berechnungen zur Gasphase über V₂O₃(s) mit Cl₂(g) unter den Bedingungen des Massenspektrometers zeigten, sollte bei Temperaturen oberhalb von 1100 °C VOCl(g) das vanadiumhaltige Gasteilchen mit dem höchsten Partialdruck sein. Laut Modellrechnung sollten außer VOCl(g) und Cl(g) keine weiteren Gasteilchen meßbar sein. Hier nicht näher beschriebene Experimente [1, 19] konnten bislang diese Annahme nicht bestätigen. Auch bei sehr hohen Temperaturen (1300 °C) ist VOCl(g) eher unbedeutend. Weiterhin konnten weder $Cl_2(g)$ noch Cl(g) nachgewiesen werden (Cl⁺ ist als Bruchstück im Massenspektrum vorhanden). Dies ist nur erklärbar, wenn die chlorhaltigen Spezies VCl₃(g) und unter Umständen auch VCl₄(g) deutlich stabiler sind als dies bislang angenommen wird.

Der Umfang, in welchem VCl₄(g) ab 400 °C Knudsenzellentemperatur auftritt, ist nicht im Einklang mit der Modellrechnung (zwar stimmte der Verlauf, die relative Lage ist jedoch um zwei oder mehr Zehnerpotenzen verschoben).

Eine Überprüfung der Arbeiten zur Bildungsenthalpie des VCl₃(g) [20] scheint für das Verständnis des Systems Vanadium/Chlor dringend notwendig zu sein.

4.2 Zur Existenz von $VOCl_2(g)$

Die Umsetzungen von Vanadiumoxiden mit Chlor oder chlorhaltigen Spezies (z. B. HCl) bei hohen Temperaturen, wie sie z. B. bei chemischen Transportreaktionen auftreten, lassen sich nur dann verstehen, wenn alle beteiligen Gasphasenmoleküle charakterisiert sind. Uns ist es nun gelungen, das Gasteilchen VOCl₂(g) erstmalig nachzuweisen und zweifelsfrei als Muttermolekül zu identifizieren. Darüber hinaus konnten wir für $\Delta_B H^{\circ}(\text{VOCl}_2(g),$ 298 K) einen für Modellrechnungen hinreichend genauen Wert von -130,4 kcal \cdot mol⁻¹ angeben.

Wir danken der Deutschen Forschungsgemeinschaft und dem Fond der Chemischen Industrie für ihre Unterstützung.

Literatur

- [1] A. Hackert, Diplomarbeit, Univ. Gießen (1995)
- [2] R. Roß, Dissertation, Univ. Gießen (1990)
- [3] W. Busbach, Diplomarbeit, Univ. Gießen (1992)
- [4] V. Plies, Z. anorg. allg. Chem. 602 (1991) 97
- [5] V. Plies, Z. anorg. allg. Chem. 484 (1982) 165
- [6] V. Plies, M. Jansen, Z. anorg. allg. Chem. 497 (1983) 185 [7] G. Brauer, Handbuch der präp. anorg. Chemie,
 - 3. Auflage, Ferdinand-Enke Verlag, Stuttgart (1981)
- [8] G. Brauer, Handbuch der präp. anorg. Chemie, Ferdinand-Enke Verlag, Stuttgart (1954)

- [9] Knacke, Kubaschewski, Hesselmann, Thermochemical Properties of Inorganic Substanzes, Springer-Verlag Berlin, Heidelberg (1991)
- [10] V. Plies, Z. anorg. allg. Chem. 556 (1988) 120
- [11] J. Drowart, P. Goldfinger, Angew. Chem. 79 (1967) 589
- [12] H. Oppermann, Z. anorg. allg. Chem. 351 (1967) 113
- [13] B. Noläng, M. W. Richardson, J. Crystal Growth 34 (1978) 198
- [14] M. Richardson, Doctoral Thesis, Uppsala, Sweden (1978)
- [15] V. Plies, Z. anorg. allg. Chem. 602 (1991) 97
- [16] H. Oppermann, Z. anorg. allg. Chem. 351 (1967) 127
- [17] H. Oppermann, Z. anorg. allg. Chem. 432 (1977) 26
- [18] M. Wenzel, R. Gruehn, Z. anorg. allg. Chem. 568 (1989) 95

- [19] A. Hackert, geplante Dissertation, Univ. Gießen
- [20] R. E. McCarley, J. W. Roddy, Inorg. Chem. 3 (1964) 60
- [21] Tapp 2.0, Thermochemical and Physical Properties, ES-Microware, Datenbanksysteme (1991)

Anschr. d. Verf .:

- Prof. Dr. R. Gruehn, Dip.-Chem. A. Hackert,
- Dr. V. Plies († 19. 04. 1996)
- Inst. f. Anorganische u. Analytische Chemie
- der Justus-Liebig-Universität
- Heinrich-Buff-Ring 58
- D-35392 Gießen