

# Sequential Nucleophilic Arylation/Ring-Contractive Rearrangement of *N*-Alkoxylactams

Norihiko Takeda, Yukiko Kobori, Kohei Okamura, Motohiro Yasui, and Masafumi Ueda\*



with the use of the chiral N-alkoxylactam for the diastereoselective reaction is described.

n synthetic organic chemistry, the ring-contraction reaction L is one of the most elegant transformations because it allows the skeletal reorganization with a high level of selectivity in several cases, affording products not easily accessible by other approaches.<sup>1</sup> In particular, the ring-contraction reaction involving the migration of carbonyl group is an attractive and useful reaction due to the further introduction of a nucleophile to the migrated carbonyl group. This reaction proceeds via the rearrangement of several C-C bonds, and representative examples include the pinacol rearrangement,<sup>2</sup> Wolff rearrangement,<sup>3</sup> Favorskii rearrangement,<sup>4</sup> and benzylic acid rearrangement.<sup>5</sup> Therefore, these ring contraction strategies are applied for the synthesis of biologically active and natural products.<sup>6</sup> The Favorskii rearrangement is a baseinduced ring contraction of  $\alpha$ -halo cyclic ketones (1: Y = CH<sub>2</sub>) that enables the migration of the endocyclic carbonyl group as well as the incorporation of N- and O-nucleophiles (ROH,  $R_2NH$ ,  $RNH_2$ ) to afford ring-contracted carboxylic acid derivatives  $(1 \rightarrow A \rightarrow 2: Y = CH_2)$  (Scheme 1, eq 1).<sup>7</sup> In contrast, the Favorskii rearrangement accompanied by introduction of C-nucleophiles has received little attention. Moreover, available C-nucleophiles are limited to stabilized enolates. The reaction utilizing lactones and lactams would construct ring-contracted cyclic ethers and amines. For example, the oxy-Favorskii rearrangement of  $\alpha$ -halo lactones (1: Y = O) proceeds through the ring-opening and intramolecular S<sub>N</sub>2-type cyclization of alkoxide intermediate **B** to provide  $\alpha$ -acylated cyclic ethers (2: Y = O).<sup>9</sup> However, the aza-Favorskii rearrangement of  $\alpha$ -halo lactams is scarce.<sup>10</sup> Therefore, systematic studies were not conducted due to the poor electrophilicity of the amide carbonyl group. For example, Henning and co-worker reported that the ring-contraction reaction of  $\alpha$ -chloro lactam 3 followed by the introduction of an O-nucleophile under basic conditions afforded the  $\alpha$ carboxylated pyrrolidine derivative 4 (Scheme 1, eq 2).<sup>10a</sup> To

Scheme 1. Representative Examples of the Favorskii and Other Types of Favorskii Rearrangements, Including the Inspiration for This Work



Received: November 18, 2020



the best of our knowledge, there are no studies on the incorporation of *C*-nucleophiles in the aza-Favorskii rearrangement of  $\alpha$ -halo lactams, even though the carbonyl group migrating in the reaction can serve as an effective proxy for a wide variety of other functional groups. Therefore, the C–C bond forming ring contraction of lactam remains a major synthetic challenge.<sup>11</sup> Herein, we present the sequential nucleophilic arylation/ring contraction of  $\delta$ -lactam for the synthesis of  $\alpha$ -acylpyrrolidines.<sup>12</sup>

To introduce a *C*-nucleophile into an amide carbonyl group, using the Weinreb amide is one of the most reliable and powerful methods.<sup>13</sup> The N-alkoxy group of a Weinreb amide increases the electrophilicity of the amide carbonyl group and then allows the nucleophilic addition under mild conditions. Therefore, we surmised that the  $\alpha$ -halo N-alkoxylactam 5 would act as a good acylating agent to introduce Cnucleophiles, such as organometallic reagents (Scheme 1, this work). The nucleophilic addition of organometallic reagents to lactam 5 leads to the formation of the five-membered chelated intermediate C. The acidic workup of the chelated intermediate C results in the generation of the N,Ohemiaminal D, which rapidly undergoes a 1,2-rearrangement through the overlap of an antibonding orbital on the C-X bond  $(\sigma^*_{C-X})$  and a bonding orbital on the C-N of the hemiaminal group ( $\sigma_{C-N}$ ) to obtain  $\alpha$ -acylpyrrolidines 6.<sup>14</sup> The  $\alpha$ -bromo N-alkoxylactam 5 (X = Br) was used to investigate the possibility of the nucleophilic arylation/ring contraction with an organometallic reagent because the  $\alpha$ bromo group as a leaving group has the requisite reactivity for the ring contraction and would be tolerant in the nucleophilic addition to the amide carbonyl group without halogen-metal exchange.<sup>13</sup>

The nucleophilic addition/ring contraction of  $\alpha$ -bromo *N*-benzyloxylactam 7a as a model substrate was initially investigated (Table 1). The model substrate 7a was readily

Table 1. Optimization of Nucleophilic Addition/Ring Contraction

| X 0<br>7a, 11-13 | n PhM(X)<br>THF, -78 °C, 1 h<br>then 1 M HCI | O<br>Ph<br>OH C<br>N-OBn<br>8aA 9 | Ph<br>N <sup>-</sup> OBn + Cl N <sup>-</sup> OBn<br>10 |
|------------------|----------------------------------------------|-----------------------------------|--------------------------------------------------------|
| entry            | substrate                                    | PhM(X) (equiv)                    | yield (%)                                              |
| 1                | 7a (X = Br)                                  | PhMgBr (1)                        | 8aA: 67 <sup>b</sup>                                   |
| 2                | 7a (X = Br)                                  | PhMgBr (2)                        | 8aA: 97                                                |
| 3                | 7a (X = Br)                                  | PhLi (2)                          | 8aA: 71                                                |
| 4                | 11 (X = I)                                   | PhMgBr (2)                        | 8aA: ND <sup>c</sup> , 9: 46 <sup>d</sup>              |
| 5                | 12 (X = $Cl$ )                               | PhMgBr (2)                        | 8aA: ND <sup>c</sup> , 10: 73                          |
| 6                | 13 $(X = OTs)$                               | PhMgBr (2)                        | 8aA: 30                                                |
| 7 <sup>e</sup>   | 7a (X = Br)                                  | PhMgBr (2)                        | 8aA: 97                                                |

<sup>*a*</sup>Yield of the chromatographically pure product. <sup>*b*</sup>Lactam 7a was recovered in 25% yield. <sup>*c*</sup>Not detected. <sup>*d*</sup>dr = 1:1. <sup>*e*</sup>Lactam 7a (1.24 mmol) was used.

prepared by  $\alpha$ -bromination of 5-bromovaleryl chloride followed by amidation and cyclization. The nucleophilic phenylation of 7a was performed with phenylmagnesium bromide (PhMgBr, 1 equiv) in THF at -78 °C and then quenched with 1 M HCl. The phenylation/ring contraction proceeded smoothly to give  $\alpha$ -benzoylpyrrolidine **8aA** in good yield along with recovered 7a (Table 1, entry 1). It should be noted that this is the first example for a nucleophilic phenylation of lactam and sequential ring contraction. Pleasingly, the phenylation/ring contraction of 7a provided the desired compound 8aA in excellent yield with 2 equiv of PhMgBr (entry 2). Phenyl lithium (PhLi) was also suitable for this sequential reaction, whereas using other organometallic reagents was not effective (entry 3 and data not shown).<sup>16</sup> The effects of the  $\alpha$ -leaving group on the sequential reaction were then examined. The sequential reaction of  $\alpha$ -iodo N-benzyloxylactam 11 with PhMgBr afforded the  $\alpha$ -benzaldehyde adduct 9 via the aldol-type addition of enolate E to benzaldehyde, which was generated by retro-ene fragmentation of enolate E (entry 4 and Scheme 2).<sup>13i</sup> In contrast, the use of





12 carrying an  $\alpha$ -chloro group furnished the chloroenamine 10, which was produced by nucleophilic phenylation and dehydration (entry 5). The sequential reaction of 13 with the  $\alpha$ -tosyloxy group afforded  $\alpha$ -benzoylpyrrolidine 8aA, but in low yield (entry 6). Therefore, the  $\alpha$ -bromo group as a leaving group of 7a plays an important role in the nucleophilic phenylation/ring-contraction reaction. Additionally, it is noted that the reaction could also be carried out in 1 mmol scale without any problem (97% yield, entry 7).

To demonstrate the synthetic utility of the ring-contracted products,  $\alpha$ -benzoyl *N*-(benzyloxy)pyrrolidine **8aA** was used to derive various pyrrolidinyl compounds (Scheme 3). The





transformation of **8aA** into pyrrolidinyl alcohols **14** and **15** by the nucleophilic phenylation with PhMgBr and reduction with NaBH<sub>4</sub> was successful. The synthesis of pyrrolidinyl alkene **16** was achieved through C–C bond formation using the Wittig reaction. Moreover, the benzyloxy moiety of **8aA** was removed by *t*-BuOK to afford pyrroline **17** via the E1cB reaction.

After the optimal conditions for the nucleophilic addition/ ring contraction were established, the reaction of  $\alpha$ -bromo *N*benzyloxylactam 7a with a variety of aryl Grignard reagents pubs.acs.org/OrgLett

was investigated (Scheme 4). The electronic nature of the substituents on the benzene ring had a moderate effect on the

# Scheme 4. Nucleophilic Addition/Ring Contraction of 7a with Various ArMgBr, HetArLi, and Alkenyl MgBr $^{a,b}$



<sup>*a*</sup>Reaction conditions: 7a (0.15 mmol), organometallic reagent (0.30 mmol), THF (2 mL), - 78 °C 1–2 h, then 1 M HCl. <sup>*b*</sup>Yield of the chromatographically pure product. <sup>*c*</sup>The reaction was carried out at 0 °C. <sup>*d*</sup>ArMgCl was used. <sup>*e*</sup>ArLi was *in situ* prepared from ArH and *n*-BuLi (See Supporting Information). <sup>*f*</sup>The reaction was quenched by AcOH.

reaction efficacy. Higher yields of the desired  $\alpha$ -acylpyrrolidines **8aB**-**a**F were observed, when aryl Grignard reagents with an electron-donating group on the benzene ring, such as the *p*-methoxy, *p*-dimethylamino, *p*-methyl, *p*-tert-butyl, and *p*phenyl group, were used. Moreover, the sequential reaction of 7**a** with aryl Grignard reagents which have an electronwithdrawing group on the benzene ring, such as the *p*-chloro, *p*-trifluoromethoxy, and *p*-ethoxycarbonyl group, proceeded under optimized conditions to give products **8aG**-**aI** in moderate to good yields.

Additionally, the sequential reaction of 7a with aryl Grignard reagents which have *m*-methoxy, *o*-methoxy, *m*,*p*-dimethoxy,

and *m,m*-dimethoxy groups was also successful (8aJ-aM). Heteroaryl groups, including thiophene, furan, benzothiophene, benzofuran, and indole, were also introduced into *N*-alkoxylactam 7a using the sequential reaction. For example, the heteroarylation of 7a with heteroaryl lithium reagents proceeded under optimized conditions to afford the corresponding products 8aN-aT in moderate to good yields. Furthermore, the scope of the sequential reaction using several alkenyl Grignard reagents was investigated and products 8aU and 8aV carrying  $\alpha,\beta$ -unsaturated ketone moieties were obtained in moderate yields.<sup>17</sup>

To elucidate the reaction pathway, we indirectly confirmed the formation of chelate intermediate **G** by trapping an electrophile (Scheme 5). By reacting 7**a** with PhMgBr followed

#### Scheme 5. Control experiments



by quenching with acetyl chloride at -78 °C, the *O*-acetylated *N*,*O*-aminal **18** was obtained (eq 1).<sup>18</sup> This result indicates that chelate intermediate **G** is generated *in situ*.<sup>19</sup> To demonstrate the effect of the alkoxy group, the sequential reaction of other lactam types was examined under optimized conditions. The use of *N*-phenethyl lactam **19**, which lacked an oxygen atom compared to *N*-benzyloxylactam **7a**, gave diphenylated *N*,*O*-aminal **20** without the formation of  $\alpha$ -benzoylpyrrolidine **21** (eq 2). This result shows that the adjacent nitrogen and oxygen atoms are critical for this nucleophilic addition/ring contraction.<sup>20,21</sup>

Next, the substituent effects of various  $\alpha$ -bromo Nalkoxylactams with aryl magnesium and heteroaryl lithium reagents were studied (Scheme 6). The sequential reaction of  $\alpha$ -bromo lactams 7b-d with methoxy, allyloxy, and propargyloxy groups at the lactam nitrogen atom provided the desired ring-contracted products 8bA-cN, 8dA in good to high yields (entries 1–7). Moreover, the nucleophilic arylation/ring contraction of disubstituted N-benzyloxylactams 7e-g was also examined. The  $\beta$ -methyl group of 7e significantly affected the reaction, resulting in low yields of the ring-contracted product 8eA (entry 8). However, when  $\gamma$ and  $\delta$ -methyl  $\alpha$ -bromo lactams 7f and 7g were used,  $\alpha$ acylpyrrolidines 8fA-gN with various incorporated aryl and heteroaryl groups were obtained in good yields (entries 9–14).

Lastly, the diastereoselective version of this nucleophilic phenylation/ring contraction was investigated by employing a (-)-*cis*-*N*-benzyloxylactam 7g (Scheme 7). As a result, sequential reaction with PhMgBr proceeded in a stereoselective manner, and desired ring-contracted product 8gA was obtained with high diastereoselectivity without loss of enantiopurity, thereby indicating that the present method is potentially promising for the synthesis of optically active  $\alpha$ -acylpyrrolidines at this stage.

In summary, we have successfully developed a nucleophilic arylation and alkenylation/ring contraction of *N*-alkoxylactams. A variety of Grignard and organolithium reagents including

Scheme 6. Substituent Effects of 7b–g with ArMgBr and HetArLi $^{a}$ 





<sup>*a*</sup>Reaction conditions: 7b-g (0.15 mmol), organometallic reagent (0.30 mmol), THF (2 mL),  $-78 \degree C 1-2$  h, then 1 M HCl. <sup>*b*</sup>Yield of the chromatographically pure product. <sup>*c*</sup>ArLi was *in situ* prepared from ArH and *n*-BuLi (see Supporting Information). <sup>*d*</sup>The reaction was quenched by AcOH.

aryl, heteroaryl, and alkenyl groups could be utilized in the sequential reaction. As a result, various  $C(sp^2)$  units could be introduced to *N*-alkoxylactams, providing various 2-acylpyrrolidines *via* ring contraction. This protocol is a simple procedure in a two-step, one-pot process. This nucleophilic arylation and alkenylation/ring-contractive rearrangement presents a new platform for ring contraction of lactam in organic synthesis.

Scheme 7. Diastereoselective Phenylation/Ring Contraction of (-)-*cis*-7g



Further studies to demonstarate the synthic utility of the developed methodology, including in the synthesis of biologically active compounds, are now in progress.

## ASSOCIATED CONTENT

#### Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.orglett.0c03821.

Experimental procedures, and spectroscopic and analytical data for new compounds, including  ${}^{1}H$  and  ${}^{13}C$  NMR spectra (PDF)

# Accession Codes

CCDC 2021279 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data\_request/cif, or by emailing data\_request@ccdc.cam.ac.uk, or by contacting The Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033.

## AUTHOR INFORMATION

#### **Corresponding Author**

Masafumi Ueda – Kobe Pharmaceutical University, Kobe 658-8558, Japan; © orcid.org/0000-0002-8003-2971; Email: masa-u@kobepharma-u.ac.jp

#### Authors

Norihiko Takeda – Kobe Pharmaceutical University, Kobe 658-8558, Japan; o orcid.org/0000-0003-2330-0201

Yukiko Kobori – Kobe Pharmaceutical University, Kobe 658-8558, Japan

- Kohei Okamura Kobe Pharmaceutical University, Kobe 658-8558, Japan
- Motohiro Yasui Kobe Pharmaceutical University, Kobe 658-8558, Japan; orcid.org/0000-0001-9324-3463

Complete contact information is available at: https://pubs.acs.org/10.1021/acs.orglett.0c03821

#### Notes

The authors declare no competing financial interest.

#### ACKNOWLEDGMENTS

This work was supported by JSPS KAKENHI (Grant Numbers JP19K05467, N.T.; JP18K06590, M.U.; JP19K23815, M.Y.) and the Hoansha Foundation (M.U.). N.T. is grateful to the Mitsubishi Tanabe Pharma Award in Synthetic Organic Chemistry, Japan (2016).

# REFERENCES

(1) Reviews, see: (a) Silva, L. F., Jr. *Tetrahedron* **2002**, *58*, 9137. (b) Zhang, X.-M.; Tu, Y.-Q.; Zhang, F.-M.; Chen, Z.-H.; Wang, S.-H. Chem. Soc. Rev. **2017**, *46*, 2272. (c) Song, Z.-L.; Fan, C.-A.; Tu, Y.-Q.

Chem. Rev. 2011, 111, 7523. (d) Silva, L. F., Jr. Molecules 2006, 11, 421. (e) Singh, F. V.; Wirth, T. Synthesis 2013, 45, 2499.

(2) (a) Muñiz, M. K. In *Comprehensive Organic Synthesis II*; Knochel, P., Molander, G. A., Eds.; Elsevier: Netherland, 2014; Vol. 3, pp 741– 756. (b) Wang, S.-H.; Tu, Y.-Q.; Tang, M. In *Comprehensive Organic Synthesis II*; Knochel, P., Molander, G. A., Eds.; Elsevier: Netherland, 2014; Vol. 3, pp 795–852.

(3) (a) Candeias, N. R.; Trindade, A. F.; Gois, P. M. P.; Afonso, C. A. M. In *Comprehensive Organic Synthesis II*; Knochel, P., Molander, G. A., Eds.; Elsevier: Netherland, 2014; Vol. 3, pp 944–991.
(b) Kirmse, W. Eur. J. Org. Chem. 2002, 2002, 2193. (c) Zhang, Z.; Wang, J. Tetrahedron 2008, 64, 6577.

(4) (a) Butkus, E. In *Comprehensive Organic Synthesis II*; Knochel, P., Molander, G. A., Eds.; Elsevier: Netherland, 2014; Vol. 3, pp 853– 886. (b) Favorskii, A. E. J. Russ. Phys. Chem. Soc. **1894**, 26, 590.

(5) (a) Wu, W.; Xiao, M.; Wang, J.; Li, Y.; Xie, Z. Org. Lett. 2012, 14, 1624. (b) Kym, P. R.; Wilson, S. R.; Gritton, W. H.; Katzenellenbogen, J. A. Tetrahedron Lett. 1994, 35, 2833.

(6) Selected examples, see: (a) Baran, P. S.; Richter, J. M. J. Am. Chem. Soc. 2005, 127, 15394. (b) Mascitti, V.; Corey, E. J. J. Am. Chem. Soc. 2006, 128, 3118. (c) Angeles, A. R.; Dorn, D. C.; Kou, C. A.; Moore, M. A. S.; Danishefsky, S. J. Angew. Chem., Int. Ed. 2007, 46, 1451. (d) Diethelm, S.; Carreira, E. M. J. Am. Chem. Soc. 2015, 137, 6084. (e) Chapman, L. M.; Beck, J. C.; Wu, L.; Reisman, S. E. J. Am. Chem. Soc. 2016, 138, 9803.

(7) Selected examples, see: (a) Ambrosini, M.; Baricordi, N.; Benetti, S.; De Risi, C.; Pollini, G. P.; Zanirato, V. Tetrahedron: Asymmetry 2009, 20, 2145. (b) Föhlisch, B.; Radl, A.; Schwetzler-Raschke, R.; Henkel, S. Eur. J. Org. Chem. 2001, 2001, 4357. (c) Maiti, S. B.; Chaudhuri, S. R. R.; Chatterjee, A. Synthesis 1987, 1987, 806. (d) Jiang, X.-L.; Shi, Y.; Tian, W.-S. J. Org. Chem. 2017, 82, 4402. (e) Kammath, V. B.; Šolomek, T.; Ngoy, B. P.; Heger, D.; Klán, P.; Rubina, M.; Givens, R. S. J. Org. Chem. 2013, 78, 1718. (f) Liu, W.; Huang, W.; Lan, T.; Qin, H.; Yang, C. Tetrahedron 2018, 74, 2298. (g) Zhang, L.; Koreeda, M. Org. Lett. 2002, 4, 3755. (h) Sadhukhan, S.; Baire, B. Org. Lett. 2018, 20, 1748. (i) Behnke, N. E.; Siitonen, J. H.; Chamness, S. A.; Kürti, L. Org. Lett. 2020, 22, 5715. (j) Oliver, S. F.; Högenauer, K.; Simic, O.; Antonello, A.; Smith, M. D.; Ley, S. V. Angew. Chem., Int. Ed. 2003, 42, 5996. (k) Elford, T. G.; Hall, D. G. J. Am. Chem. Soc. 2010, 132, 1488.

(8) (a) Sakai, T.; Amano, E.; Kawabata, A.; Takeda, A. J. Org. Chem. 1980, 45, 43. (b) Sakai, T.; Katayama, T.; Takeda, A. J. Org. Chem. 1981, 46, 2924. (c) Sakai, T.; Tabata, H.; Takeda, A. J. Org. Chem. 1983, 48, 4618. (d) Barbee, T. R.; Guy, H.; Heeg, M. J.; Albizati, K. F. J. Org. Chem. 1991, 56, 6773. (e) Sosnovsky, G.; Cai, Z.-W. J. Org. Chem. 1995, 60, 3414. (f) Babičand, A.; Pečar, S. Synlett 2008, 1155. (9) For selected examples, see: (a) Newman, M. S.; Dalton, C. K. J. Org. Chem. 1965, 30, 4126. (b) Moos, W. H.; Gless, R. D.; Rapoport, H. J. Org. Chem. 1981, 46, 5064. (c) Wang, G. T.; Wang, S.; Chen, Y.; Gentles, R.; Sowin, T. J. Org. Chem. 2001, 66, 2052. (d) Khan, F. A.; Dash, J.; Sudheer, C.; Sahu, N.; Parasuraman, K. J. Org. Chem. 2005, 70, 7565. (e) Kobayashi, S.; Kinoshita, T.; Kawamoto, T.; Wada, M.; Kuroda, H.; Masuyama, A.; Ryu, I. J. Org. Chem. 2011, 76, 7096. (f) Kobayashi, S.; Yokoi, T.; Inoue, T.; Hori, Y.; Saka, T.; Shimomura, T.; Masuyama, A. J. Org. Chem. 2016, 81, 1484. (g) Kobayashi, S.; Hori, Y.; Yoneyama, R.; Tamura, T.; Masuyama, A. J. Org. Chem. 2019, 84, 15549.

(10) For ring contraction of  $\alpha$ -halo  $\delta$ -lactam, see: (a) Henning, R.; Urbach, H. Tetrahedron Lett. **1983**, 24, 5339. (b) Kariyone, K. Chem. Pharm. Bull. **1960**, 8, 1110. (c) Francis, W. C.; Thornton, J. R.; Werner, J. C.; Hopkins, T. R. J. Am. Chem. Soc. **1958**, 80, 6238. (d) Hino, K.; Nagai, Y.; Uno, H. Chem. Pharm. Bull. **1988**, 36, 2386. (11) For other types of ring contraction of lactam, see: (a) Drouin, A.; Lessard, J. Tetrahedron Lett. **2006**, 47, 4285. (b) Drouin, A.; Winter, D. K.; Pichette, S.; Aubert-Nicol, S.; Lessard, J.; Spino, C. J. Org. Chem. **2011**, 76, 164. (c) Pichette, S.; Aubert-Nicol, S.; Lessard, J.; Spino, C. Eur. J. Org. Chem. **2012**, 2012, 1328. (d) Pichette, S.; Aubert-Nicol, S.; Lessard, J.; Spino, C. J. Org. Chem. **2012**, 77, 11216. For ring contraction of N-activated lactams, see: (e) Farran, D.; Parrot, I.; Martinez, J.; Dewynter, G. Angew. Chem., Int. Ed. 2007, 46, 7488. (f) Kern, N.; Felten, A.-S.; Weibel, J.-M.; Pale, P.; Blanc, A. Org. Lett. 2014, 16, 6104. (g) Sirindil, F.; Miaskiewicz, S.; Kern, N.; Lalaut, A.; Felten, A.-S.; Weibel, J.-M.; Pale, P.; Blanc, A. Tetrahedron 2017, 73, 5096.

(12) We have recently developed some interesting reactions of amides, enamides, and oxime ethers including a contiguous N-O bond; see: (a) Takeda, N.; Futaki, E.; Kobori, Y.; Ueda, M.; Miyata, O. Angew. Chem., Int. Ed. 2017, 56, 16342. (b) Takeda, N.; Arisawa, N.; Miyamoto, M.; Kobori, Y.; Shinada, T.; Miyata, O.; Ueda, M. Org. Chem. Front. 2019, 6, 3721. (c) Sugita, S.; Takeda, N.; Tohnai, N.; Miyata, M.; Miyata, O.; Ueda, M. Angew. Chem., Int. Ed. 2017, 56, 2469. (d) Takeda, N.; Ueda, M.; Kagehira, S.; Komei, H.; Tohnai, N.; Miyata, M.; Naito, T.; Miyata, O. Org. Lett. 2013, 15, 4382.

(13) For reviews, see: (a) Balasubramaniam, S.; Aidhen, I. S. Synthesis 2008, 2008, 3707. (b) Sato, T.; Yoritate, M.; Tajima, H.; Chida, N. Org. Biomol. Chem. 2018, 16, 3864. (c) Pace, V.; Holzer, W.; Olofsson, B. Adv. Synth. Catal. 2014, 356, 3697. (d) Senatore, R.; Ielo, L.; Monticelli, S.; Castoldi, L.; Pace, V. Synthesis 2019, 51, 2792. (e) Pace, V.; Holzer, W. Aust. J. Chem. 2013, 66, 507. (f) Kaiser, D.; Bauer, A.; Lemmerer, M.; Maulide, N. Chem. Soc. Rev. 2018, 47, 7899. For selected examples for nucleophilic addition of N-alkoxylactam with C-nucleophiles, see: (g) Yanagita, Y.; Nakamura, H.; Shirokane, K.; Kurosaki, Y.; Sato, T.; Chida, N. Chem. - Eur. J. 2013, 19, 678. (h) Vincent, G.; Karila, D.; Khalil, G.; Sancibrao, P.; Gori, D.; Kouklovsky, C. Chem. - Eur. J. 2013, 19, 9358. (i) Jäkel, M.; Qu, J.; Schnitzer, T.; Helmchen, G. Chem. - Eur. J. 2013, 19, 16746. (j) Vincent, G.; Guillot, R.; Kouklovsky, C. Angew. Chem., Int. Ed. 2011, 50, 1350.

(14) Ring contraction via  $\beta$ -bromo-O,O-hemiacetal as a tentative intermediate was recently reported; see: Watanabe, K.; Hamada, T.; Moriyama, K. Org. Lett. **2018**, 20, 5803.

(15) (a) Dallagi, T.; Saidi, M.; Jaouen, G.; Top, S. Appl. Organomet. Chem. 2013, 27, 28. (b) Battula, S. R. K.; Rama Kishore Putta, V. P.; Subbareddy, G. V.; Chakravarthy, I. E.; Saravanan, V. Org. Biomol. Chem. 2017, 15, 3742. (c) Golten, S.; Patinec, A.; Akoumany, K.; Rocher, J.; Graton, J.; Jacquemin, D.; Le Questel, J.-Y.; Tessier, A.; Lebreton, J.; Blot, V.; Pipelier, M.; Douillard, J.-Y.; Le Pendu, J.; Linclau, B.; Dubreuil, D. Eur. J. Med. Chem. 2019, 178, 195.

(16) When other organometallic reagents (PhZnI, Ph<sub>2</sub>Zn, and Ph<sub>3</sub>Al) were used in the nucleophilic addition/ring contraction of 7a, the  $\alpha$ -benzoylpyrrolidine 8aA was not obtained, and 7a was recovered in all cases.

(17) The reaction of N-alkoxylactam 7a with EtMgBr provided  $\alpha$ benzaldehyde adduct 9 without formation of a ring-contracted product. The precise reason for the different reactivities of ArMgBr and EtMgBr was unclear.

(18) For hemiacetal formations from Weinreb amides, see: Castoldi, L.; Holzer, W.; Langer, T.; Pace, V. Chem. Commun. 2017, 53, 9498.

(19) When excess amounts of PhMgBr (5 equiv) were used for the nucleophilic phenylation/ring contraction of 7a,  $\alpha$ -benzoylpyrrolidine 8aA was obtained without formation of pyrrolidinyl alcohol 14. This result also supports that chelate intermediate G is generated *in situ* under optimized conditions.

(20) Although the ring-opening product has not been obtained to date, the possibility that ring-opening and intramolecular  $S_N$ 2-type cyclization in the reaction pathway cannot be excluded.

(21) One of the possibilities is that the difference in the reactivities of **7a** and **19** would be attributed to the pyramidalization of the amide functional group.

Ε