DIE KONSTITUTION DER FUNGISTATISCHEN ANSAMYCIN-ANTIBIOTICA ANSATRIENIN A UND B

Manfred Damberg, Peter Russ und Axel Zeeck*

Organisch-Chemisches Institut der Universität, Tammannstr. 2, D-34 Göttingen, FRG

<u>Summary</u>: The structure of ansatrienin A (<u>1</u>) and B (<u>6</u>) is assigned by spin decoupling experiments and chemical reactions. The ansatrienins are unique members among the ansamycin-antibiotics because of their substituent pattern in the ansa bridge.

Die von *Streptomyces collinus* (Stamm Tü 1892) produzierten Ansatrienine sind fungistatisch wirksam und gehören zur Gruppe der Ansamycin-Antibiotica ¹⁾. Das farblose Ansatrienin B ($\underline{6}$, $C_{36}H_{50}N_2O_8$), das vermutlich mit Mycotrienin ²⁾ identisch ist, wird als Hydrochinon leicht zum gelben Ansatrienin A ($\underline{1}$, $C_{36}H_{48}N_2O_8$) mit einem 2-Acylamino-1,4-benzochinon-Chromophor oxidiert. Die Ansatrienine enthalten als besondere Strukturelemente ein isoliertes Trien (UV-Banden bei 281. 270, 261 nm) und eine als Ester gebundene N-Cyclohexylcarbonyl-alanyl-Seitenkette ¹⁾. Bei der Acety-lierung mit Acetanhydrid/Pyridin (12 h, RT) bildet Ansatrienin A ($\underline{1}$) das Monoacetat $\underline{2}$ [77%; $C_{38}H_{50}N_2O_9$; MS (70 eV): m/e 678 (M⁺, Hochauflösung), 618 (M-60), 479 (M-199); IR (KBr): 1736, 1666 sh, 1652, 1630 sh, 1613 sh cm⁻¹] und Ansatrienin B ($\underline{6}$) das Triacetat $\underline{7}$ [61%; $C_{42}H_{56}N_2O_{11}$; MS (70 eV): m/e 764 (M⁺, Hochauflösung), 704 (M-60), 662 (M-60-42). 620 (M-60-42-42), 565 (M-199); IR (KBr): 1762, 1735 sh, 1731, 1680 sh, 1660, 1639 sh, 1618 cm⁻¹]. Die Acetate belegen die Existenz einer sekundären Hydroxygruppe in der Ansabrücke, erkennbar an der paramagnetischen Verschiebung von 13-H im ¹H-NMR-Spektrum (Tab. 1), die Acetoxy-Signale liegen bei $\delta = 2.02$ bzw. $\delta = 2.00$, 2.30 und 2.37. Die Konstitution der Ansatrienine folgt aus den Hochfeld ¹H-NMR-Spektren der Antibiotica und ihrer Derivate ³⁾.

Durch Einstrahlung bei $\delta = 4.02$ (3-H) und 6.50 (19-H) von Ansatrienin A (<u>1</u>) ergibt sich die Partialstruktur <u>A</u>. Die Nachbarschaft der CH₂-Gruppe mit dem Acylamid-CO beweisen eine ²J_{CH}-Kopplung auf dem Carbonyl-C-Atom bei $\delta = 169.3$ im ¹³C-NMR-Spektrum (Heteroentkopplung) und die Veränderung, die das Signal dieser CH₂-Gruppe im ¹H-NMR-Spektrum als Folge der Ringöffnung zum *Seco*-Ansatrienin A-methylester (Partialformel <u>B</u>) ¹) erfährt. Die Stellung der Methoxygruppe an C-3 ergibt sich aus den ¹H-NMR-Daten der Derivate <u>3</u> und <u>5</u> (Tab. 1) im Vergleich mit <u>1</u>.

Der Trienteil (Partialformel <u>C</u>) läßt sich im ¹H-NMR-Spektrum (Tab. 1) von Ansatrienin B (<u>6</u>) in d_6 -Aceton durch Einstrahlung bei 4-H und 9-H zuordnen, weil die Olefin-H-Signale besser getrennt sind als in den CDCl₃-Spektren. Aufgrund der 15 Hz-Kopplungen sind die Doppelbindungen des Triens

(E)-konfiguriert. An C-9 schließt sich eine CH_2 -Gruppe an. Um die restlichen Strukturelemente ¹⁾ zu verknüpfen, sind die ¹H-NMR-Spektren der Antibiotica weniger geeignet, weil die CH_2 - und CH-Signale der Ansabrücke im Bereich δ = 1.2 - 2.1 von Signalen des Cyclohexylrestes überlagert werden.

Durch selektive Reduktion [LiAIH₄/THF, -28^oC, 1 h] der Estergruppe⁴⁾ von Ansatrienin A (<u>1</u>) entsteht gelbes Ansatrienol A (<u>3</u>) [72%; C₂₆H₃₃NO₆; MS (70 eV): m/e 455 (M⁺, Hochauflösung); IR (KBr): 1705, 1665 sh, 1650, 1629, 1609 cm⁻¹]. Ihm fehlen die ¹H-NMR-Signale der N-Cyclohexylcarbonylalanyl-Seitenkette¹⁾, das Signal der CH-Gruppe verschiebt sich durch die Entacylierung auf $\delta = 3.80$ (Tab. 1). Einstrahlversuche an <u>3</u> zeigen, daß die isolierte olefinische Doppelbindung der Ansatrienine über eine Ethylenbrücke mit dem Benzochinon verbunden ist (Partialformel <u>D</u>). In Ubereinstimmung damit setzt <u>1</u> beim Ozonabbau [O₃/CH₂Cl₂, -78^oC, 1 h, HCOOH/H₂O₂] Bernsteinsäure frei, die als Dimethylester (GC/MS-Kopplung) identifiziert wurde.

Die Strukturelemente zwischen der Doppelbindung und dem Trien lassen sich gut beim Ansatrienol-Aacetonid (<u>4</u>) erfassen, das mit 2,2'-Dimethoxypropan/p-Toluolsulfonsäure ($50^{\circ}C$, 2 h) aus <u>3</u> entsteht [45%; $C_{29}H_{37}NO_6$; MS (70 eV): m/e 495 (M⁺, Hochauflösung), 437 (M-58), 405 (M-58-32); IR (KBr): 1697 sh, 1665, 1649, 1630 sh, 1600 cm⁻¹]. <u>4</u> ist sehr labil und spaltet leicht Aceton ab. Im ¹H-NMR-Spektrum (Tab. 1) liegen die Acetonid-Methylgruppen als Singuletts bei $\delta = 1.31/1.34$. Aus Einstrahlexperimenten folgt die Partialformel <u>E</u>.

Tab. 1. ¹H-NMR-Daten der Ansabrücke von Ansatrienin A (<u>1</u>), Ansatrienin B (<u>6</u>) und einigen Derivaten in CDCI₃ δ-Werte in ppm, TMS als interner Standard

H-Atom	<u>1</u> ^{a)}	<u>2</u> b)	<u></u> 3 ^{b)}	<u>4</u> b)	<u></u> 5 ^{b)}	<u></u> 6 ^{a,c)}	<u>7</u> a)
NH	8.12	8.21	8.12	7.98	8.37	9.48	7.97
2-H	2.57	2.65	2.55	2.57	2.76	2.59	2.62
2-H	2,87	2.83	2.83	2.83	2.76	2.89	2,74
3-Н	4.02	4.05	4.03	3.97	4.09	4.18	4.07
з-осн _з	3.34	3.39	3.36	3.32	3.42	3.31	3.34
4-H	5.60	5.58	5.58	5.61	5.60	5.51	5.65
5-H	ſ	Γ	Γ	Γ	6.14	6.31	Γ
6-H	6.04	6.08	6.06	6.0-	Γ	6.12	6.16
7-H				6.24	6.04	6.30	
8-H	L	L	Į	Ĺ	L	6.18	L
9-H	5.60	5.58	5.75	5.81	5.44	5.79	5.72
10-Н _а	2.36	2.2-	2.50	2.17	2.2-	2.32	2.34
10-H _b	2.57	2.6	2.60	2.57	2.6	2.32	2.52
11-Н [~]	4.95	4.87	3.80	3.52	5.30	4.88	4.70
12-H	1.75	-2.0	1.66	1.84	3.16	1.89	2.17
12-CH ₃	0.88	0.95	0.93	0.81	1.09	0.77	0.99
13-Н	4.70	5.61	4.87	4.54		4.86	5.61
14-CH ₃	1.80	1.68	1.80	1.74	1.97	1.72	1.66
15-H	5.18	5.31	5.20	5.22	5.76	5.20	5.39
16-H ₂	2.03	2.0-	2.02	2.17	2.34	[2.1-	2.17
17-H ₂	2.36	2.6	2.30 2.42	2.2- 2.6	2.2- 2.6	3.0	2.42

Bei der Oxidation von Ansatrienin A (1) mit Mangan(IV)-oxid in Acetonitril (3 h, RT) entsteht Ansatrienon A (5) [20%; C₃₆H₄₆N₂O₈; MS (70 eV): Kein Molekül-lon, m/e 435 (M-199, Hochauflösung), 403 (M-199-32), 199 (C10H17NO3); IR (KBr): 1730, 1665 sh, 1649.1630 sh. 1610 sh cm⁻¹]. Die Position der entstandenen CO-Gruppe ergibt sich aus dem Vergleich der ¹H-NMR-Daten mit denen von 1 (Tab.1). Es fehlt das Signal bei $\delta = 4.70$ (13-H) und 12-H bzw. 15-H sind signifikant paramagnetisch verschoben. Aus der Tatsache, daß die Differenz für 15-H beim Übergang 1 --- 5 nur 0.58 ppm beträgt, schließen wir zugleich, daß die olefinische Doppelbindung (Z)-konfiguriert ist. Im Einklang damit steht die Lage ($\delta = 20.6$) der 14-CH₃-Gruppe von 1 im ¹³C-NMR-Spektrum ⁵).

Aus den Partialformeln <u>A</u> – <u>E</u> ergibt sich die Konstitution <u>1</u> und <u>6</u> der Ansatrienine, die durch den Benzochinon-

Chromophor dem Geldanamycin⁶⁾, den Herbimycinen⁷⁾ und den Macbecinen⁸⁾ ähnlich sind. Durch die acylierte Aminosäure-Seitenkette, die L-Alanin enthält, besteht Verwandtschaft mit den Maytansinoiden⁹⁾. Wie dort ist die Abspaltung der Seitenkette mit einem Wirkungsverlust verbunden. Biogenetisch gesehen nehmen die Ansatrienine eine Sonderstellung ein, als der Aufbau der Ansabrücke - vom vermutlichen Starter 3-Amino-5-hydroxy-benzoesäure ausgehend^{10,11)} - mit Acetat beginnt und insgesamt nur zwei Propionatreste aufgenommen werden. Die Ansatrienine weisen unter den bislang bekannten Ansamycinen die geringste Anzahl von C-Methylgruppen auf. Das Sauerstoffmuster der Ansabrücke folgt der vermuteten Biogenese,ohne daß weitere Oxygenierungen erforderlich sind. Der Polyenteil der Ansatrienine steht nicht in Konjugation zur Amid-CO-Gruppe am Chinon.

Wir danken Prof.Dr. H. Zähner, Dr. W. Weber und Dr. G. Lazar für die Bereitstellung von Ansatrienin-Rohprodukt und die Ausführung biologischer Tests. Wir sind Herrn Dr. D. Wendisch (Bayer AG, Leverkusen) für die Aufnahme der 360 MHz- und Herrn Dipl.-Chem. R. Machinek (Göttingen) für die Aufnahme der 200 MHz-¹H-NMR-Spektren zu Dank verpflichtet. Frau B. <u>Bitto</u> danken wir für die tatkräftige Unterstützung bei den Experimenten. Die <u>Deutsche Forschungsgemein-</u> schaft hat die Arbeiten dankenswerterweise finanziell gefördert.

LITERATUR

- 1) W.Weber, H.Zähner, M.Damberg, P.Russ und A.Zeeck, Zbl. Bakt. Hyg. I.Abt. Orig. C 2, 122 (1981).
- 2) <u>C.Coronelli, R.C.Pasqualucci, J.E.Thiemann</u> und G.Tamoni, J. Antibiotics 20, 329 (1967).
- 3) R_F-Werte an Kieselgel (DC-Polygram SIL G/UV₂₅₄) in Chloroform/4% Methanol: <u>1</u> (0.47), <u>2</u> (0.61),
 3 (0.19), 4 (0.63), 5 (0.53), 6 (0.07) und 7 (0.47).
- 4) M.Asai, E.Mizuta, M.Izawa, K.Haibara und T.Kishi, Tetrahedron 35, 1079 (1979).
- 5) <u>G.Levy</u>, <u>R.Lichter</u> und <u>G.Nelson</u>, Carbon-13 Nuclear Magnetic Resonance Spectroscopy, J.Wiley and Sons, New York 1981.
- K.Sasaki, K.L.Rinehart jr., G.Slomp, M.F. Grostic und E.C.Olson, J. Amer. Chem. Soc. <u>92</u>, 7591 (1970).
- <u>S.Omura</u>, <u>H.Nakagawa</u> und <u>N.Sadakane</u>, Tetrahedron Lett. <u>20</u>, 4323 (1979); J. Antibiotics <u>33</u>, 781 und 1114 (1980).
- M.Muroi, K.Haibara, M.Asai und T.Kishi, Tetrahedron Lett. <u>21</u>, 309 (1980); Tetrahedron <u>27</u>, 1123 (1981).
- 9) Y.Komoda und T.Kishi, Maytansinoids, in Medicinal Chemistry (ed. by J.M.Cassady and J.D.Douros) Vol. 16, S. 353, Academic Press, New York 1980.
- 10) J.J.Kibby, J.A.McDonald und R.Rickards, J.C.S. Chem. Comm. 1980, 768; J. Antibiotics 34, 605 (1981).
- 11) O.Ghisalba und J.Nüesch, J. Antibiotics 34, 64 (1981).

(Received in Germany 12 October 1981)