

0040-4039(95)01232-X

Sulfur-Containing Heterocycles Derived by the Reaction of Hydroxy-Amides and Lawesson's Reagent

Takehiko Nishio

Department of Chemistry, University of Tsukuba, Tsukuba-shi, Ibaraki 305, Japan

Abstract: A simple one-pot reaction between hydroxy-amides (1), located 1,3- or 1,4- to each other, and Lawesson's reagent (LR) gives sulfur-containg heterocycles such as tetrahydrothiophene-2-imines (4), tetrahydrothiophene-2-thione (5) and tetrahydrothiopyran-2-thione (6). Similar reaction of 3-N-acylamino-alcohols (7) affords thiazoline derivatives (9).

2,4-Bis(4-methoxyphenyl)-1,3,2,4-dithiaphosphetane-2,4-disulfide, commonly known as Lawesson's reagent (LR), has been developed as a powerful and versatile reagent for the conversion of a wide variety of carbonyls, including amide carbonyls, to thiocarbonyl compounds.¹ The LR also undergoes ring-closure reaction with substrates containing two functional groups such as 3-oxo-esters and -amides, α -hydroxy-ketones, 2-hydroxybenzoic acids, and 2-acylaminobenzoates to yield phosphorus²⁻⁶ or sulfur-containing heterocycles.⁷⁻⁸ Recently we reported a novel transformation of alcohols to thiols using LR, which allows the direct conversion of the hydroxy-group into a thiol-group.⁹ These results suggest that in bifunctional systems having both hydroxy and amide groups, in which they are located 1,2-, 1,3-, or 1,4- to each other, the opportunity exists for ring-closure reactions to give 5- and 6-membered sulfur-containing heterocycles. We therefore investigated the reactions between hydroxy-amides and LR and here report simple new routes to sulfur-containing heterocycles.

3-Hydroxy amides 1a-c reacted with an equimolar amount of LR in toluene at 110 °C under argon for 0.5 h giving thioenamides 2a-c in high yields. The reaction efficiency dropped to half when 0.5 equiv. of LR was used in this reaction. The formation of thioenamides 2 can be explained in terms of thionation of the amide function and dehydration. The latter process probably involves initial conversion of the hydroxy to a thiol group, followed by loss of H₂S to give the final products 2, since LR has dehydrating activity toward alcohols through thiols.⁹ Treatment of 4-hydroxy amides 1d-f with an equimolar amount of LR gave tetrahydro-thiophene-2-imines (4) and tetrahydrothiophene-2-thione (5). When 4-hydroxy amides 1e, f were treated with 0.5 equiv. of LR, 4-mercapto amides 3e, f¹⁰ were isolated along with products 4e, f and 5. The reaction of 4-mercapto amide 3f thus obtained with LR under the same conditions yielded imine 4f and thione 5 in 33 and 39% yields, respectively. The imine 4f also reacted with LR to form the thione 5. A reasonable mechanism for these reactions is outlined in Scheme 2. Based on the above findings, the hydroxy amides 1 are apparently converted to the mercapto amides 3, which then undergo thionation followed by cyclization yielding the imines 4. The imines 4 subsequently undergo further thionation to form the thione 5. Similarly, 5-hydroxy amide 1g reacted with LR to afford tetrahydrothiopyran-2-thione 6.

Table 1	. Yie	elds of	Products	2-6 fi	rom 1	and L	R .

Compd.			Molar ratio		Yields (%)				
No.	n	R ¹	R2	L R /1	2	3	4	5	6
1 a	1	Ph	Н	1	94	-	-	-	-
1 a				0.5	48	-	-	-	-
1 b	1	PhCH ₂	Н	1	97	-	-	-	-
1 c	1	PhCH ₂	PhCH ₂	1	58	-	-	-	-
1 d	2	Ph	Н	1	-	-	51	33	-
1 e	2	p-Tol	Н	1	-	-	49	48	-
1 e				0.5	-	9	35	5	-
1 f	2	p-ClC6H4	Н	1	-	-	45	52	-
1 f				0.5	-	8	37	5	-
1 g	3	Ph	н	1	-	-	-	-	48

Treatment of N-acylamino alcohols 7a-d with an equimolar amount of LR in toluene at reflux temperature yielded thiazoline derivatives 9a-d. However, treatment of N-acylamino alcohol 7d with 0.5 equiv. of LR gave N-acylamino thiol 8d (63 %)¹⁰ as the main product accompanied by a small amount of thiazoline 9d (4 %). N-Acylamino thiol 8d thus obtained was converted into thiazoline 9d when treated with LR.

Scheme 3

Table 2.	Yields	of	Products	8-9	from	7.

		Molar ratio	Yie	eld (%)	
Compd. No.	R	LR/7	8	9	
7 a	Ph	1	-	56	
7 a		0.5	-	31	
7 b	p-Tol	1	-	60	
7 c	PhCH ₂	1	-	36	
7 d	Adamantyl	1	-	22	
<u>7</u> d		0.5	63	4	

This result indicates that the formation of thiazolines 9 can be interpreted to be a ring closure of the initially produced N-acylamino thiols followed by a loss of hydrogen sulfide.

References

- 1 Cava, M. P.; Levinson, M. I. Tetrahedron, 1985, 41, 5061-5087.
- 2 Pederson, B. S.; Lawesson, S.-O. Tetrahedron, 1979, 35, 2433-2437.
- 3 Scheibye, S.; Shabana, R.; Lawesson, S-O. Tetrahedron, 1982, 38, 993-1001.
- 4 El-Barbary, A. A.; Clausen, K.; Lawesson, S-O. Tetrahedron, 1980, 36, 3309-3315.
- 5 El-Barbary, A. A.; Lawesson, S-O. Tetrahedron, 1981, 37, 2641-2646.
- 6 Shabana, R.; Osman, F. H.; Atress, S. S. Tetrahedron, 1994, 50, 6975-6988.
- 7 Clausen, K.; Lawesson, S-O. Bull. Soc. Chim. Belg., 1979, 88, 305-311.
- 8 Clausen, K.; Lawesson, S-O. Nouv. J. Chim., 1980, 4, 43-46.
- 9 Nishio, T. J. Chem. Soc., Chem. Commun., 1989, 205-206; J. Chem. Soc., Perkin Trans. 1, 1993, 1113-1117.
- 4-Mercapto amide 3e: oil; IR(film) 3300, 2540, and 1655 cm⁻¹; ¹H-NMR(CDCl₃) δ 1.88 (1H, d, J=5.9 Hz), 2.27 (3H, s), 2.05-2.18 (4H, m), 3.80-4.08 (1H, m), 6.95-7.40 (9H, m), and 8.05 (1H, br s); ¹³C-NMR(CDCl₃) δ 20.7 (q), 35.2 (t), 43.2 (d), 120.1 (d), 126.7 (d), 127.3 (d), 128.6 (d), 129.2 (d), 133.7 (s), 135.2 (s), 143.8 (s), and 170.4 (s).

4-Mercapto amide 3f: m.p. 87-89 °C; IR(KBr) 3270, 3200, 2550, and 1665 cm⁻¹; ¹H-NMR(CDCl₃) δ 1.93 (1H, d, J=5.8 Hz), 2.20-2.42 (4H, m), 3.90-4.11 (1H, m), and 7.18-7.46 (10H, m); ¹³C-NMR(CDCl₃) δ 35.0 (t), 35.3 (t), 43.2 (d), 121.2 (d), 126.8 (d), 127.5 (d), 128.8 (d), 128.9 (d), 136.3 (s), 143.7 (s), and 170.3 (s).

N-Acylamino thiol 8d: m.p. 130-131 °C; IR(KBr) 3380, 2520, and 1625 cm⁻¹; ¹H-NMR(CDCl₃) δ 1.60-2.10 (16H, m), 3.54-3.69 (2H, m), 4.07-4.29 (1H, m), 5.87 (1H, br s), and 7.22-7.32 (5H, m); ¹³C-NMR(CDCl₃) δ 28.0 (d), 36.4 (t), 39.1 (t), 40.6 (s), 43.2 (d), 47.2 (t), 127.2 (d), 127.7 (d),

128.8 (d), 141.3 (s), and 177.9 (s).

Satisfactory elemental analyses were obtained on all products.

(Received in Japan 8 April 1995; accepted 28 June 1995)