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AbstractÐ20-Deoxyguanosine residues of a 30,50-end-modi®ed hexadeoxyribonucleotide (R-95288) with anti-HIV-1 activity were
substituted with N2-methyl-20-deoxyguanosine (m2dG). These modi®ed oligodeoxyribonucleotides (ODNs) showed a 2-fold higher
activity than R-95288. Also, the CD spectra of these ODNs indicated that the m2dG modi®cation stabilized the tertiary structure of
the G-quadruplex. # 2000 Elsevier Science Ltd. All rights reserved.

Oligodeoxyribonucleotides (ODNs) for drug candi-
dates, which can bind to nucleic acids, proteins and
small organic compounds that are disease-related, are
called antisense nucleic acids or aptamers.2 We have
found that a hexadeoxyribonucleotide (50 TGGGAG)
with a 3,4-dibenzyloxybenzyl (3,4-DBB) group at the 50
end had high anti-HIV-1 activity and low cytotoxicity.3

Modi®cation of the 30 end with a 2-hydroxyethyl phos-
phate group enhanced the anti-HIV-1 activity as well as
stability of the ODN in human plasma.4 This modi®ed
ODN (R-95288; 1) also showed in vivo anti-viral activity
using hu-PBL-SCID/beige mice as an animal model for
HIV-1 infection.5 This modi®ed ODN most likely binds
to the gp120 protein of the HIV-1 virus, inhibits absorp-
tion and entry of the virus, and acts as an aptamer.6

Moreover, this kind of short, guanine-rich ODN forms
a parallel-quadruplex based on anti-conformational
G-quartet (Fig. 1(A,B)).1,3,4,7

In this paper, we describe the N2-methylation of 20-
deoxyguanosine residues in R-95288 (1), stability of the
G-quartet by these ODNs and their anti-HIV-1 activity.
Although one of the protons of an exocyclic amine group
of 20-deoxyguanosine contributes to the hydrogen bonding
in the G-quartet, the other is available for modi®cation.
Once a 20-deoxyguanosine residue in the G-quadruplex
is modi®ed, this is the same as all other 20-deoxyguano-
sine residues in the G-quartet plate being modi®ed (Fig.
1(B)). Substitution at the 8 position of 20-deoxyguano-
sine residues in the anti-parallel G-quadruplex stabilizes
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the tertiary structure, as the 20-deoxyguanosine residues
are now ®xed in the syn conformation.8,9 However, the
actual e�ect of the N2-methylation of 20-deoxyguanosine
residues in the parallel G-quadruplex is not yet known.

The synthesis of the N2-methyl-20-deoxyguanosine
(m2dG) unit to form modi®ed R-95288 is shown in the
Scheme 1. Selective methylation at the N-2 position was
performed according to Reese's method for N2-methyl-
guanosine synthesis.10,11 Mannich-like reaction of 30,50-
TIPDS-20-deoxyguanosine 2 by treatment with HCHO
and thiocresol gave compound 3. Reduction by NaBH4,
followed by protection of the O-6 position with N,N-
diphenylcarbamonyl chloride, gave N2-methylated 20-
deoxyguanosine 4.12 Subsequently, compound 4 was
deprotected by TBAF in THF, treated with 4,40-dime-
thoxytrityl chloride (DMTrCl) in pyridine and phos-
phitylated by 2-cyanoethyl N,N,N,N-tetraisopropyl-
phosphordiamidite in the presence of N,N-diisopropyl-
ammonium tetrazolide to give phosphoramidite 5.

A set of ODNs containing N2-methyl-20-deoxyguanosine
was synthesized on a DNA synthesizer by the phos-
phoramidite method. 50-O-(3,4-DBB)thymidine-30-O-
phosphoramidite13 and ethylene glycol-modi®ed con-
trolled pore glass (CPG)3 were used for the 50 and 30 end
modi®cation as reported previously. Phosphoramidite 5
was incorporated into the TGGGAG sequence instead
of 20-deoxyguanosine residues at various positions as
shown in the Table 1. After chain-elongation, the mod-
i®ed ODNs were cleaved from the CPG support and
deprotected with 28% aqueous ammonia solution. The
puri®cation of the ODNs was performed by C18 reversed
phase column chromatography.3 The structures of the
modi®ed ODNs were determined by negative MALDI
TOF mass spectroscopy (Table 1).

Anti-HIV-1 assays were performed using ODNs 6±10
containing m2dG at various positions. The 50% inhibi-
tory concentration (IC50) of the cytopathic e�ect for MT-
4 cells infected by an HIV-1IIIB strain and the 50% cyto-
toxicity concentration (CC50) were determined according
to a procedure reported previously.13 We reported that
the IC50 of R-95288 (1) was 0.19 mg/mL (0.08 mM) and
its CC50 was up to 100 mg/mL (>40 mM).3 Relative IC50

values of m2dG-containing ODN 6±10 to R-95288 were
improved by approximately 2-fold (Table 1). These

Figure 1. (A) Proposed parallel G-quadruplex structure of R-95288.4 Circles and p show 3,4-DBB groups and 2-hydroxyethyl phosphate groups,
respectively. Fifth 20-deoxyadenosine from the 50-end can also form the quartet structure.16,17 (B) G-quartet structure by 20-deoxyguanosine residues
or N2-methyl-20-deoxyguanosine residues.

Scheme 1. (i) HCHO, AcOH, thiocresol, 70%; (ii) (a) NaBH4, DMSO;
(b) Ph2NC(�O)Cl, (iPr)2NEt; two steps 49%; (iii) (a) TBAF, THF; (b)
DMTrCl, pyridine; two steps 77%; (c) N,N-diisopropylammonium tet-
razolide, 2-cyanoethyl N,N,N,N-tertaisopropylphosphordiamidite,
THF, 91%.

Table 1. Anti-HIV-1 activity and characterization of m2dG-contain-

ing ODNs

MS [M±H]ÿ

Compoundsa Relative IC50
b Calcd Found

1 (TGGGAG, R-95288) 1.0 2296.47 2296.30
6 (T(m2dG)GGAG) 0.63 2310.49 2310.10
7 (TG(m2dG)GAG) 0.63 2310.49 2310.21
8 (TGG(m2dG)AG) 0.45 2310.49 2310.55
9 (TGGGA(m2dG)) 0.63 2310.49 2310.14
10 (T(m2dG)3AG) 0.46 2338.52 2338.57
11 (TGGG) 43 1654.36 1654.54
12 (T(m2dG)3) 2.0 1696.41 1696.38

aAll ODNs have a 3,4-DBB group and a 2-hydroxyethyl group at the
50 and 30 end, respectively.
bValue of IC50 (mM)/IC50 value (mM) of R-95288 (1).
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results indicate that the free proton of the exocyclic
amino group of 20-deoxyguanosine may not be involved
in the interaction with the targeted protein, gp120. In
particular, substitution at the fourth residue from the 50
end (compounds 8 and 10) seems to be e�ective for anti-
HIV-1 activity. All modi®ed compounds showed no
cytotoxicity up to 100 mg/mL (>40 mM).

Guanine-rich ODNs can form parallel or anti-parallel
quadruplex structures.1,3,4,7ÿ9 We have found that
R-95288 also forms the parallel structure at less than
50 �C (this temperature is called Tm).

4 Oligonucleotides
containing N2-methylguanosine can form duplexes
identical to that of normal oligonucleotides.14 This
means that methylation at the N-2 position of guano-
sine does not inhibit formation of hydrogen bonds. To
investigate the e�ect of N2-methylation on the stability
of ODNs, we measured the CD spectra of these m2dG-
containing compounds in phosphate-bu�ered saline at
various temperatures.

The CD spectra demonstrated that compounds 6±8, in
which one guanine residue of the internal contiguous
guanines was substituted with m2dG, formed the par-
allel G-quadruplex as well as did the parent com-
pound R-95288 and had higher stability than R-95288
(Fig. 2). Tm values (70 �C) for compounds 7 and 8, in
which was substituted the second or the third 2-deoxy-
guanosine among the three contiguous 20-deoxyguano-
sine residues, were much higher than that of compound
6 (60 �C), in which the ®rst guanosine residue was sub-
stituted with m2dG. On the other hand, terminal sub-
stitution with m2dG (compound 9) had no e�ect on the

quadruplex due to the poor stacking of the terminal
base. These results might be due to the improvement of
base stacking potential by methylation in the nucleo-
base.15 Interestingly, compound 10 with three con-
tiguous m2dGs dissociated the least, with little change,
even at 80 �C. This stabilizing e�ect of a modi®cation
with three m2dGs corresponds to that of ®ve contiguous
guanosine residues in an ODN such as (3,4-DBB)-
T(G)5.

3

On the basis of these results, the structure R-95288 (1)
was minimized down to three contiguous m2dGs, that is,
a TGGG sequence with three 20-deoxyguanosines (com-
pound 11). This was the minimum required structure but
had less anti-HIV-1 activity than R-95288.3 Compound
11 was substituted with three modi®ed nucleosides to
obtain compound 12. By comparing the IC50s, the
activity of compound 11 was 43 times lower than
R-95288. However, as predicted, the activity of
compound 12 with three contiguous m2dGs was nearly
identical to R-95288, due to the stabilization of the
G-quadruplex.

In conclusion, we demonstrated that the N2-methylation
of 20-deoxyguanosine on the parallel G-quadruplex
enhanced the thermodynamic stability of the G-quartet,
and that a set of ODNs modi®ed with m2dG had
higher anti-HIV-1 activity than the parent R-95288,
due to stabilizing e�ects. N2-Alkylation of guanine
residues is a promising way to improve the stability
of the parallel G-quadruplex, as long as the modi®-
cation does not sterically hinder the formation of the
G-quadruplex.

Figure 2. CD spectra of R-95288 and compounds 6±10 in phosphate-bu�ered saline (10 mM phosphate (pH 7), 138 mM NaCl, and 2.7 mM KCl;
Sigma) at 20 �C (black), 30 �C (red), 40 �C (green), 50 �C (pink), 60 �C (blue), 70 �C (yellow), and 80 �C (orange). Tm values, which are temperatures
at which the maximum wave length changed in the CD spectra, are shown in parentheses.
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