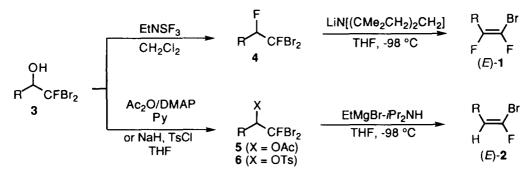


0040-4039(95)01257-5

Stereoselective Synthesis of (E)-ArCF=CFR and (E)-ArCH=CFR from ArCH(OH)CFBr₂


Manabu Kuroboshi,* Nobuko Yamada, Yoko Takebe and Tamejiro Hiyama

Research Laboratory of Resources Utilization, Tokyo Institute of Technology 4259 Nagatsuta, Midori-ku, Yokohama, Kanagawa 226, JAPAN

Abstract: (*E*)-*vic*-Difluoro olefin, RCF=CFBr, was synthesized by dehydrobromination of RCFHCFBr₂ using lithium 2,2,6,6-tetramethylpiperidide. (*E*)-Fluoro olefin, RCH=CFBr, was obtained by treatment of RCH(OAc)CFBr₂ with EtMgBr and HN(*i*-Pr)₂.

Fluoro olefins¹ are attracting attention in a wide area of liquid crystalline materials² and biologically active agents like peptide isosteres³ and enzyme inhibitors.⁴ Naturally, the physical properties and biological activities heavily depend on the configuration of fluoro olefins. However, previous synthetic efforts⁵⁻¹⁰ have not focused on the stereoselective formation of fluorine substituted C=C bond. Herein we report highly stereoselective synthesis of (*E*)-difluoro olefins RCF=CFBr (1) is achieved *via* dehydrobromination of RCHFCFBr₂ (4). (*E*)-Monofluoro olefins of type RCH=CFBr (2) are found to be synthesized selectively by treatment of acetates RCH(OAc)CFBr₂ (5) or tosylate RCH(OTs)CFBr₂ (6) with a reagent consisting of EtMgBr and HN(*i*-Pr)₂. The remaining Br of 1 and 2 was lithiated and allowed to react with electrophile (E) to afford RCF=CFE and/or RCH=CFE, respectively, with complete retention of configuration.

We have demonstrated that RCH(OH)CFBr₂ (3) are successfully prepared by the reaction of LiCFBr₂ with aldehydes.¹¹ The substrates 4, 5, or 6 are easily obtained from 3 by fluorination, acetylation, or tosylation, respectively.

Entry	R	Yield/% ^{a,b}		Base		E/Z°	
1	1-Naph	4a 76		LiN[(CMe ₂ CH ₂) ₂ CH ₂] ^d	1a	82	>99 : <1
2				LIN <i>i</i> -Pr ₂ ^d		87	5.7 : 1
3				KN(SiMe ₃)2 ^e		97	2.9 : 1
4				KO- <i>t</i> -Bu ^f		91	1 : 1.8
5				<i>n</i> Bu₄NOH ^g		42 ^h	1 : 6.9
6				DBU ⁱ		84	1 : 1.5
7				BEMP ^{j,k}		93	1 : 3.4
8	4-MeO-C ₆ H ₄ -	4b	59	LiN[(CMe ₂ CH ₂) ₂ CH ₂] ^d	1b	79	11:1
9	3,4-(MeO) ₂ C ₆ H ₄ -	4c	49	LiN[(CMe ₂ CH ₂) ₂ CH ₂] ^d	1c	78	10 : 1
10	4-MeC ₆ H ₄	4d	57	LiN[(CMe ₂ CH ₂) ₂ CH ₂] ^d	1d	52	10 : 1

Table 1. Stereoselective Synthesis of Difluoro Olefin 1.

a) Isolated Yield. b) Based on the aldehyde. c) E/Z ratio was determined by capillary gas chromatography. Stereochemistry was assigned on the basis of ¹⁹F-NMR spectroscopy: $J_{FF} = 7 \sim 11$ Hz for *E*-isomers and 133~141 Hz for *Z*-isomers. d) THF, -98 °C, 10 min. e) THF/Et₂O/toluene, -130 °C, 20 min. f) THF, -78 °C, 30 min. g) CH₂Cl₂, -78 °C, 1 h. h) Starting material (40%) was recovered unchanged. i) CH₂Cl₂, -78~0 °C, 6 h. j) BEMP = [CH₂(CH₂NMe)₂]P(NEt₂)(=NEt). k) CH₂Cl₂, rt, 12 h.

To a solution of RCH(OH)CFBr₂ 3 (R = aryl) in CH₂Cl₂ was added Et₂NSF₃ (1 equiv) at -78 °C, and the mixture was gradually warmed up to room temperature. Workup and column chromatography gave difluoroethanes 4 in yields shown in Table 1. Fluorination of 3 (R = alkyl) did not proceed even in refluxing CH₂Cl₂. When 4 was treated with lithium (2,2,6,6-tetramethyl)piperidide in THF at -98 °C for 10 min, (E)-2-aryl-1-bromo-1,2-difluoroethene ((E)-1) formed predominantly (Table 1, Entries 1, 8-10).¹² E/Z ratio dropped or was inverted when LiN*i*-Pr₂, KN(TMS)₂, or KOt-Bu was used (Entries 2-4). Thus the stereoselectivity depended on the character of the base. (Z)-1 was obtained predominantly when *n*-Bu₄NOH was used as the base (Entry 5).

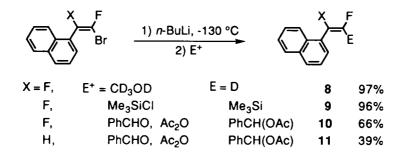
To our surprise, use of a reagent prepared from EtMgBr and *i*-Pr₂NH resulted in reduction of 4 to give monofluoroethenes 2 instead of dehydrobromination. For this transformation, acetates 5 and tosylates 6 were found to be better substrates. Acetylation of 3 was carried out with Ac₂O in pyridine and a catalytic amount of 4-(*N*,*N*-dimethylamino)pyridine (DMAP) at 60 °C for 1 h. Both 3 (R = aryl) and 3 (R = alkyl) gave the corresponding acetate 5 in good yields. Tosylation of 3 was carried out by consequent treatment with NaH and TsCl in THF at 0 °C. The results are summarized in Table 2.

The requisite reagent was prepared by addition of THF solution of EtMgBr (15 equiv) to THF solution of *i*-Pr₂NH (5 equiv) at 0 °C. After 5 min, acetate 5 was added to this mixture at -98 °C. The reaction mixture was stirred for 10 min, workup, and purification afforded 2-aryl-1-bromo-1-

fluoroethenes 2 in good yields. Examples are shown in Table 2. It is worthy to note that the substrate 5 (R = aryl) gave (E)-2 predominantly (Entries 1-4). Diethylmagnesium in 1,4-dioxane also could effect the same transformation (2b, 93%, E/Z = 22:1), but a magnesium amide *i*-Pr₂NMgBr,¹³ prepared from an equimolar amounts of EtMgBr and *i*-Pr₂NH (room temperature, 12 h) promoted dehydrobromination instead of reductive elimination. Use of less amount of EtMgBr or *i*-Pr₂NH reduced the E/Z ratio to $18\sim3:1$. Zinc or magnesium metal also promoted the reductive elimination of 5a and gave 2a but stereoselectivity was lower: Zn: 50 °C, DMF, 80% yield, E/Z = 1.4:1; Mg: room temperature, THF, 42% yield, E/Z = 1:1.2.

On the other hand, reduction of 5g gave (Z)-2g as the major product. The Z/E ratio was improved up to 16 : 1 (Entry 6) when the corresponding tosylate 6g was reacted with Et₂Mg (1.5 equiv).

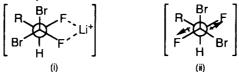
Entry	R		Yield/% ^{a, b}		Yield/% ^a	E:Z ^c
1	1-Naph	5a	85	2a	81	>99 : <1
2	4-MeO-C ₆ H ₄ -	5b	86	2b	84	>99 : <1
3	4-NC-C ₆ H₄-	5e	78	2e	89	>99 : <1
4	3,4-(OCH ₂ O)C ₆ H ₃ -	5f	76	2f	88	>99 : <1
5	PhCH ₂ CH ₂ -	5g	78	2g	80	1:2
6	PhCH ₂ CH ₂ -	6 g	72	2g	87	1 : 16


Table 2. Stereoselective Synthesis of Monofluoro Olefins 2.

a) Isolated Yield. b) Based on the aldehyde. c) E/Z ratio was determined by capillary gas chromatography. Stereochemistry was assigned on the basis of ¹H- and ¹⁹F-NMR spectroscopy: $J_{HF} = 30~32$ Hz for *E*-isomers and 12~13 Hz for Z-isomers.

The remaining bromine is a key handle to elaborate extension of carbon framework. Brominelithium exchange of (*E*)-1 and (*E*)-2 by treatment with *n*-BuLi at -130 °C followed by reaction with an electrophile gave the corresponding di- or monofluoroethenes 8-11 with complete retention of stereochemistry (Scheme 3). Therefore, the configuration of RCF=CFLi and RCH=CFLi involved in the reactions of Scheme 3 are apparently stable enough in spite of their carbenoid character.

In summary, we have demonstrated that the stereoselective synthesis of mono- and difluoro olefins $R^1CX=CFR^2$ (X = H or F) are stereoselectively prepared starting with CFBr₃ and aldehyde under control of the stereochemistry of elimination. This methodology allows us to obtain a wide variety of fluoro olefins. Other type of reaction of 1 and 2, such as cross-coupling reaction, is studying in our laboratories.



ACKNOWLEDGMENT: The present work was partially supported by a Grant-in-Aid from Asahi Glass Foundation (Japan) for the Promotion of Science.

References and Notes

- Bey, P.; McCarthy, J. R.; McDonard, I. A. In Selective Fluorination in Organic and Bioorganic Chemistry, Welch, J. T. Ed.; ACS Symposium Series 456, American Chemical Society: Washington, DC 1991; p 105. Takeuchi, Y. Yuki Gosei Kagaku Kyokai Shi 1988, 46, 145.
- Yokokoji, O.; Shimizu, T.; Koh, H.; Kumai, S. The 14th International Symposium on Fluorine Chemistry; July 31-Aug. 5, Yokohama, Japan, 1994; p 300.
- Allmendinger, T.; Felder, E.; Hungerbuehler, E. In Selective Fluorination in Organic and Bioorganic Chemistry, Welch, J. T. Ed.; ACS Symposium Series 456, American Chemical Society: Washington, DC 1991; p 186.
- 4. Matthews, D. P.; Edwards, M. L.; Mehdi, S.; Koehl, J. R.; Wolos, J. A.; McCarthy, J. R. Bio & Med. Chem. Lett. 1993, 3, 165.
- Wittig-Horner-Emmons reactions: Burton, D. J.; Greenlimb, P. E.; J. Org. Chem. 1975, 40, 2796. Cox, D. G.; Gurnsamy, N.; Burton, D. J. J. Am. Chem. Soc. 1985, 107, 2811. Eddaria, S. Francesch, C.; Mestdagh, H.; Roland, C. Tetrahedron Lett. 1990, 31, 4449. McCarthy, J. R.; Mattews, D. P.; Stemerick, D. M.; Huber, E. W.; Bay, P.; Lippert, B. J.; Snyder, R. D.; Sunkara, P. S. J. Am. Chem. Soc. 1991, 113, 7439. Blackburn, G. M.; Parratt, M. J. J. Chem. Soc., Chem. Commun. 1986, 1417.
- Addition-elimination of polyfluoroethenes: Martin, S.; Sauvêtre, R.; Normant, J.-F. Tetrahedron Lett. 1982, 23, 4329. Idem ibid. 1983, 24, 5615. Martinet, P.; Sauvêtre, R.; Normant, J.-F. Bull. Soc. Chim. Fr. 1990, 127, 86. Tellier, F.; Sauvêtre, R.; Normant, J.-F. J. Organomet. Chem. 1985, 292, 19.
- Fluorination of vinylstannane: Matthews, D. P.; Miller, S. C.; Jarri, E. T.; Sabol, J. S.; McCarthy, J. R. Tetrahedron Lett. 1993, 34, 3057. Tius, M. A.; Kawakami, J. K. Synlett 1993, 207. Fluorination of vinyllithium: Lee, S. H.; Schwartz, J. J. Am. Chem. Soc. 1986, 108, 2445.
- Dehydrocarboxylation of 2-fluoromethylmalonate derivatives: Kosuge, S.; Nakai, H.; Kurono, M. Prostaglandins, 1979, 737. McDonald, I. A.; Bey, P. Tetrahedron Lett. 1985, 26, 3807.
- Desulfenylation of α-fluorosulfoxide: Reutrakul, V.; Rukachaisirikul, V. Tetrahedron Lett. 1983, 24, 725. Purrington, S. T.; Pittman, J. H. Tetrahedron Lett. 1987, 28, 3901. Boys, M. L.; Colington, E. W.; Finch, H.; Swanson, S.; Whitehead, J. F. Tetrahedron Lett. 1988, 29, 3365.
- Reduction of difluoro olefins: Hayashi, S.; Nakai, T.; Ishikawa, N. Chem. Lett. 1979, 983. Vinson, W. A.; Prickett, K. S.; Spanic, B.; Ortiz de Montellano, P. R. J. Org. Chem. 1983, 48, 4661.
- 11. Yamada, N.; Kuroboshi, M.; Hiyama, T. The 67th Annual Meeting of Chemical Society of Japan; March, Tokyo, Japan; Abstr. 3C244.
- 12. Dehydrobromination of 4 with LiN[(CMe₂CH₂)₂CH₂] was assumed to proceed *via* the transition state (i) involving Li-F chelate. Elimination of HBr occurred with *n*-Bu₄NOH from the transition state (ii) wherein dipole-dipole repulsion of C-F bonds plays an important role.

13. Hiyama, T.; Kobayashi, K.; Nishide, K. Bull. Chem. Soc. Jpn. 1987, 60, 2127.

(Received in Japan 18 April 1995; revised 26 June 1995; accepted 28 June 1995)