This article is published as part of the Dalton Transactions themed issue entitled:

New Horizons in Organo-f-element Chemistry

Guest Editor: Geoff Cloke University of Sussex, UK

Published in issue 29, 2010 of Dalton Transactions

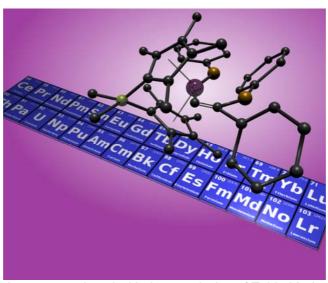


Image reproduced with the permission of Tobin Marks

Articles in the issue include:

PERSPECTIVES:

Organo-f-element catalysts for efficient and highly selective hydroalkoxylation and hydrothiolation Charles J. Weiss and Tobin J. Marks, *Dalton Trans.*, 2010, DOI: 10.1039/c003089a

Non-classical divalent lanthanide complexes

François Nief, Dalton Trans., 2010, DOI: 10.1039/c001280g

COMMUNICATIONS:

<u>A bimetallic uranium μ-dicarbide complex: synthesis, X-ray crystal structure, and bonding</u> Alexander R. Fox, Sidney E. Creutz and Christopher C. Cummins *Dalton Trans.*, 2010, DOI: 10.1039/c0dt00419g

PAPERS.

Coordination polymerization of renewable butyrolactone-based vinyl monomers by lanthanide and early metal catalysts

Garret M. Miyake, Stacie E. Newton, Wesley R. Mariott and Eugene Y.-X. Chen, *Dalton Trans.*, 2010, DOI: 10.1039/c001909g

Visit the *Dalton Transactions* website for more cutting-edge inorganic and organometallic chemistry research www.rsc.org/dalton

The reaction of bis(1,2,4-tri-t-butylcyclopentadienyl)ceriumbenzyl, Cp'₂CeCH₂Ph, with methylhalides: a metathesis reaction that does not proceed by a metathesis transition state†

Evan L. Werkema, Richard A. Andersen, Laurent Maron and Odile Eisenstein Company

Received 2nd September 2009, Accepted 1st December 2009 First published as an Advance Article on the web 10th February 2010 DOI: 10.1039/b918103b

The experimental reaction between $[1,2,4-(Me_3C)_3C_5H_2]_2$ CeCH₂Ph and CH₃X, X = F, Cl, Br, and I, yields the metathetical exchange products, [1,2,4-(Me₃C)₃C₅H₂]₂CeX and CH₃CH₂Ph. The reaction is complicated by the equilibrium between the benzyl derivative and the metallacycle $[1,2,4-(Me_3C)_3C_5H_2][(Me_3C)_2C_5H_2C(CH_3)_2CH_2]$ Ce, plus toluene since the metallacycle reacts with CH₃X. Labelling studies show that the methyl group of the methylhalide is transferred intact to the benzyl group. The mechanism, as revealed by DFT calculations on (C₃H₅)₂CeCH₂Ph and CH₃F, does not proceed by way of a four-center mechanism, a σ-bond metathesis, but by a lower barrier process involving a haptotropic shift of the Cp₂Ce fragment so that at the transition state the para-carbon of the benzene ring is attached to the Cp₂Ce fragment while the CH₂ fragment of the benzyl group attacks CH₃F that is activated by coordination to the metal ion. As a result the mechanism is classified as an associative interchange process.

Introduction

The preparation and reactions of [1,2,4-(Me₃C)₃C₅H₂]₂CeH, abbreviated as Cp'₂CeH, with aliphatic and aromatic hydrofluorocarbons CH_3F and $C_6H_{6-n}F_n$, n = 1-6, respectively, have been published.^{1,2,3} These studies were extended to other methylhalides and related compounds, CH_3X , X = Cl, Br, I, OMe, NMe_2 recently.⁴ The reactions of these methyl-derivatives with Cp'₂CeH, illustrated by the net reaction in eqn (1), are at first glance a simple metathetical H for X exchange reaction but the reaction mechanism does not proceed by a four-center metathesis transition state.

$$Cp'_2CeH + CH_3X \rightarrow Cp'_2CeX + CH_4X = F, Cl, Br, I, OMe$$
 (1)

The combined experimental and computational studies^{1,4} showed that the reaction proceeds by a two-step process, the first of which is an intermolecular C-H activation, eqn (2a), that is followed by ejection of CH₂ and trapping by H₂, eqn (2b).

$$Cp'_2CeH + CH_3X \rightarrow Cp'_2CeCH_2X + H_2$$
 (2a)

$$Cp'_2CeCH_2X + H_2 \rightarrow Cp'_2CeX + CH_4$$
 (2b)

The calculated free energy barriers (called hereafter activation barriers) for the C-H activation step are relatively low, ΔG^{\ddagger} ranges from 18 kcal mol-1 (F) to 14 kcal mol-1 (OMe), but the activation barrier for the second step is higher in all cases studied. The calculated activation barrier for a synchronous process that proceeds by way of a metathesis transition state is higher, by about 6 to 8 kcal mol⁻¹, than the second, rate determining step. The physical picture that emerges from the calculations is that the metathesis transition state A has negative charge accumulation on H and X and positive charges on Cp₂Ce and on CH₃. It has a higher activation barrier since it resembles Cp₂Ce⁺CH₄X⁻ and CH₄X⁻ is a high energy species. Accordingly, the reactants choose a two-step pathway in which the transition state for C–H activation, **B**, forms Cp₂CeCH₂X. This is followed by a step in which CH₂ inserts into H₂ with cleavage of the C-X bond forming Cp₂CeX. Experimental evidence for the two-step mechanism was derived by observing that (a) the Me₃C-groups on the Cp'-rings can act as an intramolecular trap for CH₂, when H₂ is absent, as can added cyclohexene, which formed norcarane, and cyclohexane-d₁₂ solvent, which formed methylcyclohexane-d₁₂, (b) NMR evidence was obtained for Cp'_2CeCH_2X , X = Cl, Br, I and (c) when X =OMe, Cp'₂Ce(\(\eta^2\)-CH₂OMe) was isolated.\(^{1,4}\) Thus, the combined computational and experimental studies showed that the two-step pathway proceeding by way of a carbenoid intermediate is general for the CH₃X derivatives studied.

The cerium metallocenes used in these studies, Cp'₂CeCH₂Ph, Cp'₂CeH and Cp'₂CeF are monomeric in the solid state and presumably in solution as well. Hence, they are excellent experimental

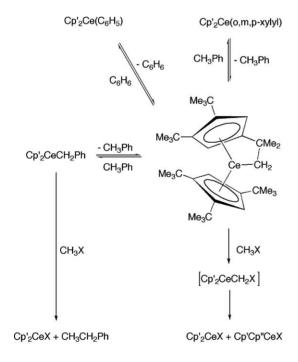
^aDepartment of Chemistry and Chemical Sciences Division of Lawrence Berkeley National Laboratory, University of California, Berkeley, California, 94720-1460

bLPCNO, Université de Toulouse, INSA, UPS, LPCNO, 135 avenue de Rangueil, F- 31077 Toulouse, France, and CNRS, LPCNO, F-31077, Toulouse, France

^{&#}x27;Institut Charles Gerhardt, Université Montpellier 2, CNRS 5253, cc 1501 Place E. Bataillon, F-34095, Montpellier, France

[†] Electronic supplementary information (ESI) available: X-ray crystallographic data (CIF), δ vs. 1/T plots, optimized structures, E and G (in a. u.) for all stationary points. CCDC reference numbers 745664 for [1,2,4- $(Me_3C)_3C_5H_2]_2CeCH_2Ph$, and 745665 for $[1,2,4-(Me_3C)_3C_5H_2]_2Ce(4-(Me_3C)_3C_5H_2)_2Ce(4-(Me_3C)_3C_5$ methylbenzene). For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/b918103b

models for the computational studies, which were carried out using the C₅H₅ metallocenes in the gas phase.


In this article, a combined experimental and computational study of the reaction of Cp'₂CeCH₂Ph, along with its chemical and physical properties, with CH_3X , X = F, Cl, Br, or I, a stoichiometric C-C bond forming reaction, is described, eqn (3).

$$Cp'_2CeCH_2Ph + CH_3X \rightarrow Cp'_2CeX + CH_3CH_2Ph$$
 (3)

Results

Synthetic studies. Solution and solid state properties of Cp'2CeCH2Ph

The synthesis and some physical properties of Cp'₂CeCH₂Ph are reported in an earlier article² and additional ones are reported here. Some of the chemical reactions described in this article, along with those reported earlier, are shown in Scheme 1. The benzyl derivative is an excellent precursor to two useful derivatives, the hydride and the metallacycle [1,2,4- $(Me_3C)_3C_5H_2[(Me_3C)_2C_5H_2C(CH_3)_2CH_2]Ce$, and their deuterated analogues. Although the benzyl and the 4-methylbenzyl derivatives are isolable, these are the only alkyl derivatives that are thermally stable at room temperature; all attempts to make Me, CH₂CMe₃ or CH₂SiMe₃ derivatives result in alkane elimination and formation of the metallacycle at low temperature.

 $Cp' = 1,2,4-(Me_3C)_3C_5H_2$, $Cp'' = (Me_3C)_2(EtMe_2C)C_5H_2$

Scheme 1

The ¹H NMR spectrum of the benzyl derivative in C₆D₆ at 19 °C was mentioned previously.² The spectrum shows the Me₃C group resonances as three broad singlets in a 1:1:1 area ratio, inequivalent Cp'-ring CH resonances and one other resonance of area 1 that is assumed to be the para-H resonance of the benzyl group; the CH₂ and the benzene ring ortho and meta resonances

are not observed. In order to confirm this assignment, Cp'₂Ce(4methylbenzyl) is prepared and isolated as outlined in the Experimental section. The variable temperature ¹H NMR spectrum in C₂D₈ of Cp'₂CeCH₂Ph shows that the Me₃C-resonances are in a 2:1 area ratio at temperatures greater than 300 K but as the temperature is lowered they decoalesce and reappear as a 1:1:1 area ratio pattern, see ESI for the δ vs. T^{-1} plots for this and the 4methylbenzyl derivative.† The spectra show that Cp'₂CeCH₂Ph is a fluxional molecule with average C_{2v} symmetry at high temperature but C_s symmetry at lower temperature. In addition, a resonance assigned to the *meta*-H's of the benzyl group is observed at -80 °C as a single resonance in the benzyl and 4-methylbenzyl derivatives, implying that the phenyl ring is either in the plane of symmetry, perpendicular to it, or oscillating about the CeCH₂–C(*ipso*) bond generating a time averaged plane of symmetry.

In the solid state, two molecules are found in the asymmetric unit of Cp'2CeCH2Ph in equal amounts as shown in Fig. 1. The two molecules in the asymmetric unit, a and b in Fig. 1 have different orientations of their Cp' rings and CH₂Ph groups. Since the population of each conformer in the unit cell is equal, their individual free energies are equal, see ESI for crystallographic details.† In conformer a, the Cp' ring carbon atoms are eclipsed, which results in two of the Me₃C groups at the back of the wedge avoiding each other as much as possible resulting in the four Me₃C groups in the front of the wedge being pairwise eclipsed. The Cp'(ring centroid)–Ce(2)–Cp'(ring centroid) angle is 149° and the Ce(2)–C(76)–C(77) angle is 130.4(3)°; the open Ce(2)–C(76)– C(77) angle results in a $Ce(2) \cdots C(77)$ distance greater than 3.7 Å. The other conformer, b, is rather different, since the Cp'-ring carbons atoms are staggered with a closed Cp'(ring centroid)-Ce(1)-C'(ring centroid) angle of 138°, 11° less than in a. In addition, the Ce(1)–C(35)–C(36) angle of $93.1(4)^{\circ}$ is some 37° less than the equivalent angle in a, which results in a short Ce(1)–C(36) distance of 3.023(4) Å. The flat phenyl ring is orientated more or less perpendicular to the open wedge of the Cp'₂Ce fragment, and the Ce(1)–C(37) and Ce(1)–C(41) distances are 3.996 and 3.253 Å, respectively, thus, the classification of the benzyl group bonding as η^2 or η^3 is ambiguous; the representation $Ce(\eta^2/\eta^3-CH_2Ph)$ seems appropriate.

The solid state molecular structure of Cp'₂Ce(4-methylbenzyl) is shown in Fig. 2. The important distances and angles are given in the caption to Fig. 2. The geometrical parameters for Cp'₂Ce(4methylbenzyl) are very similar to those of $Cp'_2Ce(\eta^2/\eta^3-CH_2Ph)$, Fig. 1b, including the orientation of the cyclopentadienyl rings in the Cp'₂Ce fragment and the orientation of the planar benzene ring.

methylbenzyl) fragments, Fig. 1b and 2 respectively, is similar to that found in $(C_5Me_5)_2Ce(\eta^3-CH_2Ph)$. In the latter example, the Ce-CH₂-C(ipso) angle of 86.0(3)° is even more acute than the equivalent angle in the molecule shown in Fig. 1b, resulting in a $Ce \cdots C(ipso)$ and one $Ce \cdots C(ortho)$ distance of 2.885(5) Å and 2.882(6) Å, respectively. The Ce–CH₂Ph distance of 2.596(5) Å is identical, to within 3σ , of the equivalent distances in the molecules shown in Fig. 1a, 1b and 2. The benzyl group in the C₅Me₅ derivative has three Ce-C distances less than 3 Å and therefore is classified as a η^3 -benzyl. The differing classification clearly is the result of intramolecular steric effects in the metallocene fragments. The solid state crystal structures of metal-benzyl derivatives often

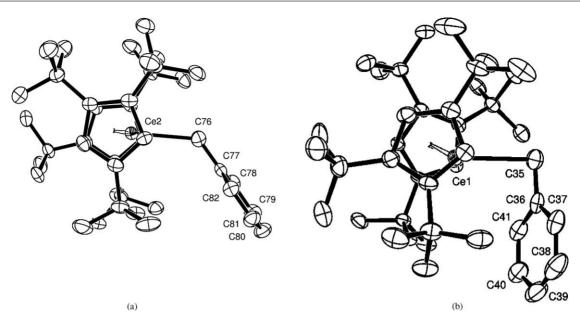


Fig. 1 ORTEP of Cp'_2CeCH_2Ph showing the two molecules in the asymmetric unit, a, the conformer with $Ce(\eta^1-CH_2Ph)$ and, b, the conformer with $Ce(\eta^2/\eta^3-CH_2Ph)$. The non-hydrogen atoms are refined anisotropically and shown as 50% ellipsoids; the hydrogen atoms are not shown, but they are placed in idealized positions and not refined. Selected bond distances (Å) and angles (deg) are a: $Ce(2)-C(Cp') = 2.83 \pm 0.07$ (ave), range 2.752(4)–2.932(4), Ce(2) -Cp'(ring centroid) = 2.54, Cp'(ring centroid) -Ce-Cp'(ring centroid) = 149, Ce(2) -C(76) = 2.577(4), Ce(2) -C(76) -C(77) 130.4(3). **b:** Ce(1) -C(Cp') -C(Cp') 2.87 ± 0.07 (ave), range 2.761(4) - 3.010(4), Ce(1) - Cp'(ring centroid) = 2.54, Cp'(ring centroid) - Ce(1) - Cp'(ring centroid) = 138, Ce(1) - C(35) = 2.584(4), Ce(1)-C(36) = 3.023(4), Ce(1)-C(37) = 3.996, Ce(1)-C(41) = 3.253, Ce(1)-C(35)-C(36) = 93.1(4).

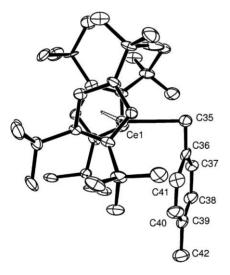


Fig. 2 ORTEP of Cp'₂Ce(4-methylbenzyl), the half molecule of pentane in the asymmetric unit is not shown. The non-hydrogen atoms are refined anisotropically and shown as 50% ellipsoids, the hydrogen atoms are not refined but they are placed in idealized positions and not shown. Selected distances (Å) and angles (deg): $Ce-C(Cp') = 2.86 \pm 0.08$, range 2.743(8) to 2.995(7), Ce-Cp'(ring centroid) = 2.60, Cp'(ring centroid)-Ce-Cp'(ring centroid) = 138.5, Ce–C(35) = 2.576(7), Ce–C(36) = 2.969(7), Ce–C(37) = 3.933, Ce-C(41) = 3.228, $Ce-C(35)-C(36) = 91.7(4^{\circ})$.

have structures in which the M-CH₂-C(ipso) angle is much less than 120°, resulting in short M-C(ipso) and M-C(ortho) distances. This type of structure was first observed in the crystal structure of Ti(CH₂Ph)₄,^{6,7} Zr(CH₂Ph)₄⁸ and in f-block benzyl derivatives.9,10,11

Solid state behavior of Cp'2CeCD2C6D5

Since the studies described in this article are aimed at understanding the mechanism of the C-C bond formation, eqn (3), it is important to study the deuterated benzyl derivative in order to show whether or not the methyl group of the methylhalide is transferred intact in the ethylbenzene product. The deuterated derivative, Cp'₂CeCD₂C₆D₅ is prepared as described in the Experimental section; the d₇-derivative behaves similarly to the d₀-derivative in solution. However, on prolonged storage in the solid state at 20–25 °C in the absence of air and moisture for about three years, the deuteria in the α-CD₂ sites are replaced by hydrogen and one of the Me₃C-groups is enriched with deuteria. The extent of the H/D exchange is determined by solution ¹H and ²H NMR spectroscopy. Thus, when first prepared and isolated the ¹H NMR spectrum in C₆D₆ consists of three equal area resonances due to the inequivalent Me₃C groups at δ -0.53, -1.80 and -13.19 in addition to the ring methyne resonances. The ²H NMR spectrum shows only two resonances assigned to deuteria on the para and meta positions. After standing for about three years, a small portion of the solid was dissolved in C₆D₆ and examined by ¹H NMR spectroscopy. The spectrum is qualitatively the same as that obtained originally, but the ²H NMR spectrum contains a resonance at δ –13.2 with an area of approximately 2 relative to the *para* and *meta* D-resonances. The resonance at δ -13.2 is identical to one of the cyclopentadienyl ring Me₃C groups mentioned above. Examination of the ¹H NMR spectrum shows that the intensity ratio of the three Me₃C resonances is no longer 9:9:9 but approximately 9:9:6.5. In order to confirm the result, the sample was hydrolyzed (H₂O) and the resulting ¹H NMR spectrum shows that the liberated toluene was a mixture of CH₃C₆D₅ and CH₂DC₆D₅. Hydrolysis (H₂O) of another sample

and examination of the ²H NMR spectrum in C₆D₁₂ shows the ortho, meta, and para resonances of toluene in a ratio of 2:2:1. Since the freshly liberated (Me₃C)₃C₅H₃ is a mixture of two isomers that isomerizes to a single isomer on heating, 12 the sample in C_6D_6 was heated at 60 °C for two days. Examination of the ¹H NMR spectrum shows the Me₃C resonances in a 9:6.5:9 area ratio showing that all of the deuteria are on a single Me₃C group. The ¹³C NMR spectrum shows three Me₃C resonances, only one of which has a shifted 1:1:1 resonance associated with it, that is clearly due to a Me₂CCH₂D group. Examination of the GC-MS shows the presence of $CH_{3-x}D_xC_6D_5$ isotopologues and Cp'H molecular ion is an envelope that contains the d_0 , d_1 , d_2 and d_3 isotopologues. Thus, over a prolonged period of time, both deuteria on the α-CD₂ of the benzyl group exchange with one of the CMe₃ groups on the Cp' ring in the solid state. The solid state behavior of Cp'₂Ce(CH₂Ph) is rather different from that in solution; in solution equilibration occurs between the benzyl derivative and the metallacycle and toluene, Scheme 1. Over reasonably short periods of time in the solid state the equilibration is not observed, but, H/D exchange occurs over long periods of time. The difference is clearly a solid state effect, where the ensemble prevents the equilibrium with metallacycle and toluene and guides the H for D exchange into the unique Me₃C group of the cyclopentadienyl ring; unfortunately, we do not know the molecularity or the mechanism of the exchange. A somewhat related solid state isomerization of Cp'₂Ce(2,3,4,5-C₆HF₄) was observed earlier.³

Solution behavior of Cp'2CeCH2Ph

Heating a toluene-h₈ solution of Cp'₂CeCH₂Ph at 60 °C for a day, then storing the sample at 20 °C for an additional day while monitoring the ¹H NMR spectrum, shows resonances due to the benzyl derivative and the metallacycle in a ratio of 12:1, in addition to four new paramagnetic resonances due, presumably, to the Me₃C groups of at least two Cp'₂Ce(Ar) metallocenes, where Ar represents the isomeric xylyl groups. Hydrolysis (D₂O) and examination of the ²H NMR spectrum shows singlets in the aromatic region and a triplet ($J_{HD} = 2.1 \text{ Hz}$) in the methyl region in an area ratio of 2.5:1:1:6. This result is consistent with the presence of the four possible toluene-d₁ isotopomers in which deuteria are in the four possible sites, implying that all possible xylyl metallocenes as well as the benzyl metallocene are formed in toluene solvent. The 4-methylbenzyl complex, though stable in the solid state, is also in equilibrium with the metallacycle and p-xylene analogous to that of the benzyl complex.

This deduction is strengthened by allowing the deuterated metallacycle- d_{53} to react with an excess of C_7D_8 in an NMR tube for one day at 60 °C and an additional day at 20 °C. After removing the C_7D_8 and redissolving the residue in C_6D_{12} , the ²H NMR spectrum shows resonances due to $(Cp'-d_{27})_2CeCD_2C_6D_5$ and four additional resonances at the same chemical shift and with comparable intensities as above. Upon hydrolysis (H_2O) , the ¹H NMR spectrum in C_6D_{12} shows two new aromatic and one aliphatic resonances of toluene. These results strengthen the deduction reached above, *viz*. the metallacycle reacts with the aromatic and aliphatic C–H bonds of toluene; a similar H for D exchange was shown earlier for methane. Accordingly, solvents for reactions of the benzyl derivative must be chosen carefully in

order to minimize complications due to H/D exchange reactions. Thus in pentane or in cyclohexane, the metallacycle is isolated or generated in pure form. In benzene, the phenyl derivative may be isolated or generated in pure form.² Although the equilibrium between the benzyl and the metallacycle is, on one hand, useful as it allows access to labeled cyclopentadienyl compounds, on the other hand, it complicates the reactions studied in this article, since the metallacycle reacts with the methylhalides⁴ and deuterium labeling is essential to unravel these pathways.

Reactions of Cp'₂CeCH₂Ph with CH₃X, X = F, Cl, Br, I

Addition of CH₃F to a solution of Cp'₂CeCH₂Ph in C₆D₆ at 20 °C in an NMR tube results in a decrease in the resonances due to the benzyl and the appearance of the resonances due to Cp'₂CeF. After one day the ratio of Cp'2CeCH2Ph to Cp'2CeF is about 2:1 and after two days, the resonances due to Cp'₂CeCH₂Ph are absent and those due to Cp'₂CeF and Cp'Cp"CeF [Cp" = (Me₃C)₂(EtMe₂C)C₅H₂] are present in comparable amounts. The appearance of Cp'Cp"CeF is a clear indication that Cp'₂CeCH₂F forms, as illustrated in Scheme 1.1,4 The 1H NMR spectrum also contains resonances due to CH3CH2Ph and CH3Ph in an approximate area ratio of 1:4 and the total amount of these two aromatic hydrocarbons corresponds to that expected from the amount of Cp'₂CeCH₂Ph originally present. Qualitatively, the ratio of CH₃CH₂Ph to CH₃Ph (1:4) shows that the reaction of Cp'₂CeCH₂Ph with CH₃F is slower than the benzyl to metallacycle and toluene equilibrium.

In order to be sure that ethylbenzene is formed from Cp'_2CeCH_2Ph , the reaction of $Cp'_2Ce(CD_2C_6D_5)$ and CH_3F in C_6D_6 was followed by NMR spectroscopy. After two days at $20\,^{\circ}C$, all of the resonances due to $Cp'_2Ce(CD_2C_6D_5)$ have disappeared and the only resonances observed in the 2H NMR spectrum are due to $CH_3CD_2C_6D_5$ and $CHD_2C_6D_5$. Hydrolysis (H_2O) and analysis of the hydrolysates by GC-MS shows the presence of Cp'H, Cp''H, $CHD_2C_6D_5$ and $CH_3CD_2C_6D_5$. These results clearly show that the methyl group in CH_3F is transferred intact to the benzyl group and that the toluene is derived from the equilibrium reaction of the benzyl and the metallacycle.

The reaction of Cp'_2CeCH_2Ph with MeX, X = Cl, Br and I in C₆D₁₂ proceeds in a manner similar to that of CH₃F, except that resonances due to Cp'2CeCH2X appear and disappear over time. As shown previously, the formation of Cp'₂CeCH₂X is due to reaction of the metallacycle with CH₃X, which reacts further forming Cp'₂CeX and Cp'Cp"CeX.⁴ In addition, CH₃CH₂Ph is observed in each case. In order to show that the ethylbenzene is formed by direct reaction of Cp'2CeCH2Ph with CH3X, rather than insertion of CH₂ from Cp'₂CeCH₂X into toluene formed along with the metallacycle, the reactions with CD₃Br and CD₃I were studied. Addition of either CD₃Br or CD₃I to Cp'₂CeCH₂Ph in an NMR tube in C₆D₁₂ proceeds similar to that of CH₃Br or CH₃I. After hydrolysis (H₂O), analysis by GC-MS shows the presence of Cp'H, Cp"H-d₂, CH₃Ph-d₀ and CH₃CH₂Ph-d₃. The ²H NMR spectrum of the solution, before hydrolysis, shows that all of the deuteria in the ethylbenzene are on the terminal carbon, CD₃CH₂Ph, and no CHD₂CH₂Ph or CHD₂CHDPh are detected. Repeating the reaction between Cp'₂CeCH₂Ph and CD₃Br in C₆H₆ solvent and monitoring the reaction by ²H NMR spectroscopy shows only resonances due to CD₃CH₂Ph. Thus, the methyl group of either CD_3Br or CD_3I are transferred intact and the toluene, formed from the equilibrium between the benzyl derivative and the metallacycle, does not trap the CD_2 fragment nor does the benzyl group accept a deuteron from CD_3X to form CH_2DPh that traps the CD_2 fragment, Scheme 1.

The reaction of $Cp'_2Ce(4\text{-methylbenzyl})$ with CH_3F in C_6D_{12} is similar to that of the benzyl, viz., Cp'_2CeF and Cp'Cp''CeF are formed along with p-xylene and 4-ethyltoluene; the latter two products are formed from the equilibrium between the 4-methylbenzyl derivative and the metallacycle, and direct reaction with CH_3F , respectively. The reactions of $Cp'_2Ce(4\text{-methylbenzyl})$ with CH_3X , X = Cl, Br, and I, proceed with similar rates and products as with Cp'_2CH_2Ph .

Reactions of Cp'₂CePh with CH₃F

During the studies described above, some of the reactions of Cp'2CeCH2Ph with methylhalides are studied in C6D6 or C6H6 solvents rather than in C_6D_{12} . A potential complication of reactions in C₆H₆ is exchange that results in the formation of Cp'₂CePh and toluene, as noted previously.2 If the phenyl derivative reacts with CH₃X then another route for formation of toluene is available. In order to examine this possibility, Cp'₂CePh and Cp'₂Ce(C₆D₅) were prepared and allowed to react with CH₃F. When Cp'₂CePh and CH₃F are mixed in an NMR tube in C₆H₆, resonances due to Cp'₂CeF and Cp'Cp"CeF appear within an hour. After two days at 20 °C, the ratio of Cp'₂CePh to the fluorides (Cp'₂CeF and Cp'Cp"CeF) is 6:5 and after five days the ratio is 1:4. Hydrolysis (H₂O) and analysis by GC-MS shows the presence of toluene as well as Cp'H and Cp"H. Repeating the reaction of CH3F with $Cp'_2Ce(C_6D_5)$ in C_6D_6 shows that the toluene formed is $CH_3C_6D_5$ by ²H NMR spectroscopy and examination of the hydrolysate (H₂O) by GC-MS after the resonances due to Cp'₂Ce(C₆D₅) have disappeared (42 days). Thus, the reaction of Cp'₂CePh with CH₃F to give CH₃Ph is much slower than that of Cp'₂CeCH₂Ph. In addition these two experiments show that benzene does not trap the CH₂-fragment resulting from Cp'₂CeCH₂F.

Computational studies

Model

The mechanism for the reaction of $Cp_2'CeCH_2Ph$ and CH_3F was analyzed by DFT(B3PW91) calculations with the methodology used in all our previous studies on the reactivity of lanthanide complexes with a variety of small molecules, including CH_3X .^{1,2,4,13} $Cp_2'CeCH_2Ph$ is modeled by Cp_2CeCH_2Ph , which decreases significantly the steric effects of the metallocene fragment. This model was appropriate in the study of the reaction of CH_3X (X = F, Cl, Br, I, OMe, NMe_2) with $Cp_2'CeH$.

Structure of Cp₂Ce(CH₂Ph)

The calculated structure of the benzyl complex shown in Fig. 3 is in good agreement with the structure shown in Fig. 1b, one of the two molecules found in the crystal structure of Cp'_2CeCH_2Ph and in Fig. 2, the 4-methylbenzyl structure. The C(1)–C(2) distance of 1.44 Å, is between that expected for a single and a double bond. The cerium is bonded to the benzyl group by way of C(1) at a distance of 2.64 Å but the cerium atom is also close to C(2) (2.78 Å)

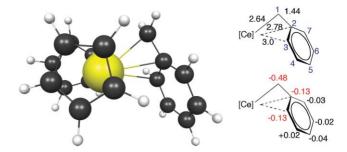


Fig. 3 The optimized DFT (B3PW91) structure of $Cp_2Ce(\eta^3-CH_2Ph)$ with, top, distances in Å, and, bottom, NBO charges in the CH or CH_2 groups of the benzyl. [Ce] represents Cp_2Ce . The red color indicates the most negatively charged atoms in the benzyl group. Numbering of carbon atoms in the benzyl group is in blue.

and the two *ortho* carbon atoms, C(3) and C(7), of the phenyl ring (3.0 and 3.4 Å). This leads to an acute Ce–C(1)–C(2) angle of 80° , which compares reasonably well with the experimental angle of 92–93°. As a consequence of the more acute Ce–C(1)–C(2) angle in the calculated structure, the distances between Ce and the ortho carbons are significantly shorter than in the crystal structures. The modeling of the Cp' ligand by the less bulky Cp ligand is most likely the origin of the smaller Ce-C(1)-C(2) angle in the calculated structure. The benzyl group is not an η^1 -benzyl since the benzene ring is orientated with its flat, open-face towards the open wedge of the Cp₂Ce fragment. This orientation is the result of the acute Ce-C(1)-C(2) angle and the negative charge density distribution around the benzene ring. Since this stereochemistry is observed in one of the two molecules in the crystal structure of Cp'₂Ce(benzyl) and in Cp'₂Ce(4-methylbenzyl), this orientation is not due to steric effects. The calculated structure of Cp₂Ce(4methylbenzyl), is similar to that of the benzyl, including the acute Ce-C(1)-C(2) angle of 80°. The other molecule in the solid state crystal structure of Cp'₂Ce(benzyl) shows an η¹-benzyl group with a Ce-C(1)-C(2) angle of 130°. No calculated structure with a large Ce-C(1)-C(2) angle is located as a minimum on the potential energy surface, an additional indication that the η^3 -benzyl is an energy minimum.

The calculated structure, with a Ce–C(1)–C(2) angle of 80°, can be understood by considering how the Cp₂Ce⁺ fragment interacts with a benzyl anion. In an isolated benzyl anion, the π density is mostly on C(1), the ortho C(3) and C(7) and the para carbon C(5). Interaction between the Cp₂Ce⁺ fragment and the benzyl ligand polarizes the π electron density. In the optimal structure, the electron π density of the benzyl ligand is mainly localized on C(1), C(2) and an ortho carbon C(3) with only a small amount localized on the other ortho carbon C(7), the meta and para carbons C(4, 5 and 6). According to the NBO analysis, the charge (sum of the charges on carbon and adjacent hydrogens) on C(1) is -0.48 and on each ipso C(2) and ortho C(3) it is -0.13. The other carbon atoms have charges smaller than \pm 0.04. Therefore the bonding between the Cp₂Ce fragment and the benzyl group becomes allylic in character and the most stable structure has an η^3 -benzyl as is found in $(C_5Me_5)_2Ce(\eta^3-CH_2Ph).^5$

Finally the good agreement between the calculated structure and one of the two molecules in the crystal structures validates the choice of Cp₂CeCH₂Ph as a model for Cp'₂CeCH₂Ph.

Pathways for the reaction of Cp₂CeCH₂Ph with CH₃F

The σ -bond metathesis pathway is considered first. In this onestep concerted reaction, the transition state has the usual kiteshaped structure. The CH₂ group of the benzyl and F of CH₃F occupy the α-positions of the four-membered ring and the CH₃ group occupies the β-site. The four-membered ring has angles which are close to 90° and a long C · · · C distance. The Gibbs free energy of this transition state is 50.6 kcal mol⁻¹, a barrier that is significantly higher than the 31.1 kcal mol⁻¹ free energy barrier for the metathesis transition state in the H for F exchange in the reaction of Cp₂Ce-H and CH₃-F. The structure of the metathesis transition state is shown in Fig. 4. The high activation barrier makes a σ -bond mechanism improbable.

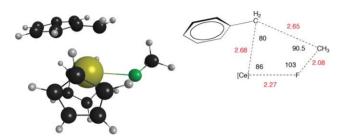


Fig. 4 Transition state for σ -bond metathesis for the reaction between Cp₂CeCH₂Ph and CH₃F, distances in Å, angles in degrees.

The two-step pathway, which begins by a proton transfer from the methyl group of CH₃F to the benzyl ligand, is the next alternative considered. The starting structure for the proton transfer step is the adduct between Cp₂CeCH₂Ph and CH₃F; the interaction is rather weak and the binding energy of 5.6 kcal mol⁻¹ does not compensate fully the loss of entropy, which leads to an adduct 4.8 kcal mol-1 above the separated Cp₂CeCH₂Ph and CH₃F reactants. This adduct is not shown in Fig. 7. The free energy of the proton transfer transition state is 32.4 kcal mol⁻¹, which is again significantly higher than the value of 18 kcal mol⁻¹ found for Cp₂CeH and CH₃F and higher than the value of 21.6 kcal mol⁻¹ calculated for the proton transfer in the reaction of Cp₂CeCH₃ and CH₃F (Fig. 5). The proton transfer leads to toluene and Cp₂CeCH₂F, which is 4.1 kcal mol⁻¹ higher in energy than Cp₂CeCH₂Ph and CH₃F. The transition state for the following step, insertion of CH₂ into an aliphatic C-H bond of toluene forming ethylbenzene and Cp2CeF, has a free energy barrier of

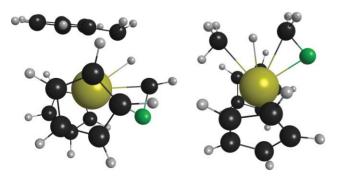


Fig. 5 Transition states for proton transfer for the reaction of, left, Cp₂CeCH₂Ph and CH₃F and, right, Cp₂CeCH₃ and CH₃F.

36.2 kcal mol⁻¹. While the activation energy barriers for this two-step process are not low, they are significantly lower than that of the σ -bond metathesis. However, the methyl group is not transferred intact in this process, which disagrees with the experimental result and another physical process needs to be discovered.

A transition state that connects directly Cp₂CeCH₂Ph and CH₃F forming Cp₂CeF and ethylbenzene and agrees with the labeling experiment has a Gibbs free energy barrier of 33.3 kcal mol⁻¹. In this transition state, the Cp₂Ce fragment is 2.95 Å from C(5), the para carbon of the benzyl group and 3.15 Å from the two meta carbons C(4) and C(6), and 4.55 Å from the methylene carbon, C(1) (Fig. 6). Thus, the Cp₂Ce fragment is not bonded to the CH₂ group of the benzyl fragment but is attached by way of C(5). The C(1)–C(2) distance of 1.39 Å is shorter than in the benzyl complex where it is 1.44 Å (Fig. 3). The CH₃F molecule is bonded to Ce by way of F, and the CH₃ group is 2.47 Å from the unbound CH₂ group of the benzyl fragment with an C(CH₂)-C(CH₃)-F angle of 160°. Thus the CH₂ group is ideally orientated for a nucleophilic attack on the CH3 group of CH3F whose electrophilicity is increased by the coordination of F to the positively charged Cp2Ce fragment, an associative interchange, I_A, mechanism.¹⁴ This transition state forms the C-C bond and cleaves the C-F bond without rearranging the hydrogen atoms and therefore the CH₃ group of CH₃F is transferred intact to form the ethylbenzene in accord with experiment.

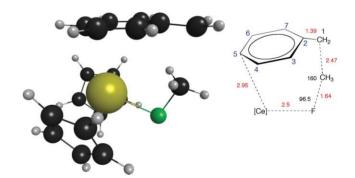
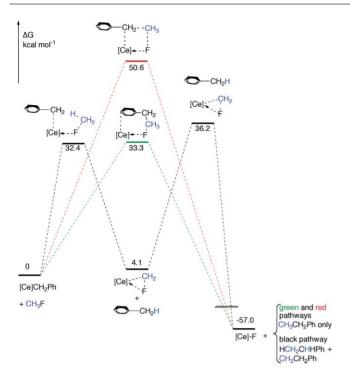



Fig. 6 The transition state in the reaction of Cp₂CeCH₂Ph and CH₃F, distances in Å and angles in degrees.

This pathway is also examined for the 4-methylbenzyl complex. Remarkably the free energy barrier is 34.3 kcal mol⁻¹, only 1 kcal mol⁻¹ higher than that calculated for the benzyl complex.

Discussion

Comparison of the free energy profiles of the three pathways allows us to eliminate the σ -bond metathesis as a pathway for the formation of ethylbenzene since the free energy barrier is significantly higher than the other two calculated pathways (Fig. 7). The present result generalizes the results found for the H for X exchange reactions between Cp₂CeH and CH₃X, for which the σ -bond metathesis pathway is also energetically unfavorable, that is, the kite-shaped transition state is a high energy process when a methyl group is in the β -position, regardless of the nature of the chemical groups at the α -positions.

Fig. 7 Free energy profiles in kcal mol⁻¹ for the reaction of Cp_2CeCH_2Ph and CH_3F . [Ce] represents the Cp_2Ce fragment. The I_A process is in green, the two-step process (proton transfer, CH_2 insertion) is in black and the σ-bond metathesis is in red.

The free energy barrier of the proton transfer step in the reaction of Cp₂CeR with CH₃F increases from 18 kcal mol⁻¹ to 22 and to 32 kcal mol⁻¹ when R is H, CH₃ and benzyl, respectively. The proton transfer has the lowest energy barrier when R is H, since this ligand concentrates a large negative charge in a spherical orbital. In the methyl complex, the negative charge is localized in a hybrid orbital carrying the density on the negatively charged methyl group, i.e. the overlap with the proton is less. As the bond between the methyl group and the incoming proton develops, the Ce–Me bond distorts significantly as the methyl group tilts in order to share its electron density with the proton (Fig. 5). In the case of benzyl, two factors contribute to the increase in the free energy barrier for proton transfer; (i) the negative charge of the benzyl is dispersed over the whole group and its CH₂ group forms a weaker C · · · H interaction (this is also shown by the difference between the deprotonation enthalpies of CH₄ and toluene, which are 417 and 374 kcal mol⁻¹, respectively¹⁵) and (ii), the distortion that occurs in the methyl group cannot be as strong in the benzyl group since the distortion will force the benzene ring and the Cp₂Ce fragment into close contact. As a result, the energy barrier for the proton transfer step between Cp₂CeCH₂Ph and CH₃F is higher than in Cp₂CeMe.

The calculated free energy barriers for the I_A mechanism and the proton transfer pathways are similar (Fig. 7). The relative energy of these transition states are influenced presumably by the presence of the six bulky Me_3C groups on the two cyclopentadienyl ligands in the experimental systems. The Me_3C groups not only create steric effects in the ground and transition states but they modify the angle between the two cyclopentadienyl rings that influences the interaction between the metal with the other ligands. The computational model does not indicate a preference

for either pathway but the experiments show that the methyl group is transferred intact, which is only consistent with the I_A mechanism.

Experimentally, the reactions between Cp'₂CeCH₂Ph and CH₃X are complicated by the equilibrium between the benzyl derivative and the metallacycle and toluene, since the metallacycle also reacts with CH₃X, Scheme 1. The relative rates of reaction of the benzyl with CH₃X versus the formation of metallacycle and toluene can be estimated by the relative amount of CH₃CH₂Ph and CH₃Ph formed. This is reliable, however, only when X = F, since the reaction of this halide is clean and relatively rapid with the benzyl and metallacycle. At 20 °C, the ratio of CH₃CH₂Ph to CH₃Ph is 1:4, showing that the C-C bond forming reaction is slower than the elimination of toluene. The ratio of CH₃CH₂Ph to p-xylene in the reaction of Cp'₂Ce(4-methylbenzyl) with CH₃F is similar, implying no appreciable substituent effect on the rate of reaction, consistent with the calculations. However, the rate of reaction of the benzyl derivative is much faster than that of the phenyl, presumably because a benzyl group is a better nucleophile than a phenyl group. The experimental studies give only qualitative mechanistic information about the C-C bond forming reaction, however, the computational studies show that the benzyl group is indeed behaving as a nucleophile in the transition state for the PhCH₂ for F group exchange reaction. In the transition state, the benzyl group is attached at only one point, the para carbon of the benzene ring. An NBO analysis of the individual atoms in the benzyl group in the ground state and the transition state shows that: (i) the variation in the charges at the ipso, ortho and meta carbon are small, (ii) the negative charge on the paracarbon increases by almost 0.2 e and (iii) the negative charge on the methylene carbon decreases by 0.30 e (Fig. 8). The charge redistribution can be understood by considering three of the valence bond structures that represent the benzyl anion (Fig. 8, bottom). Their relative weights are determined by the position of the Cp₂Ce fragment. In the ground state, resonance structures A and B dominate while in the transition state, resonance structures A and C dominate. Thus, from the ground to the transition state, the haptotropic shift of the Cp₂Ce fragment is energetically facilitated by the continuous interaction with the electron density on the benzyl anion as it moves to the *para*-carbon. It should be noted that the net charge on the benzyl anion is almost constant during this haptotropic shift; what changes is the localization of the sites of the density. As mentioned earlier, it is the large positive charge on the Cp₂Ce fragment that controls and guides the charge redistribution as the molecules reach the transition state in the exoergic reaction.

Several X-ray crystal structures of metal-benzyl compounds are informative models for the transition state of the Cp'_2CeCH_2Ph and CH_3F reaction. The solid state structure of the ion-pair, $[(C_5Me_5)Zr(CH_2Ph)_2]^{+}[PhCH_2B(C_6F_5)_3]^{-}$, shows that the two benzyl groups in the cation are bonded to zirconium in an η^3 - and η^7 -fashion; in connection to the present article, the geometry of the η^7 -bonded benzyl group is of particular interest, since the *ortho*- and *meta*-carbons are coplanar while the *para*- and *ipso*-carbons are out of the plane by 13° and 15°, respectively, and the CH_2 fragment is out of the plane defined by the *ortho*- and *ipso*-carbons by 21°. Thus, the benzene ring is in a "boat conformation" and the C-C distances are consistent with the dominant influence of resonance structure C. Two recent solid state crystal structures

-0.18

CH₂

-0.48

CH₂

Fig. 8 NBO charges on the benzyl ring in, left, Cp₂CeCH₂Ph and right, the I_A transition state. The position of the Cp₂Ce fragment is qualitatively reproduced by its projection on the benzyl plane and is indicated by [Ce].

В

of thorium complexes with benzyl groups are noteworthy, since the benzyl group in the anion in both of them, $PhCH_2B(C_6F_5)_3^-$, is attached to a Th^{IV} cation in an η^6 -fashion. In both anions, the CH_2 fragment bonded to the $B(C_6F_5)_3$ group is out of the plane of the benzene ring by $10-12^\circ$ and the Th-C distances to the benzene ring vary in the order $C(para) < C(meta) < C(ortho) \ll C(ipso)$. ^{17,18}

The possibility of multihapto interactions between a positive ion, Li⁺, Na⁺, K⁺, Rb⁺, Cs⁺, and a benzyl anion has been shown with MP2 calculations.¹⁹ The size of the metal ion is important since there is a preference for η^3 -benzyl for Li and Na and η^7 benzyl for the larger ions. In addition, calculations show that in the case of Li⁺, a haptotropic shift from η³ to η⁵-benzyl occurs with a very low energy barrier. The crystal structures and calculated ground state structures show that the interaction between a benzyl anion and a positively charged metal fragment ranges from η^1 to η^7 . In these structures the CH₂ group is close to the metal ion fragment and the classification of the bond type is determined by the distance between the metal ion and the carbon atoms of the arene. The calculated transition state for the carboncarbon bond forming reaction shows that the CH₂ group is not attached to the metal and therefore the electron density is available for a nucleophilic attack on the methyl group of CH₃F, whose electrophilicity is enhanced by the coordination of the fluorine atom to Cp₂Ce.

Conclusion

The net reaction between Cp'_2CeCH_2Ph and CH_3X (X = F, Cl, Br, I) yields Cp'_2CeX and CH_3CH_2Ph . Calculations carried out for X = F show that the mechanism of the benzyl for fluoride exchange reaction does not proceed by way of a simple four-center transition state, since a lower barrier process in which the benzyl group is attached at the *para* position to the Cp_2Ce fragment leaves the CH_2 group free to act as a nucleophile forming the C-C bond with CH_3F . This yields ethylbenzene or, when $Cp'_2CeCD_2C_6D_5$ is used

in the experimental studies, $CH_3CD_2C_6D_5$ without scrambling the hydrogens of the CH_3 group. In this mechanism, the metal allows the CH_2 fragment of the benzyl group to behave as a nucleophile towards the CH_3F molecule, which is itself activated by the metal to behave as an electrophile.

Experimental details

General

All manipulations were performed under an inert atmosphere using standard Schlenk and dry box techniques. All solvents were dried and distilled from sodium or sodium benzophenone ketyl. Anhydrous methyl fluoride, methyl chloride, and methyl bromide were used without further purification. Methyl iodide was obtained commercially and purified by distillation onto activated 4 Å molecular sieves. NMR spectra were recorded on Bruker AV-300 or AV-400 spectrometers at 20 °C in the solvent specified. J-Young NMR tubes were used for all NMR tube experiments. Electron impact mass spectrometry and elemental analyses were performed by the microanalytical facility at the University of California, Berkeley. The abbreviation Cp' is used for the 1,2,4-tri-tert-butylcyclopentadienyl ligand. Unless otherwise specified, samples for GC-MS were prepared by adding a drop of nitrogen-purged H₂O, agitating, and allowing the samples to stand closed for 10 min. The samples were then dried over magnesium sulfate, filtered, and diluted ten-fold with pentane. A 1 µL sample was injected into a HP6890 GC system with a J&W DB-XLB universal non-polar column, attached to an HP5973 Mass Selective Detector.

Cp'₂CeCD₂C₆D₅. C₆D₅CD₂MgCl was prepared by slowly adding a solution of benzyl chloride-d₇ (1 g, 7.5 mmol) in 10 mL of diethyl ether to magnesium turnings (0.18 g, 7.4 mmol) in 10 mL of diethyl ether and heating the resulting pale blue solution at reflux for 1 h. The solution was filtered and titrated with a standard 0.1 N aqueous HCl solution; the concentration of C₆D₅CD₂MgCl was determined to be 0.25 M. Cp'₂CeOTf·0.5 hexane² (3.44 g, 4.3 mmol) was dissolved in 30 mL of diethyl ether and C₆D₅CD₂MgCl solution (17 mL, 0.25 M in diethyl ether, 4.25 mmol) was added via syringe. The solution immediately changed from yellow to red, and became cloudy within 5 min. After 5 min the solvent was removed under reduced pressure, vielding a red powder. The ¹H NMR spectrum of the crude product contained resonances corresponding to Cp'₂CeCl²⁰ and CMe₃ resonances identical to those of Cp'₂CeCH₂C₆H₅;² the two species were present in approximately a 1:1 ratio. The red solid was extracted with 25 mL of pentane to isolate Cp'₂CeCD₂C₆D₅, and the yellow solid residue was extracted further with 25 mL of toluene to recover the remaining Cp'₂CeCl. The volume of the pentane solution was reduced to 10 mL and cooled to -10 °C, giving red blocks. Yield, 0.78 g (1.1 mmol, 26%). The ¹H NMR spectrum contained resonances identical to the CMe₃ and ring C-H resonances observed in Cp'₂CeCH₂C₆H₅, ¹H NMR (C₆D₆): δ 50.63 (2H, $v_{1/2} = 245 \text{ Hz}$), 13.25 (2H, $v_{1/2} = 245 \text{ Hz}$), -0.53 (18H, $v_{1/2} = 190 \text{ Hz}$), $-1.80 (18\text{H}, v_{1/2} = 195 \text{ Hz})$, $-13.19 (18\text{H}, v_{1/2} =$ 45 Hz). The resonance at 50.63 ppm was incorrectly reported as a fold-over resonance at -32.62 ppm in a previous publication.² The ²H NMR spectrum contained resonances consistent with the aromatic benzyl group resonances observed in the ¹H NMR

spectrum of $Cp'_2CeCH_2C_6H_5$, ² H NMR (C_6D_6): δ 4.18 (2H, $V_{1/2}$ = 50 Hz), 2.32 (1H, $v_{1/2} = 80$ Hz); the other resonances were not observed.

Cp'₂Ce(4-methylbenzyl). Method A: Cp'₂CeOTf·0.5 hexane² (1 g, 1.2 mmol) was dissolved in 50 mL of pentane and 4-methylbenzylmagnesium chloride solution²¹ (1.8 mL, 0.69 M in diethyl ether, 1.2 mmol) was added via syringe. The solution immediately changed from yellow to red. After 2 min the solvent was removed under reduced pressure, yielding a red-orange powder. The red solid was extracted with 10 mL of pentane, and the yellow solid residue was extracted further with 25 mL toluene to recover Cp'₂CeCl. The volume of the pentane solution was reduced to 7 mL and cooled to -10 °C, giving red needles. Yield, 0.48 g (0.68 mmol, 56%). MP 119-122 °C (sample turned purple on melting). ¹H NMR (C₆D₁₂): δ 40.65 (2H, $\nu_{1/2}$ = 300 Hz), 13.60 (2H, $v_{1/2} = 250$ Hz), 0.27 (3H, 5 Hz), -0.57 (36H, $v_{1/2} = 40$ Hz), -10.91 (18H, $v_{1/2} = 150$ Hz). Anal. Calcd. for $C_{42}H_{67}Ce$: C, 70.8; H, 9.48. Found C, 70.9; H, 9.41.

Method B: Cp'₂CeCH₂C₆H₅² was dissolved in p-xylene in an NMR tube and heated at 60 °C for 2 days. The red solution was taken to dryness and the red solid residue was dissolved in C₆D₁₂. The ¹H NMR spectrum was identical to that of the red crystals obtained via Method A.

NMR tube equilibration of Cp'₂Ce(4-methylbenzyl) in C₆D₁₂

Cp'₂Ce(4-methylbenzyl) was dissolved in C₆D₁₂ in an NMR tube and allowed to stand. After one day at 19 °C, the red solution had turned purple and resonances due to the metallacycle $Cp'[(Me_3C)_2C_5H_2C(Me)_2CH_2]Ce^2$ and p-xylene had appeared in the ¹H NMR spectrum. The ratio of Cp'₂Ce(4-methylbenzyl) and Cp'[(Me₃C)₂C₅H₂C(Me)₂CH₂]Ce was approximately 1:1. After two days, the ratio was 1:2.5. After 5 days, the ratio was 1:4. The ratio did not change upon further standing.

Solid state H-for-D exchange in Cp'₂CeCD₂C₆D₅

A crystalline sample of Cp'₂CeCD₂C₆D₅ was allowed to stand at 20–25 °C for 1430 days. A small amount of the sample was dissolved in C₆D₆, and the ¹H NMR spectrum was as described above for the fresh sample. The 2H NMR spectrum contained the aromatic benzyl group resonances at δ 4.18 and 2.32, and also a resonance at δ –13.15 ($\nu_{\scriptscriptstyle 1/2}=100$ Hz) with an integrated intensity equal to roughly two deuterons relative to the benzyl ligand resonances. The sample was hydrolyzed and filtered. The ¹H NMR spectrum of the hydrolysate contained a sharp singlet at 2.120 ppm and a weak 1:1:1 pattern ($J_{HD} = 1.8$ Hz) at 2.105 ppm due to C₆D₅CH₃ and C₆D₅CDH₂, respectively. No resonances due to the aromatic toluene CH-groups were observed. Six Cp'H-CMe₃ resonances were also present in the spectrum, δ 1.38, 1.32, 1.27, 1.19, 1.15, and 1.09 ppm in a 1:1:2:1.5:1:2 area ratio, arising from two Cp'H isomers.12 The 2H NMR spectrum contained a triplet at 2.05 ppm ($J_{HD} = 2.1 \text{ Hz}$) due to $C_6D_5CDH_2$ and a single broadened CMe₃-d_x resonance at 1.13 ppm ($v_{1/2}$ = 4 Hz). Aromatic toluene ²H resonances were masked by the solvent peak. Another sample of aged Cp'₂CeCD₂C₆D₅ was dissolved in C₆H₁₂ and hydrolyzed. The ²H NMR spectrum contained three aromatic resonances at 7.27, 7.16, and 7.09 ppm, the CDH2 triplet

at 2.29 ppm, and the single broad CMe₃ resonance at 1.12 ppm in a 3:9:16:1:16 area ratio.

The sample in C₆D₆ was heated at 60 °C for 2 days. Three Cp'H-CMe₃-resonances were present in the ¹H NMR spectrum, δ 1.26, 1.18, 1.08 ppm in a 9:6.5:9 area ratio. A broadened peak at 1.16 ppm was also observed, presumably due to CMe₃d_x groups. The ¹³C NMR contained three resonances due to the CMe₃ groups, δ 32.58, 30.83, and 30.12 ppm. A 1:1:1 pattern at 30.10 ppm ($J_{\rm CD} = 3.6$ Hz) was consistent with the presence of CMe₂CDH₂ groups. GC-MS analysis showed the presence of partially deuterated toluene and partially deuterated Cp'H. Molecular ion isotope pattern for toluene: $(M-1 \text{ or } 2)^+ m/z$ (relative abundance): 92 (3), 93 (6), 94 (12), 95 (74), 96 (100), 97 (96), 98 (24), 99 (2). For Cp'H, $(M)^+$ m/z (calculated relative abundance for $C_{17}H_{30}$ /found): 234 (100/100), 235 (19/76), 236 (2/61), 237 (0.1/13), 238 (0.004/2), giving the observed ratio of Cp'H, $Cp'H-d_1$, and $Cp'H-d_2$ as 35:20:17.

NMR tube equilibration of Cp'2Ce(CH2C6H5) isomers in toluene-h₈

Cp'₂Ce(CH₂Ph) was dissolved in toluene-h₈ and heated at 60 °C for 1 day, then allowed to stand at 19 °C for one day, yielding a deep red solution. The ¹H NMR spectrum contained resonances due to Cp'₂Ce(CH₂Ph) and Cp'[(Me₃C)₂C₅H₂C(Me)₂CH₂]Ce in a 12:1 area ratio, as well as four new paramagnetic resonances, ¹H NMR (C₇H₈, 400 MHz): δ -1.585 (ν _{1/2} = 40 Hz), -1.771 $(v_{1/2} = 40 \text{ Hz}), -9.716 (v_{1/2} = 40 \text{ Hz}), -10.216 (v_{1/2} = 40 \text{ Hz}),$ in approximately a 1:3:1.5:1 area ratio. Assuming that the resonances at -9.716 and -10.216 correspond to the unique CMe₃ resonances of two different Cp'2Ce-R complexes, the ratio of $Cp'_2Ce(CH_2Ph)$, $Cp'[(Me_3C)_2C_5H_2C(Me)_2CH_2]C$ and the two new species was 12:1:3:2. The sample was hydrolyzed with D₂O and filtered. The ²H NMR spectrum contained two Cp'D ring C-D resonances at 3.115 (d, $J_{\rm HD}=3$ Hz) and 2.966 (s) in a 3:4 area ratio, and resonances due to toluene-d₁ at 7.174, 7.095, 7.067, and 2.16 (t, $J_{HD} = 2.1$ Hz) in a 2.5:1:1:6 area ratio.

NMR tube equilibration of (Cp'-d₂₇)₂Ce(CD₂C₆D₅) isomers in toluene-d₈

Cp'₂Ce(CH₂Ph) was dissolved in C₆D₆ and heated at 60 °C for 4 days to perdeuterate the CMe₃ groups. The sample was taken to dryness and the solid residue was dissolved in fresh C_6D_6 . The sample was heated for an additional 4 days, then taken to dryness, and the solid residue was dissolved in toluene-d₈. The sample was heated at 60 °C for 1 day, and then allowed to stand at 19 °C for one day. The sample was taken to dryness and the solid residue was dissolved in cyclohexane-d₁₂. The ²H NMR spectrum contained C(CD₃)₃ resonances due to (Cp'-d₂₇)₂Ce(CD₂C₆D₅) and the two new species observed in the previous experiment in a 2:1:1 area ratio. The sample was hydrolyzed with H₂O and filtered. The ¹H NMR spectrum contained multiple Cp'H ring resonances, as well as resonances due to isomers of toluene-d₇ at 7.108, 7.038, and 2.246. Subtracting the area of the residual toluene peaks in the cyclohexane-d₁₂ solution before hydrolysis relative to an internal standard indicated that the resonances had increased in intensity after hydrolysis in an approximate 1:1:3 area ratio.

NMR tube reaction of CH₃F and Cp'₂Ce(CH₂C₆H₅) in benzene-d₆

Cp'₂Ce(CH₂C₆H₅) was dissolved in C₆D₆ in an NMR tube. The tube was cooled in a liquid nitrogen isopropanol bath, the head space was evacuated, and replaced with CH₃F (1 atm). The tube was warmed to 19 °C and allowed to stand. After 1 day, resonances in the ¹H NMR spectrum due to Cp'₂CeF had appeared; the ratio of Cp'₂Ce(CH₂C₆H₅) to Cp'₂CeF was 2:1. Resonances due to Cp''Cp'CeF had also appeared (Cp'' is Cp'+CH₂), ^{1,4} as well as CH₃C₆H₅ and CH₃CH₂C₆H₅ in a 4:1 area ratio. After 2 days, all Cp'₂Ce(CH₂C₆H₅) resonances had disappeared from the ¹H NMR spectrum. Integration of the CMe₃ signal intensities relative to the residual solvent proton signal indicated that slightly less than half an equivalent of Cp'₂CeF had formed relative to the starting material

NMR tube reaction of CH₃F and Cp'₂Ce(CD₂C₆D₅) in benzene-d₆

Cp'₂Ce(CD₂C₆D₅) was dissolved in C₆D₆ in an NMR tube. The tube was cooled in a liquid nitrogen isopropanol bath, the head space was evacuated, and replaced with CH₃F (1 atm). The tube was warmed to 19 °C and allowed to stand. After 1 day, resonances in the ¹H NMR spectrum due to Cp'₂CeF had appeared; the ratio of Cp'₂Ce(CD₂C₆D₅) to Cp'₂CeF was 1:2. Resonances due to Cp"Cp'CeF had also appeared, along with a singlet at 1.05 ppm and a broad hump at 2.4 ppm presumably corresponding to the CH₃ and residual protons in the CD₂ group of CH₃CD₂C₆D₅, respectively. After 2 days, all Cp'₂Ce(CD₂C₆D₅) resonances had disappeared from the ¹H NMR spectrum. Integration of the CMe₃ signal intensities relative to the residual solvent proton signal indicated that slightly less than half an equivalent of Cp'2CeF had formed relative to the starting material. The ²H NMR spectrum contained resonances due to C₆D₆, CHD₂C₆D₅, and a multiplet at 2.35 ppm presumably corresponding to the CD2 group of CH₃CD₂C₆D₅. No signal was observed at 1.05 ppm in the ²H NMR spectrum. GC-MS analysis showed three principle components in addition to Cp'H, with (M-2)+ m/z 97 (CHD₂C₆D₅), 113 (CH₃CD₂C₆D₅), and (M)⁺ 248 (Cp"H) in an approximate ratio of 1:1:6.

NMR tube reaction of CH₃F and Cp'₂Ce(C₆H₅) in benzene-h₆

Cp'₂Ce(CH₂C₆H₅) was dissolved in cyclohexane-d₁₂ and heated at 60 °C for 12 h, yielding a solution of Cp'[(Me₃C)₂C₅H₂C(Me)₂CH₂]Ce. The sample was taken to dryness, dissolved in cyclohexane-d₁₂, and heated at 60 °C for 12 h to remove residual toluene. The sample was taken to dryness, dissolved in benzene-h₆, and heated at 60 °C for 12 h, yielding a very deep red solution of Cp'₂Ce(C₆H₅).² The tube was cooled in a liquid nitrogen isopropanol bath, the head space was evacuated, and replaced with CH₃F (1 atm). The tube was warmed to 19 °C and allowed to stand. After 1 h, resonances in the ¹H NMR spectrum due to Cp'2CeF and Cp"Cp'CeF had appeared; the ratio of Cp'₂Ce(C₆H₅) to the two fluoride species was 30:1. After 2 days, the ratio was 6:5, and a diamagnetic singlet had appeared at 2.10 ppm, suggesting the formation of toluene. After 5 days, the ratio was 1:4. GC-MS analysis indicated the presence of toluene. Cp'H and Cp"H were the only other major components besides C_6H_6 .

NMR tube reaction of CH₃F and (Cp'-d₂₇)₂Ce(C₆D₅) in benzene-d₆

Cp'₂Ce(CH₂C₆H₅) was dissolved in benzene-d₆ and heated at 60 °C for 2 days. The sample was taken to dryness, dissolved in fresh benzene-d₆, and heated at 60 °C for 2 days. This procedure was repeated two more times, with the sample heated for 8 days after the last addition of benzene-d₆, yielding a solution of (Cp' d_{27} ₂Ce(C₆D₅). The sample was taken to dryness, and dissolved in fresh benzene-d₆. The tube was cooled in a liquid nitrogen isopropanol bath, the head space was evacuated, and replaced with CH₃F (1 atm). The tube was warmed to 19 °C and allowed to stand. After 3 days, resonances in the ²H NMR spectrum matching those observed in the ¹H NMR spectrum of the previous experiment, presumably due to (Cp'-d₂₇)₂CeF and (Cp"-d₂₇)(Cp' d_{27})CeF had appeared; the ratio of $(Cp'-d_{27})_2Ce(C_6D_5)$ to the two fluoride species was 4:1. A diamagnetic singlet had appeared at 2.10 ppm in the ¹H NMR, suggesting the formation of toluene. After 2 additional days, the ratio was 6:5. After 11 days, the ratio of $(Cp'-d_{27})_2Ce(C_6D_5)$ to the two fluoride species was 1:1. After 42 days, only the two fluoride species remained in the ²H NMR. GC-MS analysis indicated the presence of toluene-d₅, (M-1)⁺ m/z 96. (Cp'-d₂₇)H and (Cp"-d₂₇)H were the only other major components besides C₆D₆.

NMR tube reaction of CH₃Cl, CH₃Br, and CH₃I with Cp'₂Ce(CH₂C₆H₅) in cyclohexane-d₁₂

Cp'₂Ce(CH₂C₆H₅) was dissolved in cyclohexane-d₁₂ in an NMR tube. The tube was cooled in a liquid nitrogen isopropanol bath, and the head space was evacuated. In the case of CH₃Cl and CH₃Br, the head space was filled with the halomethane gas (1 atm). In the case of CH₃I, an excess was added by vacuum transfer and the head space was backfilled with N₂. The sample was warmed to 19 °C and allowed to stand. In the case of CH₃Cl, after 10 min, resonances of the same intermediate complex observed in the reaction of CH₃Cl with Cp'[(Me₃C)₂C₅H₂C(Me)₂CH₂]Ce, Cp'₂CeCH₂Cl⁴ had appeared in the ¹H NMR spectrum; the ratio of Cp'₂Ce(CH₂C₆H₅) and Cp'₂CeCH₂Cl was approximately 32:1. After three days, only resonances due to Cp'₂CeCl remained in the ¹H NMR spectrum, and yellow crystals of Cp'₂CeCl had formed. Diamagnetic resonances due to CH₃C₆H₅ and CH₃CH₂C₆H₅ had also appeared. In the case of CH₃Br, after 19 h, resonances due Cp'₂CeBr and Cp'₂CeCH₂Br⁴ had appeared in the ¹H NMR spectrum; the ratio of Cp'₂Ce(CH₂C₆H₅), Cp'₂CeBr, and Cp'₂CeCH₂Br was approximately 1.5:7:1. Diamagnetic resonances due to CH₃C₆H₅ and CH₃CH₂C₆H₅ had also appeared. After five days, only resonances due to Cp'₂CeBr remained in the ¹H NMR spectrum, and orange crystals of Cp'2CeBr had formed. In the case of CH₃I, after three hours, resonances due Cp'₂CeI and Cp'₂CeCH₂I⁴ had appeared in the ¹H NMR spectrum; the ratio of Cp'₂Ce(CH₂C₆H₅), Cp'₂CeI, and Cp'₂CeCH₂I was approximately 75:10:1. After 24 h, resonances due to Cp'₂Ce(CH₂C₆H₅) had disappeared from the ¹H NMR spectrum. Paramagnetic resonances due to Cp'₂CeI and Cp'₂CeCH₂I were present in a 3:1 ratio, and diamagnetic resonances due to CH₃C₆H₅ and CH₃CH₂C₆H₅ had also appeared. After five days, the ratio was 24:1. After 11 days, orange crystals had formed, and only resonances due to Cp'₂CeI remained in the spectrum. The GC-MS analysis of all three samples showed three principle components in addition to Cp'H, with $(M-1)^+ m/z 91 (CH_3C_6H_5)$, $106 (CH_2C_6H_5+CH_3)$, and (M)+ 248 (Cp"H).

NMR tube reaction of CD₃Br or CD₃I and Cp'₂Ce(CH₂C₆H₅) in benzene-d₆

Cp'₂Ce(CH₂C₆H₅) was dissolved in benzene-d₆ in an NMR tube. The tube was cooled in a liquid nitrogen isopropanol bath, and the head space was evacuated. In the case of CD₃Br, the head space was filled with the gas (1 atm); in the case of CD₃I, an excess was added by vacuum transfer, and the head space was backfilled with N₂. The tube was warmed to 19 °C and allowed to stand. In the case of CD₃Br, after 24 h, resonances due to Cp'₂Ce(CH₂C₆H₅) had disappeared from the ¹H NMR spectrum and resonances due to Cp'₂CeBr had appeared. In the case of CD₃I, after 24 h, resonances due to Cp'₂CeI had appeared in the ¹H NMR spectrum, and the ratio of Cp'₂Ce(CH₂C₆H₅) to Cp'₂CeI was 1:18. After 2 days, resonances due to Cp'2Ce(CH2C6H5) had disappeared from the ¹H NMR spectrum. In both cases, a broad multiplet at 1.05 ppm presumably corresponding to residual protons in the CD₃ group and a singlet at 2.4 ppm presumably corresponding to the CH₂ group of CD₃CH₂C₆H₅ had also appeared in a 1:2 ratio. Integration of the CMe₃ signal intensities relative to the residual solvent proton signal indicated approximately 70% conversion of Cp'₂Ce(CH₂C₆H₅) to Cp'₂CeBr and 85% conversion of Cp'₂Ce(CH₂C₆H₅) to Cp'₂CeI. The ²H NMR spectra in both cases contained resonances due to C₆D₆, CD₃Br or CD₃I, and a multiplet at 0.98 ppm presumably corresponding to the CD₃ group of CD₃CH₂C₆H₅. No signal was observed at 2.4 ppm due to deuteria in the benzylic sites in either ²H NMR spectrum. GC-MS analysis showed three principle components in addition to Cp'H, with $(M-1)^+$ m/z 91 $(CH_3C_6H_5)$, 108 $(CH_2C_6H_5+CD_3)$, and $(M)^+$ 251 (Cp'H+CD₂).

NMR tube reaction of CD₃Br and Cp'₂Ce(CH₂C₆H₅) in benzene-h₆

Cp'₂Ce(CH₂C₆H₅) was dissolved in C₆H₆ in an NMR tube. The tube was cooled in a liquid nitrogen isopropanol bath, the head space was evacuated, and replaced with CD₃Br (1 atm). The tube was warmed to 19 °C and allowed to stand. After 24 h, the sample was cooled in a liquid nitrogen isopropanol bath maintained at -20 °C, the head space was evacuated, the tube cap was closed, and the sample was warmed to 19 °C. This freeze-pump-thaw procedure was performed two more times to remove residual CD₃Br. A yellow precipitate formed, and the yellow solution was filtered into a clean tube. The ²H NMR spectrum of the solution contained resonances due to CD₃Br and a singlet at 1.06 ppm presumably corresponding to the CD₃ group of CD₃CH₂C₆H₅. No signal was observed at 2.4 ppm in the ²H NMR spectrum.

NMR tube reaction of CH₃F and Cp'₂Ce(4-methylbenzyl) in C₆D₁₂

Cp'₂Ce(4-methylbenzyl) was dissolved in C₆D₁₂ in an NMR tube. The tube was cooled in a liquid nitrogen isopropanol bath, the head space was evacuated, and replaced with CH₃F (1 atm). The tube was warmed to 19 °C and allowed to stand. After 1 day, resonances in the ¹H NMR spectrum due to Cp'₂CeF had appeared; the ratio of Cp'₂Ce(4-methylbenzyl) to Cp'₂CeF was 1:1. Resonances due to Cp"Cp'CeF and p-xylene had also appeared, along with new diamagnetic resonances at 6.96 (4H, s),

2.52 (2H, q), 2.24 (3H, s), and 1.17 (3H, t), apparently due to 4ethyltoluene. After 2 days, all Cp'₂Ce(4-methylbenzyl) resonances had disappeared from the ¹H NMR spectrum. Integration of the CMe₃ signal intensities relative to the residual solvent proton signal indicated that approximately 70% of the starting material had been converted to Cp'₂CeF. The GC-MS analysis showed three principle components in addition to Cp'H, with $(M-1)^+$ m/z 106 $(CH_3C_6H_4CH_3)$, 120 $(CH_3CH_2C_6H_4CH_3)$, and $(M)^+$ 248 (Cp''H).

NMR tube reaction of CH₃Cl, CH₃Br, or CH₃I and Cp'₂Ce(4-methylbenzyl) in C₆D₁₂

Cp'₂Ce(4-methylbenzyl) was dissolved in C₆D₁₂ in an NMR tube. The tube was cooled in a liquid nitrogen isopropanol bath, and the head space was evacuated. In the case of CH3Cl and CH₃Br, the head space was refilled with the halomethane gas (1 atm). In the case of CH₃I, an excess was added by vacuum transfer, and the head space was backfilled with N₂. In the case of CH₃Cl, after 3 days, all Cp'₂Ce(4-methylbenzyl) resonances had disappeared from the ¹H NMR spectrum, and orange crystals of Cp'₂CeCl had formed. In the case of CH₃Br, after 30 min, resonances due to Cp'2CeCH2Br and Cp'2CeBr had appeared in the ¹H NMR spectrum; the ratio of Cp'₂Ce(4-methylbenzyl) to Cp'₂CeCH₂Br and Cp'₂CeBr was 20:1:1. After 17 h, the ratio was 2.5:1:75. After 2 days, all Cp'₂Ce(4-methylbenzyl) and Cp'₂CeCH₂Br resonances had disappeared from the ¹H NMR spectrum, and orange crystals of Cp'2CeBr had formed. In the case of CH₃I, after 30 min, resonances due to Cp'₂CeCH₂I had appeared in the ¹H NMR spectrum; the ratio of Cp'₂Ce(4methylbenzyl) to Cp'2CeCH2I was 21:1. After 2 days, all Cp'2Ce(4methylbenzyl) resonances had disappeared from the ¹H NMR spectrum and resonances due to Cp'₂CeI had appeared. The ratio of Cp'₂CeCH₂I to Cp'₂CeI was 1:6. In all cases, diamagnetic resonances due to p-xylene and 4-ethyltoluene also appeared in the ¹H NMR spectrum, and GC-MS analysis showed four principle components in addition to Cp'H, with $(M-1)^+$ m/z 106 (CH₃C₆H₄CH₃), 120 (CH₃CH₂C₆H₄CH₃), and (M)⁺ 248 (Cp"H).

NMR tube reaction of CD₃Br and Cp'₂Ce(4-methylbenzyl) in C_6H_{12}

 $\text{Cp'}_2\text{Ce}(4\text{-methylbenzyl})$ was dissolved in C_6H_{12} in an NMR tube. The tube was cooled in a liquid nitrogen isopropanol bath, the head space was evacuated, the sample was warmed to 19 °C, and the head space was refilled with CD₃Br (1 atm). After 20 min, resonances due to Cp'2CeCD2Br and Cp'2CeBr had appeared in the ¹H NMR spectrum; the ratio of Cp'₂Ce(4-methylbenzyl) to Cp'₂CeCD₂Br and Cp'₂CeBr was 100:1:4. After 2 days, all Cp'₂Ce(4-methylbenzyl) and Cp'₂CeCD₂Br resonances had disappeared from the ¹H NMR spectrum, and orange crystals of Cp'2CeBr had formed. Diamagnetic resonances at 6.92 and 6.95 ppm corresponding to the aromatic protons of p-xylene and 4-ethyltoluene had also appeared. A diamagnetic resonance had appeared in the ${}^{2}H$ NMR spectrum at δ 1.17 corresponding to the -CH₂CD₃ group of 4-ethyltoluene; the intense resonance due to excess CD₃Br masked the region where a resonance due to deuterium bound to the secondary carbon of the ethyl group would have been observed. The GC-MS analysis showed four principle components in addition to Cp'H, with $(M-1)^+$ m/z 106

 $(CH_3C_6H_4CH_3)$, 122 $(CH_3C_6H_4CH_3+CD_2)$, and $(M)^+$ m/z 251 $(Cp'H+CD_2).$

NMR tube reaction of CD₃I and Cp'₂Ce(4-methylbenzyl) in C₆D₆

Cp'₂Ce(4-methylbenzyl) was dissolved in C₆D₆ in an NMR tube. The tube was cooled in a liquid nitrogen isopropanol bath, the head space was evacuated, the sample was warmed to 19 °C, an excess of CD₃I was added by vacuum transfer, and the head space was backfilled with N₂. After 1 day, all Cp'₂Ce(4methylbenzyl) resonances had disappeared and resonances due to Cp'₂CeCD₂I and Cp'₂CeI had appeared in the ¹H NMR spectrum from the ¹H NMR spectrum. Diamagnetic resonances at 6.92 and 6.95 ppm corresponding to the aromatic protons of p-xylene and 4-ethyltoluene had also appeared. A diamagnetic resonance had appeared in the ²H NMR spectrum at δ 1.02 corresponding to the -CH₂CD₃ group of 4-ethyltoluene. No resonance was observed at 2.55 ppm which would have indicated deuteration at the secondary position in the ethyl group. The GC-MS analysis showed four principle components in addition to Cp'H, with $(M-1)^+$ m/z 106 $(CH_3C_6H_4CH_3)$, 122 $(CH_3C_6H_4CH_3+CD_2)$, and $(M)^+$ m/z 251 $(Cp'H+CD_2).$

Crystallographic studies of Cp'₂Ce(CH₂C₆H₅) and Cp'2Ce(4-methylbenzyl)

Single crystals of appropriate dimension were mounted on glass fibers or Kapton loops using Paratone N hydrocarbon oil. All measurements were made on a SMART 1000²² diffractometer with a CCD area detector and graphite monochromated Mo-Kα radiation. Data were collected at low temperature using 10 s ω or ω and ϕ scans. Frame data were integrated using SAINT²³ and empirical absorption corrections were applied using SADABS.²⁴ The data were also corrected for Lorentz-polarisation effects. The structures were solved using direct methods²⁵ and expanded using Fourier techniques.26 Non-hydrogen atoms were refined anisotropically. Hydrogen atoms were included in calculated positions but not refined. All calculations for Cp'₂Ce(CH₂C₆H₅) were performed using the teXsan27 crystallographic software package of Molecular Structure Corporation. All calculations for Cp'₂Ce(4-methylbenzyl) were performed using the SHELXTL²⁸ crystallographic software package of Bruker Analytical X-ray Systems Inc. Crystallographic data are given in Table 1 and full crystallographic details are included in the ESI.†

Computational details

The Stuttgart-Dresden-Bonn Relativistic large Effective Core Potential (RECP)^{29a} has been used to represent the inner shells of Ce. The associated basis set of the type (7s6p5d)/[5s4p3d] augmented by an f polarization function ($\alpha = 1.000$)²⁹⁶ has been used to represent the valence orbitals. F has also been represented by an RECP with the associated basis set of the type (4s5p/2s3p) augmented by two contracted d polarisation Gaussian functions $(\alpha_1 = 3.3505(0.357851), \alpha_2 = 0.9924(0.795561))^{30}$ C and H have been represented by an all-electron 6-31G(d,p) basis set.³¹ Calculations have been carried out at the DFT(B3PW91)32 level with Gaussian 98.33 The nature of the extrema (minimum or transition state) has been established with analytical frequency calculations and the intrinsic reaction coordinate (IRC) has been

Table 1 Crystallographic data

Compound	Cp' ₂ CeCH ₂ C ₆ H ₅	Cp′ ₂ Ce(4-methylbenzyl)· 0.5(pentane)
Empirical Formula	$C_{41}H_{65}Ce$	C _{44.25} H _{72.5} Ce
Formula Weight	698.05	744.64
T/K	179(2)	120(2)
Crystal System	Triclinic	Triclinic
Space Group	$P\bar{1}$	$P\bar{1}$
a/Å	13.228(1)	10.528(2)
b/Å	16.080(1)	12.032(3)
c/Å	18.499(1)	17.562(4)
α (°)	96.377(1)	84.069(4)
β (°)	105.388(1)	79.816(4)
γ (°)	96.173(1)	66.418(3)
$V/\text{Å}^3$	3731.57(14)	2005.4(8)
Z	4	2
Unique Reflections (R_{int})	12450 (0.0229)	7273 (0.0821)
R_1 , wR_2^a	0.0361, 0.0707	0.0493, 0.0933

^a R_1 based on selected data with $I > 2\sigma(I)$; w R_2 based on all data.

followed to confirm that transition states connect to reactants and products. The zero point energy (ZPE) and entropic contribution have been estimated within the harmonic potential approximation. The Gibbs free energy, G, was calculated for T = 298.15 K and 1 atm. The NBO analysis³⁴ was carried out replacing Ce by La because of the technical requirement to have an even number of f electrons for the calculations. This method has been used successfully in previous studies. 1,2,34b

Acknowledgements

This work was supported by the Director, Office of Science, Office of Basic Energy Sciences (OBES), of the U.S. Department of Energy (DOE) under Contract No. DE-AC02-05CH11231. We thank F. J. Hollander and A. G. DiPasquale at CHEXRAY, the U.C. Berkeley X-ray diffraction facility, for help with the crystallography. L.M thanks the CINES and CALMIP for a generous grant of computing time. L.M. is also a junior member of the Institut Universitaire de France, L.M. and O.E thank the CNRS and Ministère de l'Enseignement Supérieur et de la Recherche for funding.

References

- 1 E. L. Werkema, E. Messines, L. Perrin, L. Maron, O. Eisenstein and R. A. Andersen, J. Am. Chem. Soc., 2005, 127, 7781.
- 2 L. Maron, E. Werkema, L. Perrin, O. Eisenstein and R. A. Andersen, J. Am. Chem. Soc., 2005, 127, 279.
- 3 E. L. Werkema and R. A. Andersen, J. Am. Chem. Soc., 2008, 130, 7153.
- 4 E. L. Werkema, R. A. Andersen, A. Yahia, L. Maron and O. Eisenstein, Organometallics, 2009, 28, 3173.
- 5 M. Booij, A. Meetsma and J. H. Teuben, Organometallics, 1991, 10, 3246.
- 6 G. R. Davies, J. A. J. Jarvis and B. T. Kilbourn, J. Chem. Soc. D, 1971,
- 7 I. W. Bassi, G. Allegra, R. Scordamaglia and G. Chioccola, J. Am. Chem. Soc., 1971, 93, 3787.
- 8 G. R. Davies, J. A. J. Jarvis, B. T. Kilbourn and A. J. P. Pioli, J. Chem. Soc. D. 1971, 677.
- 9 P. G. Edwards, R. A. Andersen and A. Zalkin, Organometallics, 1984, 3, 293.
- 10 E. A. Mintz, K. G. Moloy, T. J. Marks and V. W. Day, J. Am. Chem. Soc., 1982, 104, 4692.

- 11 J. L. Kiplinger, D. E. Morris, B. L. Scott and C. J. Burns, Organometallics, 2002, 21, 5978
- 12 G. Zi, L. Jia, E. L. Werkema, M. D. Walter, J. P. Gottfriedsen and R. A. Andersen, Organometallics, 2005, 24, 4251.
- 13 L. Maron, L. Perrin and O. Eisenstein, J. Chem. Soc., Dalton Trans., 2002, 534.
- 14 C. H. Langford, and H. B. Gray, "Ligand Substitution Processes" W. A. Benjamin, Inc. New York, NY, 1966.
- 15 S. G. Lias, J. E. Bartmess, J. F. Liebman, J. L. Holmes, R. D. Levin and W. G. Mallard, J. Phys. Chem. Ref. Data, 1988, 17, 647.
- 16 C. Pellecchia, A. Immirzi, D. Pappalardo and A. Peluso, Organometallics, 1994, 13, 3773.
- 17 C. A. Cruz, D. J. H. Emslie, L. E. Harrington and J. F. Britten, Organometallics, 2008, 27, 15.
- 18 C. A. Cruz, D. J. Emslie, C. M. Robertson, L. E. Harrington, H. A. Jenkins and J. F. Britten, Organometallics, 2009, 28, 1891.
- 19 D. Hoffmann, W. Bauer, F. Hampel, N. J. R. van Eikema Hommes, P. v. R. Schleyer, P. Otto, U. Pieper, D. Stalke, D. S. Wright and R. Snaith, J. Am. Chem. Soc., 1994, 116, 528.
- 20 E. L. Werkema, L. Maron, O. Eisenstein and R. A. Andersen, J. Am. Chem. Soc., 2007, 129, 2529.
- 21 J. S. Hallock, A. S. Galiano-Roth and D. B. Collum, Organometallics, 1988, 7, 2486.
- 22 SMART: Area-Detector Software Package, Bruker Analytical X-ray Systems, Inc.: Madison, WI, 1995-99.
- 23 SAINT: SAX Area-Dectector Integration Program, V7.06Siemens Industrial Automation, Inc.: Madison, WI, 2005.
- 24 SADABS: (v2.10) Siemens Area Detector ABSorption correction program, George Sheldrick, 2005
- 25 For Cp'₂Ce(CH₂C₆H₅), SIR92:A. Altomare, M. C. Burla, M. Camalli, M. Cascarano, C. Giacovazzo, A. Guagliardi and G. Polidori, J. Appl. Crystallogr., 1993, 26, 343; For Cp'₂Ce(4-methylbenzyl), XS:; Program for the Solution of X-ray Crystal Structures, Part of the SHELXTL Crystal Structure Determination Package, Bruker Analytical X-ray Systems Inc.: Madison, WI, 1995-99.
- 26 For Cp'₂Ce(CH₂C₆H₅), DIRDIF92: P. T. Beurskens, G. Admiraal, G. Beurskens, W. P. Bosman, S. Garcia-Granda, R. O. Gould, J. M. M. Smits, and C. Smykalla, 1992. The DIRDIF program system, Technical

- Report of the Crystallography Laboratory, University of Nijmegen, The Netherlands; For Cp'₂Ce(4-methylbenzyl), XL:; Program for the Refinement of X-ray Crystal Structures, Part of the SHELXTL Crystal Structure Determination Package, Bruker Analytical X-ray Systems Inc.: Madison, WI, 1995-99.
- 27 teXsan: Crystal Structure Analysis Package, Molecular Structure Corporation (1985 & 1992).
- 28 XP: Molecular Graphics program. Part of the SHELXTL Structure Determination Package. Bruker Analytical X-ray Systems Inc.: Madison,
- 29 (a) M. Dolg, H. Stoll, A. Savin and H. Preuss, Theor. Chim. Acta, 1989, 75, 173; M. Dolg, H. Stoll and H. Preuss, Theor. Chim. Acta, 1993, 85, 441; (b) L. Maron and O. Eisenstein, J. Phys. Chem. A, 2000, 104, 7140.
- 30 L. Maron and C. Teichteil, Chem. Phys., 1998, 237, 105.
- 31 P. C. Hariharan and J. A. Pople, Theor. Chim. Acta, 1973, 28,
- 32 (a) J. P. Perdew and Y. Wang, Phys. Rev. B, 1992, 45, 13244; (b) A. D. Becke, J. Chem. Phys., 1993, 98, 5648; (c) K. Burke, J. P. Perdew, and Y. Wang, in "Electronic Density Functional Theory: Recent Progress and New Directions", J. F. Dobson, G. Vignale, and M. P. Das, Eds, 1998,
- 33 Gaussian 98 (Revision A.09), M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A. Montgomery, Jr., R. E. Stratmann, J. C. Burant, S. Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. Cioslowski, J. V. Ortiz, A. G. Baboul, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, C. Gonzalez, M. Challacombe, P. M. W. Gill, B. G. Johnson, W. Chen, M. W. Wong, J. L. Andres, M. Head-Gordon, E. S. Replogle, and J. A. Pople, Gaussian, Inc., Pittsburgh PA, 1998.
- 34 (a) A. E. Reed, L. A. Curtiss and F. Weinhold, Chem. Rev., 1988, 88, 899; (b) L. Perrin, L. Maron and O. Eisenstein, Faraday Discuss., 2003, 124, 25; E. D. Brady, D. L. Clark, J. C. Gordon, P. J. Hay, D. W. Keogh, R. Poli, B. L. Scott and J. G. Watkin, Inorg. Chem., 2003, 42, 6682.