Synthese und Kristallstruktur der "Fluorid-Ammoniakate" Zr(NH₃)F₄ und Hf(NH₃)F₄

Christian Plitzko, Michael Strecker und Gerd Meyer*

Hannover, Institut für Anorganische Chemie der Universität

Bei der Redaktion eingegangen am 4. Juli 1996.

Professor Hinrich Seidel zum 65. Geburtstag gewidmet

Inhaltsübersicht. Farblose, leicht spaltbare Einkristalle von $Zr(NH_3)F_4$ und $Hf(NH_3)F_4$ ohne ausgeprägten Habitus erhält man durch Oxidation von Zirconium- bzw. Hafnium-Metallpulver mit NH_4HF_2 (molares Verhältnis 1:2) in verschweißten Monelampullen bei Reaktionstemperaturen von 380–450 °C. Die beiden Ammoniakate kristallisieren isotyp in der triklinen Raumgruppe P1 (Nr. 2) mit a = 601,4(1)/597,8(8) pm

 $[Zr(NH_3)F_4/Hf(NH_3)F_4], b = 802,8(2)/800,6(12) pm,$ $c = 862,3(2)/860,8(8) pm, <math>\alpha = 106,39(1)/106,19(10)^\circ,$ $\beta = 104,25(1)/104,51(9)^\circ, \gamma = 106,83(1)/106,69(11)^\circ, Z = 4.$ Es liegen zweifach bekappte trigonale Prismen [M(NH_3)F_7] (M = Zr, Hf) vor, die über gemeinsame Kanten und Ecken zu gewellten Schichten verknüpft sind, die ihrerseits über Wasserstoffbrückenbindungen zusammengehalten werden.

Synthesis and Crystal Structure of the Fluoride-Ammine Complexes $Zr(NH_3)F_4$ and $Hf(NH_3)F_4$

Abstract. Colourless, easily cleavable single crystals of $Zr(NH_3)F_4$ and $Hf(NH_3)F_4$ without special shape are obtained by oxidation of zirconium and hafnium metal powder with NH_4HF_2 (molar ratio 1:2) in sealed Monel ampoules at reaction temperatures of 380–450 °C. The two fluoride-ammine complexes crystallize isotypically in the triclinic space group $P\overline{1}$ (no. 2) with a = 601.4(1)/597.8(8) pm [Zr(NH_3)F_4/Hf(NH_3)F_4], b = 802.8(2)/800.6(12) pm,

c = 862.3(2)/860.8(8) pm, α = 106.39(1)/106.19(10)°, β = 104.25(1)/104.51(9)°, γ = 106.83(1)/106.69(11)°, Z = 4. Bicapped trigonal prisms [M(NH₃)F₇] are connected via edges and corners to form corrugated layers that are held together by hydrogen bonding.

Keywords: Crystal structure; synthesis; ammine complexes; fluoride; zirconium; hafnium

Einleitung

Moleküle wie SiF₄ bilden leichter Ammoniakate als "ionische" Feststoffe, in denen wie in ZrF_4 Polyeder mit höheren Koordinationszahlen (hier: 8) vorliegen, die miteinander verknüpft sind. Hierauf hat bereits *W. Biltz* [1] hingewiesen.

Fluorid-Ammoniakate sind außer durch Umsetzung von Fluoriden mit Ammoniak auch durch Oxidation von (Halb-)Metallen mit Ammonium- bzw. Hydraziniumfluoriden zugänglich: Die Synthese von ein-

Prof. Dr. G. Meyer Institut für Anorganische Chemie der Universität Greinstr. 6 D-50939 Köln kristallinem [Si(NH₃)₂F₄] aus Silicium-Pulver und NH₄HF₂ ist hierfür ein gutes Beispiel [2]. [Si(NH₃)₂F₄] kristallisiert in einem "Molekülgitter", in dem oktaedrische Moleküle *trans*-[Si(NH₃)₂F₄] lediglich durch Wasserstoffbrückenbindungen zusammengehalten werden.

Mit dieser Methode ist aber auch die Synthese von Ammoniakaten von Fluoriden mit "Ionengittern" möglich, die mit Ammoniak nicht ohne weiteres reagieren. Dies wird durch die Bildung der Fluorid-Ammoniakate $Zr(NH_3)F_4$ und $Hf(NH_3)F_4$ eindrucksvoll gezeigt, über die wir in dieser Arbeit berichten.

Fluorid-Ammoniakate könnten sich als wertvolle "Precursor" zur Gewinnung von Nitridfluoriden erweisen, über die man noch wenig weiß. So ist erst kürzlich ZrNF in geringer Ausbeute bei der Ammonolyse von ZrF_4 erhalten worden [3].

^{*} Korrespondenzadresse:

Experimentelles

Zirconium- bzw. Hafnium-Metallpulver (Heraeus, 99,9%) werden mit NH₄HF₂ (Riedel-de-Haën, p. a.) im molaren Verhältnis 1:2 vermengt und unter Argon (Linde 4.6) in eine Monelampulle (DIN 2.4360) eingeschweißt, die zum Schutz vor Oxidation in eine evakuierte Quarzglasampulle eingeschmolzen wird. Die Reaktionstemperatur wird langsam auf 400 °C und nach vierwöchiger Reaktionsdauer schnell auf Raumtemperatur gebracht. Während der Reaktion diffundiert der gemäß

 $Zr + 2NH_4HF_2 = Zr(NH_3)F_4 + NH_3 + 2H_2$

gebildete Wasserstoff durch die Monel-Ampullenwand in die sie umgebende Quarzglasampulle.

 $Zr(NH_3)F_4$ und $Hf(NH_3)F_4$ fallen in Form großer, farbloser Kristallklumpen ohne besonderen Habitus an; sie lassen sich leicht entlang großer Flächen spalten. Sie sind gegenüber Sauerstoff und Feuchtigkeit der Luft unempfindlich, beim Lösen in Wasser findet Umsetzung zu einem bislang nicht identifizierten Produkt statt.

Aus den Kristallklumpen wurden jeweils mehrere Einkristalle herausgeschnitten, in Glaskapillaren eingeschmolzen und mit Filmmethoden (Drehkristall- und Weissenberg-Verfahren) auf ihre Güte hin untersucht. Von je einem geeigneten Exemplar wurden vollständige Datensätze mithilfe eines Vierkreisdiffraktometers erstellt; Einzelheiten sind Tab. 1 zu entnehmen.

Ergebnisse und Diskussion

Nach Ausweis der Strukturbestimmungen an Einkristallen entstehen unter den o.g. Bedingungen aus Zirconiumbzw. Hafnium-Metallpulver und NH₄HF₂ die bislang unbekannten Fluorid-Ammoniakate Zr(NH₃)F₄ bzw. Hf(NH₃)F₄, bez. der Kristallstruktur siehe unten. Reaktionen mit einem Überschuß an NH₄HF₂ (d. h. einem molaren Verhältnis Metall : NH₄HF₂ > 1 : 2) führen unter ansonsten gleichen Bedingungen zu den komplexen Ammoniumverbindungen (NH₄)₃MF₇ [7], (NH₄)₂MF₆ [8], NH₄MF₅ und NH₄M₂F₉ [9] (M = Zr, Hf). Bei Versuchen mit geringen Einwaagen oder beim Einsatz großer Ampullen entstehen die binären Fluoride ZrF₄ bzw. HfF₄. Hieraus schließt man, daß der NH₃-Partialdruck in der Monelampulle eine entscheidende Rolle für die Bildung und den Erhalt der Fluorid-Ammoniakate spielt.

Tabelle 1 $Zr(NH_3)F_4$ und $Hf(NH_3)F_4$: Kristallographische Daten und ihre Bestimmung

	Zr(NH ₃)F ₄		Hf(NH ₃)F ₄			
Gitterkonstanten	Einkristall	Pulver ^a)	Einkristall	Pulver ^a)		
a [pm]	601,4(1)	601,27(6)	597,8(8)	598,29(5)		
b [pm]	802,8(2)	803,31(9)	800,6(12)	800,70(8)		
c [pm]	862,3(2)	873,43(9)	860,8(8)	860,80(8)		
α [grd]	106,39(1)	106,39(1)	106,19(10)	106,35(1)		
β [grd]	104,25(1)	104,22(1)	104,51(9)	104,34(1)		
y [grd]	106,83(1)	106,78(1)	106,69(11)	106,89(1)		
Z	4		4			
$V_{\rm m}$ [cm ³ mol ⁻¹]	53,76(2)	53,89(6)	53,24(8)			
Kristallsystem	triklin		triklin			
Raumgruppe	P1 (Nr. 2)		P1 (Nr. 2)			
Diffraktometer	Siemens-Stoe AED 2		Siemens-Stoe	Siemens-Stoe AED 2		
Strahlung	Mo–K α , λ = 71,07 pm		Mo–K α , λ = 71	Mo–K α , λ = 71,07 pm		
Monochromator	Graphit	Graphit		Graphit		
Meßmethode	background-p	background-peak-background		background-peak-background		
Meßbereich [grd]	$2,64 < \theta < 30,0$	$2,64 < \theta < 30,06$		$2,64 < \theta < 30,04$		
Meßtemperatur	20 °C		20 °C			
F(000)	344		460			
Korrekturen für	Untergrund, PL-Faktoren		Untergrund, PL-Faktoren			
$\mu [{\rm mm}^{-1}]$	2,713		28,192	28,192		
Absorptionskorrektur	empirisch, <i>q</i> -scan		empirisch, φ -so	empirisch, φ -scan		
Vermessene Reflexe	4176		2558	2558		
symmetrieunabhängig	2094		2063	2063		
R _{int}	0,1071	0,1071		0,1266		
Strukturbestimmung	Programm SHELXS-86 [4]		Programm SHELXS-86 [4]			
Strukturverfeinerung	Programm SHELXL-93 [4]		Programm SHELXL-93 [4]			
Streufaktoren	aus Int. Tables Vol. C [5]		aus Int. Tables Vol. C [5]			
GOF	0,923		1,060			
R1; wR2 $[I_0 > 2\sigma(I)]$	0,0328; 0,0635	0,0328; 0,0635		0,0980; 0,2397		
R1; wR2 [alle Daten]	0,0593; 0,0706	706 0,1187; 0,2593				
CSD-Nummer	404408		404409			

^a) Pulverdiffraktometer G645 (Huber); Auswertung mit Programm SOS [6]

Unter den für die Synthese gewählten Bedingungen sind $Zr(NH_3)F_4$ und $Hf(NH_3)F_4$ bis 450 °C beständig. Im Gasstrom (NH₃, N₂) bzw. in einer Quarzglaskapillare (Guinier-Simon-Technik) zersetzen sie sich be-

Tabelle 2 $Zr(NH_3)F_4$ (erste Zeile) und $Hf(NH_3)F_4$ (zweite Zeile): Lageparameter und äquivalente Temperaturfaktoren U_{eq} [10⁻¹/pm²]

Atom	x/a	y/b	z/c	U_{eq}^{a})
Zr1	0,2210(1)	0,7910(1)	0,8705(1)	15(1)
Hf1	0,2198(2)	0,7908(1)	0,8704(1)	16(1)
Zr2	0,2423(1)	0,2879(1)	0,8402(1)	14(1)
Hf2	0,2419(2)	0,2880(1)	0,8402(1)	15(1)
F1	0,1406(5)	0,9899(5)	0,7737(3)	21(1)
	0,1413(26)	0,9877(20)	0,7760(20)	23(3)
F2	0,9908(4)	0,7848(5)	0,0200(3)	21(1)
	0,9938(22)	0,7857(21)	0,0221(17)	20(3)
F3	0,1044(4)	0,4970(5)	0,8365(3)	21(1)
	0,1018(26)	0,4950(22)	0,8247(20)	23(3)
F4	0,5714(4)	0,2349(5)	0,9048(3)	18(1)
	0,5730(26)	0,2412(21)	0,9093(19)	21(3)
F5	0,3943(4)	0,0665(5)	0,0850(3)	19(1)
	0,6040(24)	0,9311(21)	0,9112(18)	20(3)
F6	0,4469(4)	0,4545(5)	0,1096(3)	20(1)
	0,5521(21)	0,5435(20)	0,8917(18)	19(3)
F7	0,2578(5)	0,6847(5)	0,6467(3)	23(1)
	0,2553(28)	0,6854(23)	0,6445(19)	26(3)
F8	0,2882(5)	0,2391(5)	0,6168(3)	23(1)
	0,2914(28)	0,2403(23)	0,6173(18)	24(3)
N 1	0,8108(6)	0,6443(8)	0,6751(5)	23(1)
	0,8140(37)	0,6474(29)	0,6794(28)	19(4)
H1 ^b)	0,7243(49)	0,5531(69)	0,7034(50)	55
H2	0,8095(10)	0,5937(79)	0,5676(48)	55
H3	0,7409(47)	0,7296(42)	0,6794(56)	55
N2	0,8320(6)	0,1438(7)	0,6373(5)	22(1)
	0,8370(36)	0,1475(31)	0,6393(29)	21(4)
H4	0,8068(41)	0,0322(63)	0,5713(59)	55
H5	0,8110(37)	0,2094(55)	0,5755(64)	55
<u>H6</u>	0,7286(48)	0,1373(83)	0,6910(26)	55

^a) $U_{eq} = 1/3 \Sigma_i \Sigma_j U_{ij} a_i 3^* a_j a_j [10]$

^b) H-Lagen konnten nur für $Zr(NH_3)F_4$ lokalisiert werden

reits ab 200 °C unter Bildung bisher nicht charakterisierter Verbindungen, die schließlich (mit Verunreinigungen der Gase bzw. mit der Quarzglaswand) über Oxidfluoride zu ZrO_2 reagieren.

Der thermische Abbau von $Zr(NH_3)F_4$ bzw. Hf(NH₃)F₄ in der Monelampulle unter Inertgas (Argon) bei Temperaturen von 400 bis 600 °C führt zu einem Gemenge von ZrF₄ bzw. HfF₄ und den bereits erwähnten, noch nicht charakterisierten Verbindungen; eine Reaktion zu Oxidfluoriden und ZrO₂ findet aber hier nicht statt.

Kristallstruktur

Die Kristallstruktur der isotypen Fluorid-Ammoniakate $Zr(NH_3)F_4$ und $Hf(NH_3)F_4$ läßt sich im triklinen Kristallsystem (Raumgruppe P1, Nr. 2) beschreiben, vgl. bez. der Gitterkonstanten Tab. 1 und bez. der Lageparameter Tab. 2.

Die grundlegende Baueinheit von $Zr(NH_3)F_4$ und $Hf(NH_3)F_4$ ist das $[M(NH_3)F_7]$ -Polyeder (M = Zr, Hf), das als zweifach bekapptes trigonales Prisma, dessen Kappen die NH₃-Gruppe und ein Fluoratom bilden, beschrieben werden kann (Abb. 1). Die beiden symmetrieunabhängigen Metallatome haben sehr ähnliche Koordinationssphären, die sich nur geringfügig in den Abständen (und Winkeln) unterscheiden (Tabelle 3).

Die Polyeder $[M(NH_3)F_7]$ werden gemäß z.B. Zr $1N1_{1/1}F1_{1/2}F2_{1/2}F3_{1/2}F4_{1/2}F5_{2/2}F7_{1/1}$ so miteinander verknüpft, daß die Polyeder um kristallographisch identische Zr-Atome gemeinsame Kanten, jene um kristallographisch verschiedene Zr-Atome gemeinsame Ecken aufweisen. Dies führt zu einer gewellten Schicht parallel (001), aus der die NH₃-Gruppen und je ein Fluoratom, also die beiden Kappen des zweifach bekappten trigonalen Prismas, parallel [001] nach oben und unten herausragen (Abb. 2). Diese neutralen Schichten der Zusammensetzung M(NH₃)F₄ werden in Richtung [001] gestapelt und durch N-H \cdots F-Brücken zusammengehalten (Abb. 3). Sie können durch die "herausragende" Lage des NH₃-Liganden

Abb. 1 Koordinationspolyeder (zweifach bekappte trigonale Prismen) um Zr1 und Zr2 in $Zr(NH_3)F_4$ (und analog im isotypen $Hf(NH_3)F_4$)

	Zr(NH ₃)F ₄	Hf(NH ₃)F ₄	· · ·	Zr(NH ₃)F ₄	Hf(NH ₃)F ₄	
M1–F7	197,3(3)	198,0(20)	M2–F8	195,9(3)	196,0(20)	
M1-F2	211,0(2)	210,1(12)	M2-F3	208,1(3)	207.0(20)	
M1-F1	211,7(3)	208,0(20)	M2–F4	211,9(2)	209.0(20)	
M1-F4	213,1(3)	212,0(20)	M2-F2	212,5(2)	211,8(12)	
M1-F5	214,2(2)	213,4(13)	M2-F6	214,1(3)	213,3(14)	
M1-F3	216,7(4)	217,0(20)	M2-F1	215,2(4)	217,0(20)	
M1-F5	219,2(3)	222,0(20)	M2-F6	219,4(3)	217,3(14)	
M1-N1	233,7(4)	229,0(20)	M2-N2	235,9(4)	232,0(20)	
N1-H(1-3)	90(4)		N2-H(4-6)	86(4)		
F1-H3	244(3)		F7-H1	328(4)		
F1-H2	294(5)		F7-H5	375(3)		

Tabelle 3 Einige internukleare Abstände in den Koordinationspolyedern [$Zr(NH_3)F_7$] und [$Hf(NH_3)F_7$] in $Zr(NH_3)F_4$ bzw. $Hf(NH_3)F_4$ [pm]

Abb. 2 Gewellte Schicht der Zusammensetzung M(NH₃)F₄ in Zr(NH₃)F₄ und Hf(NH₃)F₄

Abb. 3 Perspektivische Darstellung der Kristallstruktur von $Zr(NH_3)F_4$ und $Hf(NH_3)F_4$ mit angedeuteten N-H…F-Brükkenbindungen

sowohl innerhalb der Schichten als auch zwischen den Schichten gleichermaßen gut ausgebildet werden. Der schichtförmige Aufbau schlägt sich auch in der leichten Spaltbarkeit der Kristalle parallel (001) nieder.

Wir danken der Deutschen Forschungsgemeinschaft, Bonn, und dem Fonds der Chemischen Industrie, Frankfurt am Main, für die finanzielle Unterstützung auch dieser Arbeit.

Literatur

- [1] W. Biltz, E. Rahlfs, Z. Anorg. Allg. Chem. 1927, 166, 351.
- [2] Chr. Plitzko, G. Meyer, Z. Anorg. Allg. Chem. 1996, 622, 1646.
- [3] R. Schlichenmaier, E. Schweda, J. Strähle, Z. Anorg. Allg. Chem. 1993, 619, 367.

- [4] G. M. Sheldrick, SHELXS-86 und SHELXL-93, Programme zur Bestimmung und Verfeinerung von Kristallstrukturen, Göttingen 1986 und 1993.
- [5] A. J. C. Wilson (ed.), International Tables for Crystallography, Vol. C, Kluwer Academic Publishers, Dordrecht (1992).
- [6] J. Soose, G. Meyer, SOS: Programme zur Auswertung von Guinier-Aufnahmen, Gießen 1980.
- [7] Chr. Plitzko, G. Meyer, *unveröffenlichte Ergebnisse*, 1995/96.
- [8] H. J. Hurst, J. C. Taylor, Acta Crystallogr. 1970, B 26, 417.
- [9] A. Zalkin, D. Einerl, S. P. Velsko, Acta Crystallogr. 1988, C 44, 2050.
- [10] R. X. Fischer, E. Tillmanns, Acta Crystallogr. 1988, C44, 775.