

PII: S0040-4039(96)01122-7

The Mitsunobu Reaction of *ortho*-Ethers of Secondary Benzylic Alcohols. Concise Enantioselective Synthesis of a Key Intermediate of the Novel β-Adrenergic Receptor Antagonist MY336-a

Teodoro S. Kaufman

Instituto de Química Orgánica de Síntesis (CONICET-UNR) and Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Casilla de Correo 991, 2000 Rosario, República Argentina

Abstract: Chiral secondary benzylic alcohols bearing an *ortho*-alkoxy substituent suffer ring-assisted racemization during the Mitsunobu reaction; however, their congeners bearing also a 3-substituent undergo virtually complete Mitsunobu inversion. A concise enantioselective synthesis of a key intermediate of the β -adrenergic receptor antagonist MY336-a was achieved exploiting this observation. Copyright © 1996 Elsevier Science Ltd

One of the most useful attributes of the Mitsunobu reaction¹ is to provide complete configurational inversion at the carbinyl carbon of alcohols under mild conditions. However, certain secondary benzylic alcohols are an exception; it has been reported the obtention of a 1:1 mixture of epimeric products upon Mitsunobu amination of a derivative carrying a *para*-methoxy group² and also it has been demonstrated that reactions of *para*-methoxy phenols led to racemization at the benzylic centre while, under the same conditions, *para*-acetoxy and -pivaloxy phenols gave inverted products.³ In addition, the same ring-assisted racemization process was observed during the Mitsunobu conversion of *exo*-benzonorbornen-2-yl alcohols to amines.⁴

Surprisingly, there are no relevant publications concerning the result of the Mitsunobu reaction of *ortho*substituted benzylic alcohols, except for the work of Ku⁵ and Rao,⁶ showing respectively that the thioacetoxylation of 2-methyl benzyl alcohols and the esterification of a vinylogous of a secondary benzyl alcohol bearing a methoxy group proceeded with complete configurational inversion at their carbinyl centers.

Reported in this letter is a study on the stereochemical outcome of the Mitsunobu reaction of secondary benzylic alcohols carrying phenolic ether groups at the *ortho*-position, which resulted in the elaboration of (+)-1, employing our Mitsunobu-based methodology for the enantioselective synthesis of 1-substituted 1,2,3,4-tetrahydroisoquinolines.⁷ The 1,2-dihydroiosquinoline derivative 1 has been employed for the total synthesis

of the β -adrenergic receptor antagonist MY336-a (2), as well as its epimer (3)^{8a} and their partial analog 4.^{8b} This accomplishment is important because chiral 1-alkyl tetrahydroisoquinoline derivatives displaying a 7,8-substitution pattern on the isocyclic ring are relatively uncommon and difficult to obtain.

In order to understand the influence of the nature of the *ortho*-ether and the substitution pattern on the degree of racemization, alcohols **6a-d** were enantioselectively synthesized from the related ketones **5a-d**⁹ (Scheme 1), employing the CBS reduction process¹⁰ with oxazaborolidine **8** as catalyst, and subsequently reacted with *para*-nitrobenzoic acid under Mitsunobu conditions, modified by Martin,¹¹ to afford esters **7a-d**.

Scheme 1. Reagents and conditions: a) BH3.SMe2, THF, TEA, 8 (10 mol%), 0°C, 8 h; b) 4-NO2-C₆H₄-COOH (3 equiv.), PPh3 (3 equiv.), DEAD (3 equiv.), toluene, RT, 3 h.

The results of these transformations are summarized in the Table. As shown, while the reactions of the 2-substituted benzylic alcohols **6a** and **6b** occurred with partial racemization (less extensive, however, than that observed in the 4-methoxy counterparts), their 2,3-disubstituted congeners **6c** and **6d** underwent essentially complete Mitsunobu inversion.

Table. Chemical yields, optical yields and optical rotation data of alcohols **6a-d** and their inverted *para*-nitrobenzoates **7a-d**.

Compd.	Yield (%)	ee (%)	$[\alpha]_{b}^{2^{0}}/conc.^{c}$	Compd.	Yield	ee (%)	$[\alpha]_{b}^{20}/conc.^{c}$
6a	96	94a,b	+32.3/2.00	7a	88	57a,b	+53.7/2.20
6b	94	> 95a	+26.1/1.44	7 b	85	76 ^a	+67.3/2.18
6c	92	97a,b	+24.5/2.51	7 c	89	93a,b	+95.2/1.05
6d	96	> 95 ^a	-11.1 /2.17	7 d	87	95a	+24.9/0.69

a. Determined by ¹H NMR with (+)-Eu(hfc)₃ in C₆D₆; b. Determined by HPLC with a Chiralcel OD column; mobil phase: hexane/2-propanol (9:1) at 0.5 mL/min; c. All measurements in CHCl₃; concentration in g/dL.

By analogy with related systems,³ this ring-assisted racemization seems to be a consequence of the strongly electron donating ability of the *ortho*-alkoxy substituent, which causes the Mitsunobu's phosphonium salt intermediate¹² to have significant carbocation character. Thus, the reaction products arise partly from an $S_N 1$ reaction pathway.

The synthetically useful inversion observed in 7c and 7d could be a result of a diminished participation of the *ortho*-substituent in the activation of the aromatic moiety, being detrimental for the S_N pathway. This

effect is probably originated in the known out of plane preferred conformation of *ortho*-disubstituted phenolic ethers, resulting in steric inhibition of the resonance.¹³

That the 3-substituent *per se* does not affect the reaction course, being crucial in these 1,2,3trisubstituted compounds only by providing the required steric bulk¹⁴ to produce resonance inhibition of the *ortho*-ether, is further demonstrated by previous observations indicating that 3,4-dimethoxy- α -phenethyl alcohol suffered similar degree of racemization than the related 4-methoxy substituted benzylic alcohol, upon submission to Mitsunobu conditions^{3,7} and that 3-methoxy - α -phenethyl alcohol undewent this transformation with clean inversion.¹⁵

In view of these highly promising results, ketone 9^{8b} (Scheme 2) was submitted to the CBS reduction with 10 mol% of oxazaborolidine 8, yielding alcohol 10;¹⁶ this, in turn, was reacted with toluene-*p*-sulfonamide 13 under Mitsunobu conditions with the addition of pyridine¹⁷ (to avoid elimination by-products), providing 64% of the completely inverted *N*-benzyl-*N*-tosylaminoacetal 11. In an attempt to improve yields, use of the TMAD-TBP couple¹⁸ (3 equiv. each, toluene, 100° C, 32 h) was used, providing 69% of partially racemized 11 (ee 85%), probably due to the extensive heating required for the reaction to proceed. In addition, the potentially more efficient Mitsunobu amination of 10 with triflamide 14 was carried out,¹⁹ however it gave a complex mixture and none of the desired product 12 could be isolated. Therefore, tosylamide 11 was cyclized with HCl under the Jackson protocol,⁷ furnishing (+)-1 in 80 % yield and > 95% ee, as expected.

Scheme 2. Reagents and conditions: a) BH₃.SMe₂, THF, TEA, 8 (10 mol%), RT, 8 h (> 95% ee); b) TsNHCH₂CH(OMe)₂ (13, 3 equiv.), PPh₃ (3 equiv.), DEAD (3 equiv.), pyridine (1 equiv.), toluene, RT, 3 h (64%, >95% ee) or TfNHCH₂CH(OMe)₂ (14), PPh₃, DEAD, toluene, RT, 3 h, complex mixture; c) 6 N HCl, dioxane, reflux (82%, > 95% ee).

In conclusion, a short enantioselective synthesis of a key intermediate of MY336-a has been achieved based on the observation that *ortho*-ethers of chiral secondary benzylic alcohols undergo virtually complete Mitsunobu inversion when a 3-substituent is present in their structure. The synthesis of related compounds in optically active form employing the same strategy is currently under study.

Acknowledgements

The author gratefully acknowledges CONICET, UNR, Fundación Antorchas, Fundación Prats and IFS for financial support. Dr. Gabriel Radivoy (UNS) is also acknowledged for optical rotation determinations.

References and Notes

- 1. For leading reviews, see: (a) Mitsunobu, O. Synthesis 1981, 1-28; (b) Castro, B. R. Org. Reactions 1983, 29, 1-162; (c) Hughes, D. L. Org. Reactions 1992, 42, 335-656.
- 2. Iida, H.; Yamazaki, N.; Kibayashi, C. Tetrahedron Lett. 1985, 26, 3255-3258.
- (a) Brown, R. F. C.; Jackson, W. R.; McCarthy, T. D. Tetrahedron Lett. 1993, 34, 1195-1196; (b) ibid. Tetrahedron 1994, 50, 5469-5488.
- (a) Grunewald, G. L.; Paradkar, V. M.; Pazhenchevsky, B.; Pleiss, M. A.; Sall, D. J.; Seibel, W. L.; Reitz, T. J. J. Org. Chem. 1983, 48, 2321-2327; (b) Grunewald, G. L.; Arrington, H. S.; Bartlett, W. J.; Reitz, T. J.; Sall, D. J. J. Med. Chem. 1986, 29, 1972-1982.
- 5. Ku, T. W.; Kondrad, K. H.; Gelason, J. G. J. Org. Chem. 1989, 54, 3487-3491.
- (a) Rao, A. V. R.; Yadav, J. S.; Reddy, K. B.; Mehendale, A. R. J. Chem. Soc., Chem. Commun. 1984, 453-455; (b) *ibid. Tetrahedron* 1984, 40, 4643-4647.
- 7. Ponzo, V. L.; Kaufman, T. S. Tetrahedron Lett. 1995, 36, 9105-9108.
- 8. (a) Kaufman, T. S. J. Chem. Soc., Perkin Trans. 1 1996, in the press; (b) Kaufman, T. S. J. Chem. Soc., Perkin Trans. 1 1993, 403-404.
- 9. Compounds 5a-c are commercially available. For the synthesis of 5d see Kaufman, T. S. Synth. Commun. 1992, 22, 1913-1921.
- (a) Corey, E. J.; Bakshi, R. K.; Shibata, S. J. Am. Chem. Soc. 1987, 109, 5551-5553; (b) Mathre, D. J.; Thompson, A. S.; Douglas, A. W.; Hoogsteen, K.; Carroll, J. D.; Corley, E. G.; Grabowski, E. J. J. J. Org. Chem. 1993, 58, 2880-2888.
- 11. Martin, S. F.; Dodge, J. A. Tetrahedron Lett. 1991, 32, 3017-3020.
- The reaction mechanism has been studied in depth. See (a) Adam, W.; Narita, N.; Nishizawa, Y. *ibid.* **1984**, 106, 1843-1845; (b) Varasi, M.; Walker, K. A. M.; Maddox, M. L. J. Org. Chem. **1987**, 52,
 4235-4238; (c) Hughes, D. L.; Reamer, R. A.; Bergan, J. J.; Grabowski, E. J. J. Am. Chem. Soc.
 1988, 110, 6487-6491; (d) Camp, D.; Jenkins, I. D. J. Org. Chem. **1989**, 54, 3045-3049.
- This is clearly reflected in the downfield ¹³C NMR resonances of the carbon atoms attached to the *ortho* oxygen [compare 6a (54.99), 6b (60.53), 6c (69.77) and 6d (74.56)]; see Kaufman, T. S.; Jürgens, A. R.; Sindelar, R. D. Magn. Reson. Chem., 1990, 1178-1181, and references cited therein.
- 14. For an example and discussion on 3-substituents controlling the reactivity of *ortho*-alkoxy substituted benzaldehydes, see Jones, P. R.; Jaglowski, A. J., Jr. J. Org. Chem. **1990**, 55, 3891-3896.
- 15. Chen, C.-P; Prasad, K; Repic, O. Tetrahedron Lett. 1991, 32, 7175-7178.
- 16. All new compounds gave spectral and analytical data (reported in ref. 8) consistent with their proposed structures. Optical rotation data (in CHCl₃): $10 [\alpha]_{D}^{20}$: +25.6 (c = 1.24); $11 [\alpha]_{D}^{20}$: -3.4 (c = 1.6); $1 [\alpha]_{D}^{20}$: +184.2 (c = 2.2).
- 17. Wovkulich, P. M.; Shankaran, K.; Kiegiel, J.; Uskokovic, M. R. J. Org. Chem. 1993, 58, 832-839.
- 18. Tsunoda, T.; Yamamiya, Y.; Kawamura, Y.; Ito, S. Tetrahedron Lett. 1995, 36, 2529-2530.
- 19. Edwards, M. L.; Stemerick, D. M.; McCarthy, J. R. Tetrahedron Lett. 1990, 31, 3417-3420.

(Received in USA 30 April 1996; revised 3 June 1996; accepted 4 June 1996)