LIEBIGS ANNALEN DER CHEMIE

HERAUSGEGEBEN VON DER GESELLSCHAFT DEUTSCHER CHEMIKER

JAHRGANG 1986 · HEFT 12 · SEITE 2009 - 2182

Dieses Heft wurde am 12. Dezember 1986 ausgegeben

Aminoglycoside Antibiotics – Fortamine Aglyca Total Synthesis, Optical Resolution, Chemical Modifications

Jürgen Schubert, Reinhard Schwesinger, Lothar Knothe, and Horst Prinzbach*

Institut für Organische Chemie und Biochemie, Universität Freiburg, Albertstraße 21, D-7800 Freiburg i. Br.

Received May 9, 1986

Starting from the dianhydro-*epi*-inositol 10 (available ultimately from benzene) an expedient total synthesis of enantiomerically pure (+)/(-)-de-O-methylfortamines (derivatives) has been developed. Key steps are the regiospecific epoxide openings which occur intramolecularly in the diepoxybis(urethane) 11 and intermolecularly by (+)-1-phenylethylamine in the epoxyurethanes *rac*-13. The diastereomeric adducts (30, 32) are quantitatively separated by crystallization/chromatography. Following hydrogenation, natural and nonnatural *cis*-1,4-inosadiamines are obtained optically pure [e.g. fortamine (-)-1, *ent*-fortamine (+)-1, 3-O-demethylfortamine (+)-38]. This approach, which was optimized by numerous model reactions, allows wide chemical modifications and leads among others to 3-O-demethylfortamine and *ent*-fortamine derivatives in which only the (6)4-OH-group, the one to be glycosidated, remains unprotected.

Aminoglycosid-Antibiotika — Fortamin-Aglyca Totalsynthese, Racemattrennung, chemische Modifizierungen

Ausgehend vom Dianhydro-epi-inosit 10 (letztlich erhältlich aus Benzol) wurde eine leistungsfähige Synthese für enantiomerenreine (+)/(-)-Des-O-methylfortamine (Derivate) entwickelt. Zentrale Schritte sind die regiospezifischen Epoxidöffnungen, intramolekular beim Diepoxybis(urethan) 11 und intermolekular mit (+)-1-Phenylethylamin bei den Epoxyurethanen rac-13. Die diastereomeren Addukte (30, 32) können verlustfrei durch Kristallisation/Chromatographie getrennt werden. Nach hydrierender Spaltung werden natürliche und nichtnatürliche cis-1,4-Inosadiamine enantiomerenrein erhalten [z. B. Fortamin (-)-1, ent-Fortamin (+)-1, 3-O-Desmethylfortamin (-)-38, ent-3-O-Desmethylfortamin (+)-38)]. Der in zahlreichen Modellreaktionen optimierte Syntheseweg erlaubt breite che-

Liebigs Ann. Chem. 1986, 2009-2052

© VCH Verlagsgesellschaft mbH, D-6940 Weinheim, 1986 0170-2041/86/1212-2009 \$ 02.50/0 mische Modifizierungen und führt u.a. zu 3-O-Desmethylfortamin- und ent-Fortamin-Derivaten, in denen nur die zur Glycosidierung gebrauchte (6)4-OH-Gruppe ungeschützt bleibt.

Fortamine (1)*), sannamine (2), and sporamine (3) are the aglycone components of a recently discovered family of aminoglycoside antibiotics, i.e. fortimicins¹⁻⁸⁾ ("astromicins"⁹⁾), sannamycins¹⁰⁻¹³⁾, istamycins¹⁴⁻¹⁶⁾, sporaricins¹⁷⁻¹⁹⁾, lysinomycins^{20,21)}.

These structurally similar systems exhibit a broad activity spectrum against both Gramnegative and -positive bacteria²²⁾ and are of additional interest on account of their reduced nephro- and ototoxicity as well as their activity against aminoglycoside-resistent strains²³⁾.

A peculiarity of this new class of antibiotics is their structural simplicity: They consist of only one monosaccharide (purpurosamine) and aglycone moiety. Information concerning structure – activity relationship, especially in fortimicins, can be summarized for the aglycone part in the following way:

1) The amino functions in 1,4-position (*cis*- or *trans*) and the 5-OH group²⁴) are essential. Absence of the 4-*N*-methyl group²⁵ and the 4-*N*-acyl group^{11,14,17,26}) nearly always results in entire loss of activity (except for lysinomycins). Alterations of the acyl group have positive effects only in a few cases^{4,27}.

2) The 2- and 3-positions can be modified in a wide range with favourable consequences on the antibacterial activity. To this group belong the 2-deoxy compounds (sannamycins, istamycins, sporaricins), the 3-O-demethyl derivatives^{4,5,11,25}, 3-demethoxy-3-fluorosporaricin¹⁸, and 2-deoxy-3-demethoxyfortimicin A⁶).

Several total syntheses of aglycones 1-3 from racemic or nonchiral precursors have been accomplished in the last few years (parallel to this work)^{28a}. They have in common that, with mostly moderate yields, (unseparated) racemates are obtained. Enantiomerically pure aglycones have been accessible, so far, only from biological sources [e.g. fortamine (1) by hydrolysis of fortimicine B^{28b}].

Hasegawa et al. (1980)²⁹⁾ used 1-methoxycyclo-2-hexene (*rac*-4) for a lengthy synthesis (14 steps) with low overall yield of a (\pm) -sporamine derivative suitably protected for glycosidation (7% *rac*-5). *Honda* and *Suami* (1982)³⁰⁾ transformed the diazide *rac*-6 (or the cheap

^{*)} In this paper cyclohexane numbering (in parentheses) is used (cf. ref.⁴⁰) - in variance to the numbering in the fortimicin literature.

myo-inositol, resp.) into *rac*-7 (4%) (19 steps with elaborate protecting group manipulations). The latter was connected to purpurosamine yielding an α -glycoside (37%).

Knapp et al. $(1983)^{3()}$ constructed the intermediate *rac*-8 starting with 1,3-cyclohexadiene (7 steps, ca. 50%), from which (\pm) -fortamine (*rac*-1, ca. 50%), (\pm) -sannamine (*rac*-2) and (\pm) -sporamine (*rac*-3) were produced. Kuo and Wendler (1984)³²⁾ synthesized (\pm) -fortamine, starting from the *trans*-glycol diacetate *rac*-9, in which the two amino groups were introduced via Diels-Alder addition of dimethyl azodicarboxylate³⁶⁾.

Aiming at a total synthesis of such pseudo-disaccharide antibiotics which would allow broad modifications in the sugar³⁶ as well as in the nonsugar part, we designed a route to the aglycone part which features several advantages – as exemplified in this paper with the 3-O-demethylfortamines.

From our earlier work we had at our disposal a pool of anhydro conduritols and anhydro(deoxy)inositols^{37,38)} that is derived from benzene. Their preparative value for the synthesis of polyfunctionalized cyclohexanes, especially of *cis*-1,4-(deoxy)inosadiamines $(\mathbf{B}\rightarrow \mathbf{A})^{39,40}$, *cis-chiro*-inosatriamines $(\mathbf{E}\rightarrow \mathbf{D})^{41}$, and of *cis*-1,3-diamino analogues $(\mathbf{B}\rightarrow \mathbf{C}, \mathbf{E}\rightarrow \mathbf{F})^{41,42}$ has already been amply demonstrated. Early relevant examples are the achiral aglycones streptamine and 2-deoxystreptamine. With regard to the target substances 1-3, a severe restriction is the poor kinetic differentiation between the opening of the individual epoxide rings in **B** and **E** with the consequence that two (or three) different monovalent N-nucleophiles cannot be introduced with sufficient selectivity.

Liebigs Ann. Chem. 1986

The eventually successful strategy for the synthesis of (\pm) -fortamine and the individual enantiomers, resp., is generalized in Scheme 1: Starting material was the *trans*-diol **B** (\equiv 10; 1,2:4,5-dianhydro-*epi*-inositol³⁷). The methylamino group, attached to 10 (\equiv G), was introduced intramolecularly (G \rightarrow H). The O-N spacer, simultaneously an *O*,*N*-protecting group, was designed to guarantee α -attack and to favour the C-3 addition of the second N-nucleophile in the intermediate H. In the latter, the X,O functionalities at C-4, C-5 are potential sites for chemical modifications. The primary amino group was introduced at C-3 in H by a chiral amine, the choice of which was based on its availability and suitability for the following manipulations (separation of the diastereomers, removal of the R* group). This procedure has the advantage that at the stage I, only the 6-OH group (after protection of the NHR* functionality), which is to be glycosidated, remains unprotected.

Scheme 1

Cyclization $G \rightarrow H$

The bis(urethane) 11, accessible from the diepoxydiol 10 and methyl isocyanate without detraction by epoxide migration in nearly quantitative yield, seemed to fulfill all the prerequisites necessary for a selective transformation $\mathbf{G} \rightarrow \mathbf{H}$. In (intramolecular) epoxide opening reactions with the ambident carbamoyl group, preferential *N*-attack⁴³ under S_N2 conditions (S_N1 conditions favour *O*-attack⁴⁴) is observed. The substitution at C-1(5), a 5-exo process, should be very much faster than at C-2(4) (6-endo)⁴⁵, though exceptions to this rule are not uncommon. Typical base systems for such cyclizations^{43,44,47} like *tert*-BuOK/THF, *tert*-BuOK/*tert*-BuOH, NaH/THF, pyridine, DBN/THF proved to be unsuitable, primarily because 11 is not sufficiently soluble in these solvents.

Deprotonation at C-3 and formation of the allylic alcohol is another plausible complication. Finally, a procedure was followed in which a saturated solution of 11 in extremely purified, absolute acetonitrile under an inert atmosphere (Ar, N₂) is treated at 60 °C with 5 mol-% of the phosphorane base 12 [tris(dimethylamino)(methylimino)phosphorane]⁴⁸. After total conversion (4 h) a 7:2:3:3 equilibrium mixture (97% isolated; no olefinic component) consisting of the primary product *rac*-13a, the 4-hydroxy-5-carbamate *rac*-13b, the 4,5-bis(carbamate) *rac*-13c, and the diol *rac*-13d was formed. Obviously, cyclization was excessively accompanied by "transesterification". This complication could not be totally avoided by diluting the reaction mixture or by lowering the reaction temperature. Rather than to separate *rac*-13a (required for the selective installation of the

3-CH₃O group of 1) and to recycle the remaining material, the synthesis was pursued with the 3-O-demethyl derivative of (-)-1 as primary goal. To this end the crude 7:2:3:3 mixture was transformed into uniform diol *rac*-13d via alkaline hydrolysis. Unfortunately, this transformation was accompanied by competitive cleavage of the two hetero rings. These side reactions could not (yet) be suppressed by varying the base (methanol, ethanol, 2-propanol, alkoxides). In addition to *rac*-13d at least one by-product (4-6%) was identified (Table 3) in the case of the C₂H₅ONa/ethanol reaction as the ethyl ether *rac*-14a (derivative *rac*-14b). So far the best conditions (1:1 equiv. of C₂H₅ONa/ethanol, 60 °C, 1 h) give a reproducible yield of 71% *rac*-13d (derivative *rac*-13e). Carbamate cleavage via *N*-nitrosation

Liebigs Ann. Chem. 1986

 $(HOAc/NaNO_2)^{49}$ required drastic conditions and was very unselective. In summary, although the intramolecular substitution in the bis(urethane) 11 is indeed regiospecific (>97%), the isolated yield of 65% *rac*-13d (based on 10) was not considered satisfactory and for this reason two (finally futile) variations in the synthetic scheme were investigated. These are described briefly below.

The complications at the stage of rac-13a are caused by the carbamoylation at O-3 of 10. As a consequence, we looked for a mono-O derivative of 10, which could be formed as selective as possible with the use of a protecting group incapable of migration but readily removable under suitable conditions. It was considered feasible to acylate selectively the 3-OH group, which is capable of H-bridging to the neighbouring epoxide-O atoms⁵⁰. Because benzoylation is often more sensitive to the different reactivities of hydroxy groups than e.g. acetylation, 10 was treated with 1.0 equiv. of benzoyl chloride in pyridine (10°C).

Chromatographic separation yielded in addition to 11% of remaining starting material 10 14% of dibenzoate 17, 2% of monobenzoate 16, and 67% of the isomer 15. On larger scale (0.1 mol) 15 could be isolated by fractional crystallization with recycling of the other benzoates in a yield of at least 85% based on conversion. It was transformed nearly quantitatively (92% isolated) into the carbamate 18 and this was cleaved to give 19 with comparable yield. The improvement up to this stage (ca. 75% based on 10) was, however, allegated by some loss in the cyclization to rac-13d (max. yield 85%). By-products were, once again, rac-13a-c, the bis(urethane) 11, and the diol 10. Intermolecular "transesterification" is obviously rather detrimental, too.

In the second alternative *rac*-13d was aimed at via 20a, the bis(urethane) of the well-available anhydroconduritol *rac*-22³⁷⁾. It was assumed that the mixture of products resulting from the cyclization *rac*-20a \rightarrow *rac*-21a could be transformed

Liebigs Ann. Chem. 1986

into uniform diol rac-21d without any loss, epoxide rings being absent. In the reaction with methyl isocyanate the production of rac-20a (86%) was accompanied by the formation of rac-20b, c (ca. 1:1, 6%). As expected, the cyclization of 20a (base 12, acetonitrile, 60°C, 4 h) yielded the mixture rac-21a-d, out of which 83% of rac-21d was obtained by treatment with 1.05 equiv. of CH₃ONa/ethanol (60°C, 2 h). This significantly higher yield, as compared with the 71% of rac-13d, indicated the epoxide ring for the latter case as a main source of the side reactions. This advantage, however, was cancelled by the extremely slow and unselective epoxidation (m-chloroperbenzoic acid, CF₃CO₃H) of rac-21d to rac-13d. Besides

	13a	13b	13c	13d	13e	13f	13g	13h	13i	13j	13k	131	
J3,4	1.0	1.0	_	1.0	1.5	1.5	1.0	1.5		3.5	1.0	3,5	
J3,5	1.5	-	-	1.0	1.0	-	0.8	-		-	1.5	-	
J4.5	4.0	4.5	-	4.0	4.0	4.5	4.0	4.5		3.5	4.0	3,5	
Js . 6	4.0	3.5	2.5	3.5	4.0	4.5	3.5	4.0		6.5	4.0	7.0	
Js.он	11.0	-	-	-	-		11.0	-			10.5	_	

Table 1. ³J Coupling constants for the tricyclic structures 13

	13	*	13*	k *
СН-Х/СН-Ү	ф	Jx, y	Φ	Jx, y
СН-1/СН-2	80°	< 0,5	90°	0
СН-3/СН-4	60°	1.5	10°	5.0
СН-4/СН-5	40-50°	5.0-4.0	40°	5.0
СН-5/СН-6	50°	4.0	140°	6.5

rac-13d several additional components of significant proportions were manifested by ¹H-NMR control, but were not chemically identified. After acetal formation (*rac*-23, 92%) again a selective epoxidation leading to *rac*-24 could not be achieved.

The structures rac-13a - e have been assigned in accordance with their ¹H-NMR spectra. Evidence for the 5-membered ring carbamate units is a doublet at $\delta = 4.9 - 5.15$ (8.0 Hz) (1-H) and a double of doublets at $\delta = 3.95 - 4.15$ (8.0, 2.5 - 4.0 Hz) (6-H). Including the derivatives rac-13f - 1 mentioned below, comparison of the measured ³J values with those calculated ⁵¹ for the extreme conformations $13^*/13^{**}$ (Tables 1, 2) demonstrates a general preponderance of the 4e,5a- rather than the 4a,5e-half-chair conformation with an H-bridge between 5-OH and epoxide O-atoms ($J_{5,OH} = 10.5 - 11$ Hz) (rac-13k, g). This is manifested also by a further, long-range coupling ${}^{4}J_{3,5} = 0.8 - 1.5$ Hz. Both, diol rac-21d ($J_{1,5} = 1.0$, $J_{4,5} = 3.5$, $J_{4,6} = 1.0$, $J_{5,6} = 10.0$, $J_{6,1} = 4.5$ Hz) and its diacetate rac-21e ($J_{1,2} = 3.0$, $J_{2,3} = 7.0$, $J_{3,4} = 8.0$, $J_{4,5} = 3.0$, $J_{6,1} = 3.5$ Hz) in CDCl₃/CD₃OD (3:1) adopt a 1a,2e-half-chair conformation, whereas the acetal rac-23 is more planar ($J_{1,2} = 5.0$, $J_{1,4} = J_{1,5} = 1.0$, $J_{2,3} = 3.0$, $J_{2,6} = 1.0$, $J_{3,4} = 7.5$, $J_{4,5} = 3.0$, $J_{4,5} = 1.0$, $J_{5,6} = 10.0$, $J_{5,6} = 10.0$, $J_{6,1} = 3.0$ Hz). In the acetal rac-24, the threefold annulated 6-membered ring is probably nearly planar ($J_{3,4} = 2.5$, $J_{3,5} = 0.5$, $J_{4,5} = 6.5$, $J_{5,6} = 2.0$ Hz) as in [1.1.1]-tris- σ -homobenzenes⁵²).

Table 3. Selected	J values [H] of the	e bicyclic chiro	compounds	14, 25,	and 34 ((CDCl ₃)
-------------------	-------------	----------	------------------	-----------	---------	----------	----------------------

	14a	14b	25a	25b	25c	25d	34a	34b	34c	34d	34e
J ₂ , 3	4.0	5.0		10.0	5,0	5.0	10.0	9.0		9.0	5.5
J3,4	7.5	7.5	-	10.0	8.5	8.0	11.5	10.5	-	11.0	10.0
J4.5	9.0	8.5	7.5	7.5	8.5	8.5	7.5	8.0	8.0	8.0	9.0
J., 1	6.5	6.5	3.5	3.5	5.5	6.0	3.0	4.0	5.5	3.5	6.5

Epoxide Opening Reactions $H \rightarrow I$

With the transformation of 11 into rac-13d, two intentions of the program had been realized. From nonchiral material, a racemate was produced, the methylamino group was introduced and, at the same time, the *cis*-vicinal 1-OH group was protected. Concerning the regioselectivity of the second epoxide ring opening reaction ($H\rightarrow I$), any prediction based on the differential stereoelectronic effects seemed highly unreliable in view of the complex substitution pattern and mobile conformational situation. Specifically in the case of the diol *rac*-13d, however, the expectation was not unreasonable that, under S_N2 -type conditions, the acyl-*O* functionality at C-1 should sterically and inductively hinder the attack on C-2 more than the 4-OH group an attack on C-3. Initial information on this was gained from experiments with sodium azide as nucleophile. Under conventional conditions (methanol, 3 equiv. of NaN₃, MgSO₄, reflux) *rac*-13d was completely consumed after 6 h (TLC) and only one product was formed. This, isolated in 85% yield, was identified as the desired azide *rac*-25a resulting from C-3 attack. After esterification (excess acetic anhydride/pyridine) of the crude product (uniform by TLC, ¹H NMR) and acetalization (2,2-dimethoxypropane/p-toluenesulfonic acid), again no regio isomers (rac-26b/rac-28a), in addition to the triacetate rac-25b and the acetal rac-27a, resp., were detected. How serendipitous this selectivity of the C-3 opening was, became evident in the reactions of the dibenzyl ether rac-13j and the acetal rac-24, which were prepared from rac-13d along standard procedures. Under the conditions used for rac-13d, rac-13j yielded rac-25c (92%) and a small amount (4%) of rac-26c; rac-24, in a much slower reaction (total conversion after 3 d), produced rac-27a (60%) in addition to a comparable amount (40%) of rac-28a. After chromatographic separation, the individual components have been characterized also as the acetates rac-25b, rac-26b and rac-27b/rac-28b. In the preparation of rac-24, care must be taken that the *p*-toluene-sulfonic acid catalyst is totally free of water, otherwise the bis(acetal) rac-29 is formed via hydrolysis of rac-13d (or rac-24, resp.).

As a chiral amine which met our specifications, 1-phenylethylamine was introduced. Both enantiomers are available commercially and the alkyl group is removable via hydrogenation with Pd/C. With 2 equiv. of R-(+)-amine in boiling dioxane, after total conversion of rac-13d (7 h), a 1:1 mixture of products was formed (TLC, ¹H NMR) which was separated on silica (deactivated with triethylamine) practically without loss. The crystalline components are identified as the diastereomers 30d/30d' (m.p. 76-78°C, 178-180°C). This specificity of C-2attack was additionally substantiated after derivatization: On acetylation of the crude mixture in order to obtain the triacetates 30e/30e' (m.p. 122°C/ 179-181°C), no traces of 31e/31e' were found. Even with very large excess of reagent and long reaction time the NHR* group was not affected; the NHR* group in 30e/30e' was resistent also against Cbz chloride under various conditions.

The loss of material caused mainly by competitive reactions of the epoxide ring during the transformation of the mixture rac-13a - d into uniform rac-13d was reason to postpone this manipulation until the stage of 30a - d/30a' - d'. To this end, the pure components rac-13a - d were treated with (+)-phenylethylamine. rac-13a, b reacted stereospecifically like rac-13d (rac-13b more slowly) to yield the diastereomeric pairs 30a,b/30a',b'; rac-13c needed a Lewis acid or a protic solvent (ethanol, 1-propanol) in order to react with an acceptable rate, but it opened the ring with the same selectivity to give 30c/30c'. In view of the general selectivity, it was surprising that, starting with the crude mixture rac-13a - d (in 1-propanol), after reaction with the amine and treatment with ethanolate, at best a 40% yield of 30d/30d' could be achieved. This alternative therefore was not pursued further.

For glycosidation purposes (e.g. with the aglycone 30d/30d') the OH groups at C-1/C-2 had to be protected selectively from the one at C-4. Deactivation of the secondary amino function (-NHR*) at C-3 was deemed desirable as (strong) bases can interfere with glycosidation. Since the NHR* group in 30e/30e' proved accessible only with difficulty, the following variations were considered: (i) protection of the vicinal *cis*-OH groups in 30d/30d' as acetals, cleavage of the R* group, and protection of the primary amino group or (ii) cleavage of the R* group in 30d, protection of the primary amino group, and acetal formation (next section).

Because from route (i) a pair of diastereomeric acetals is formed, which might be separated even more efficiently than the diols 30d/30d', it was pursued first. 30d (30d') reacts with 2,2-dimethoxypropane (pure or dimethylformamide solution) in the presence of more than 1 equiv. of TosOH (80°C, 1 h, 1 equiv. of acid is consumed to form the ammonium salts) to give nearly quantitatively 32a/32a'. Fortunately, **32a'** (m.p. 191°C) is only slightly soluble in chloroform/ether, whilst 32a (m.p. 142°C) is very soluble. 90% of 32a' can therefore be separated by a single crystallization. A further simplification of the route to the acetals 32a/32a' seemed feasible by altering the sequence $13 \rightarrow 30 \rightarrow 32$ to $13 \rightarrow 24 \rightarrow 32$. Not surprisingly, however, in view of the behaviour of e.g. dibenzyl ether 13j, the step $24 \rightarrow 32$ is not sufficiently regioselective. rac-24 reacts with (+)-phenylethylamine as expected only slowly: with 10 equiv. of $NH_2 - R^*$ after 6 d in dioxane only ca. 30% were consumed, chiro-32a/32a' and neo-33a/33a' (ca. 1:4) being the exclusive products. By addition of Al_2O_3 the reaction can be accelerated (ca. 80% after 6 d), the chiro/neo ratio being raised to ca. 1:3, and in boiling 1-propanol the reaction rate is once more doubled, the share of 32a/32a' being now ca. 35% (ca. 1:2) (Table 9, Experimental). The absolute configuration attributed to the two neo products 33 in the formula scheme is arbitrary. The first fraction 33a' was assigned the (1S)-configuration in analogy to 30d/30d', where the first fraction 30d' is the (1S)-isomer. For comparison with 32b/32b', 33a/33a' were transformed into the acetates 33 b/33 b', whereby once more the NHR* group remained unaffected. Only with the highly reactive trifluoracetic anhydride (CH₂Cl₂, triethylamine, 0° C, 10 min) a bis(trifluoracetyl) derivative (e.g. 32c' from 32a') was readily formed (¹H NMR). All attempts to selectively saponify 32c' to give the 4-OH-unprotected derivative were accompanied by partial N-deacetylation.

The ¹H-NMR differentiation between the *chiro/neo* products resulting from C-3(C-2) attack at **13** was, in most cases, straightforward. The O- and N-carbamoyl H-signals (5-/6-H) with $\delta = 4.25 - 4.7$ and $\delta = 3.5 - 4.1$, resp., each of them exhibiting two large couplings (7-10 Hz), are typical for the *chiro* configurations (Tables 4, 5). In the case of the diastereomeric pairs, the differences in δ values of 2-/3-H are significant. For instance in the pair

30 * ^{R¹O_{R[*]H}}		o s R*Hr	RO 1 6 N RO 1 6 N RO 1 6 N RO 1 6 N RO 0 R ³	,0 30**
	31]*	30**	k
СН-Х/СН-Ү	Ф	Jx, y	φ	Јх, у
СН-2/СН-3	160-180°	9.5-10.5	110-130°	2.5-5.5
CH-3/CH-4	160-180°	9.5-10.5	160-180°	9.5-10.5
CH-6/CH-1	50-60°	4.0-3.0	150-160°	8.0-9.0

Table 4. Estimated dihedral angles [°] and ${}^{3}J$ values [Hz] for the conformers $30^{*}/30^{**}$

30d/30d' $\delta_{2\text{-H}}$ is larger for the (1*R*)-isomer and $\delta_{3\text{-H}}$ smaller than for the (1*S*)-isomer. These δ values are only slightly influenced by the nature of the *O*-substituents of the stereoisomers and amount to 0.2–0.3 ppm for 2-H and to –0.3 to –0.4 ppm for 3-H. These are of reliable diagnostic value, especially when considering the vicinal coupling constants measured for 3-H. The difference $J_{3,4} - J_{2,3}$ lies generally (exception for **30f**) between 6.0 and 9.5 Hz for the (1*R*)- and between 2.5 and 5.0 Hz for the (1*S*)-compounds. On this basis it was possible to assign absolute configuration on the basis of the ¹H-NMR spectra, assuming, however, identical conformations.

Table 5. Selected NMR data $\langle \delta \text{ values}, J[\text{Hz}] \rangle$ of the chiro products 30 (CDCl₃, CDCl₃/CD₃OD*)

	30 d	30d'	30 e	30e'	31	o f *)	30g	30 h	30i	30j	30k	301	301'	30 m	30 m'
δ2-н	3.76	3.55	5,20	4.95	3.38	3.70	5.22	3.87	5.34	3.35	3.51	3.74	3.45	3.72	3.40
бЗ−н	2.51	2.80	2,60	2,93	2,93	2.62	2.64	2.72	2.51	2.67	2,66	2.74	3.02	2,65	3.01
J2, 1	3.0	4.0	2.0	5.0	8.5	3.0	3.0	4.0	1.5	2.0	-	1.0	2.0	1.0	1.0
J3,4	10.0	9.0	8.0	7.5	9.5	10.5	9.0	10.0	9.0	8.0	8.0	8.0	6.5	10.5	6.0
اه. ۱	7.0	7.0	7.5	6.0	3.5	8.0	7.5	7.5	8.5	7.0	8.0	7.5	7.5	8.0	7.5

The regularities concerning the δ values of 2-/3-H observed for the diastereomeric pairs are also indicative of the isopropylidene derivatives in the *chiro* series (Table 6). As can be judged from the J values of 2-/3-H, the boat-conformational character is even more pronounced, the substituents being quasi equatorial.

	27a	27b	32a	32a'	32b	32b'	32d	32e'	32f'	36a	36 b	36c
J1, 2	7.0		7.5	7.0	7,0	7.0	7.5	-	-	7,5	7.0	_
J ₂ ,3	7.5	7.5	7.0	6.0	7.0	7.0	6.5	5.0	6.0	8.0	8.0	7.5
J3,4	12.0	12.0	12.0	12.0	12.5	12.0	12.0	12.0	12.0	12.5	12.0	12.0
J4 , 5	7.5	8.0	8.0	7.5	8.5	8.5	7.0	8.0	7.5	8.5	8.0	7.0
j _{5,6}	9.0	9.5	10.0	9.5	9.5	9.5	9.5	9.5	10.0	9.5	9.5	9,5
J6,1	6.0	6.0	8.0	7.5	8.0	7.0	6.5	_	7.5	6.0	7.0	7.5

Table 6. ³J values [Hz] of the *chiro* acetals 27, 32, and 36 (CDCl₃)

For the *neo* products **26**/**31**(**31**') and the corresponding acetals **28**/**33**(**33**'), the chemical shifts of 4-H and 5-H are (in CDCl₃) significantly different (Tables 7, 8). The absolute configurations, here also derived from the behaviour in TLC, correlate with the facts that $\delta_{4\text{-H}}$ in (supposedly) (1*R*)-**311** is smaller ($\Delta \delta = -0.23$), $\delta_{5\text{-H}}$ in contrast larger ($\Delta \delta = +0.5$) than in (1*S*)-**311**'. The same is true in the case of the acetal pairs **33a**/**33a'** and **33b**/**33b'** (but not for 4-H in **33b**).

Table 7. Estimated dihedral angles [°] and ${}^{3}J$ values [Hz] of the conformers 33*, 33**, and 33***

	0 5 NR ² R*	CH ₃ 0 CH ₃ 0 CH ₃ 0R ¹	CH3 6 0 9 0 4 NR ² R*	сн		CH3 0 5 NR ² R*
33*			3 3 * *		33	***
	33	.*	33'	••	33**	•
СН-Х/СН-Ү	\$	Jx, y	\$	Јх, у	٠	Jx, y
CH-1/CH-2	10-20°	8.0-7.0	40-50°	5.0-4.0	0-10*	8.5-8.0
CH-2/CH-3	0-10°	8.5-8.0	40-50°	5.0-4.0	40-5 0°	5.0-4.0
CH-6/CH-1	70-80°	2.0-1.5	140-150°	6.5-8.0	110-1 20°	2.5-4.0

Table 8. Selected NMR data $\langle \delta \text{ values}, J[\text{Hz}] \rangle$ of the *neo* products 26/31 and 28/33 (CDCl₃)

	26c	26d	31 e	31e'	28a	28b	33a	33a'	33b	33b'
δ4-н		_	3.05	3.28		-	2.94	3.14	3.20	3,20
62-н	4.70	4.73	4.72	4.22	4.99	4.93	4.92	4.38	4.92	4.62
J1,2	2,0	2.0	2.5	2.5	7.5	7.5	7.5	7.5	7.5	8.0
J2,3	2.0	5.0	1.5	1.5	4.5	4.5	3.5	3.0	4.0	4.5
J₃,₄	-	8.0	10.5	10.5	8.0	10.5	11.0	9.5	10.5	8.5
J4,5	3,5	8.5	4.5	4.5	4.5	4.0	4.0	4.5	4.0	4.5
J3.6	6.5	9.0	6.5	6.5	10.0	10.0	9.5	9.5	9.5	10.0
J., 1	8.0	6.0	8.0	8.0	4.0	3.0	2.0	4.0	3.0	4.5

(-)- and (+)-3-O-Demethylfortamines

In the acetals 32a/32a', the NHR* group could not be blocked in a way considered mandatory for glycoside formation. This blocking procedure had to be performed, after cleavage of the R* group, with the primary amine (variation ii).

Catalytic hydrogenation with Pd/C is the standard procedure for this purpose⁵³⁾. After variation of solvent, acid, temperature, and the amount of catalyst in the experiments with the mixture **30a/30a'**, the pure diastereomers could be cleaved in methanol/sulfuric acid (Pd/C, 1 bar H₂, 20 °C, 24 h) cleanly yielding the sulfate salts of **34a/ent-34a**, which crystallize from ethanol/water and have the composition (**34a**)₂ · H₂SO₄ · H₂O $\langle m.p. 262-265^{\circ}C, [\alpha]_{D}^{20}$ values of -92 (+93), 90-94% isolated). For their tetraacetates **34b** (*ent-34b*) $[\alpha]_{D}^{20}$ values of -82 (+83) have been measured. Hydrogenation of the acetals **32a/32a'** in the presence of excess acid yielded, again quantitatively, the enantiomerically pure amines **34a/ent-34a**. With a smaller amount of acid [0.5 mol H₂SO₄ (no excess!) per 1 mol **32a/32a'**], the cleavage of the acetal can be completely prevented. The sulfate salts of **36a/ent-36a** (89-95%) crystallize from ethanol/water and have the composition (**36a**)₂ · H₂SO₄ · 2 H₂O, m.p. 235-240°C.

For glycosidations with 36a (*ent*-36a) the primary amino group had to be protected with respect to the planned manipulations, preferably with the Cbz group. In the reaction with Cbz – Cl in CH₂Cl₂/triethylamine, complications arose with the amine catalyzing the ring closure of the amide 36b to 37a(37b). 36b/37awere easily separated by taking advantage of their very different solubilities in chloroform. In acetone/H₂O/Na₂CO₃ (0 – 20 °C) only 36b is formed (82% isolated). In order to vary the steric demand of the protecting groups, as an example 36bwas cleaved to give the triol *ent*-34c (89%), and the latter was transformed into the acetal *ent*-35 (87%) with benzaldehyde dimethyl acetal.

From 34a (*ent*-34a), after heating with aqueous Ba(OH)₂ solution and subsequent addition of sulfuric acid, the *O*-demethylfortamines were obtained as sulfates $(92-96\% \text{ of } 38a \cdot \text{H}_2\text{SO}_4 \cdot \text{H}_2\text{O}; \text{ decomp. above } 260^{\circ}\text{C})$, and from these, with

equivalent amounts of Ba(OH)₂, the free bases **38a** (*ent*-**38a**). The latter are characterized by their optical rotation $\langle [\alpha]_{D}^{20} = 75 \ (-74) \ (c = 1.0, CH_3OH) \rangle$ and as bis(Cbz) derivatives **38b** (*ent*-**38b**) $\langle m.p. 143 \,^{\circ}C, [\alpha]_{D}^{20} = -56 \ (+56) \ (c = 1.0, CH_3OH) \rangle$. The absolute $[\alpha]_{D}^{20}$ values of **38a** and **38b** correspond with those of naturally occurring fortamine (-88) and its bis(Cbz) derivative (+47)²⁸). Substances which differ only by an *O*- or *N*-alkyl group but prefer the same conformation have $[\alpha]_{D}^{20}$ values which differ only by 5–15 (deg \cdot ml)/dm \cdot g)⁵⁴. Thus, preliminary assignment of the acetals **32a/32a'** could be made. This assignment was proven by the transformation of **32a** into the naturally occurring (-)-fortamine **1**.

(-)- and (+)-Fortamines

The methylation of de-O-methylfortamine 32a to form natural (-)-1 was performed only for analytical purposes and was therefore not optimized. To this end, 32a was transformed into 32d [NaH, benzyl chloride, 60°C, 81% (no N-alkylation!)] and 32d was cleaved by refluxing for several days in methanol/sulfuric acid to give 30f (93%). After methylation (glyme, 2 NaH, 1 CH₃I, 20°C, 10 min, cf. Supplements) 30h (12%) could be separated by chromatography from the mixture which consisted of remaining starting material (35%), 30j (10%), and 30k (36%). After hydrogenation the crude amine 34d was converted nearly quantitatively into the triacetate 34e $\langle m.p. 248 \,^{\circ}C, [\alpha]_D^{20} = -65, (c = 1, CHCl_3) \rangle$. After alkaline hydrolysis, precipitation of BaSO₄, and titration with Ba(OH)₂ solution, the rotation of the resultant free amine confirms the configuration of (-)-fortamine (1). This assignment infers in the separation of the diastereomeric acetals 32f/32f' that the "nonnatural" intermediate is less soluble and therefore easier to isolate. For the isolation of the "natural" product it would therefore be advantageous to separate rac-13d with (S)-(-)-1-phenylethylamine.

Liebigs Ann. Chem. 1986

It was pointed out above that the "transesterification" in 13a prohibited the straightforward modification of the 5-OH function (e.g. methylation) and therefore the expedient preparation of the fortamines along Scheme 1. One obvious solution might be the use of 3-O-protected urethanes 15 (R: base-stable groups like MOM, Bn, THP)⁵⁵⁾. Alternatively, the selective manipulation of the 5(4)-OH group in *rac*-13d was considered. A large repertoire of methods exists⁵⁶⁾ for such a monoprotection of *cis*-1,2-diols. In carbohydrates the axial OH group can be selectively protected via acidic hydrolysis of ortho esters⁵⁷⁾, the equatorial OH group via cleavage of dibutyl stannylen derivatives⁵⁸⁾. En route to the nonnatural (+)-fortamine (*ent*-1) some insight was gained from preliminary experiments with *rac*-13d. The ortho ester 39, formed quantitatively in trimethyl orthoacetate (TosOH, reflux, 1 h), was rapidly hydrolyzed in 80% acetic acid: Within a few minutes besides 67% of the 5-acetate 13f (m.p. 118-122°C), 27% of the 4-acetate *rac*-13g (m.p. 148-150°C) was present.

The selectivity was accordingly lower than hoped for. rac-13f could be isolated easily and without loss because it is very much less soluble in chloroform than rac-13g (intramolecular H-bridge). After one crystallization (60-70% 13f) and recycling the mother liquor (via ammonolysis to give 13d) the total yield of rac-13f based on conversion was better than 90%. The low selectivity of the cleavage of the ortho ester 39 (or the intermediate dioxolenium salt) could be due to an insufficient preponderance of the 4e,5a-conformation (cf. the situation in the acetal 24).

The non-base-catalyzed protection of 4-OH in 13d required a group which was stable against strong base (methylation of 5-OH) and suitable for the following manipulations. After the failure of the acidic MOM-etherification, acid-catalyzed benzyl ether formation with benzyl trichloroacetimidate (BTA, trifluoromethanesulfonic acid) was attempted⁵⁹. Standard conditions, however, only led to a mixture of 50–55% of the 4-benzyl-5-acetate *rac*-13h, 5-benzyl-4-acetate *rac*-13i, dibenzyl ether *rac*-13j, and several decomposition products. Even after recycling the by-products and several variations of the reaction conditions, the yield of 13h was only slightly improved (at best 60%). The ammonolysis to give *rac*-13k (90%) and its methylation to afford *rac*-13l (96%) posed no problems.

The reaction of *rac*-131 with an excess of (+)-1-phenylethylamine was very slow even in boiling 1-propanol and was interrupted after 80% conversion (3 d, the first by-products being visible). The crude mixture, which contained educt and two pairs of diastereomers, could be separated by column chromatography to

give 131 (18%), chiro-301/301' (36% each), and neo-311/311' (4%). This chiro/neo ratio is, as expected, only slightly different from the one observed for the dibenzyl ether 13j. The pairs 301/301' and the acetates 30m/30m' display similar physical properties concerning behaviour in chromatography, melting points, and ¹H-NMR data (Table 5) compared with 30a/30a' and 30b/30b' (the diastereomer marked with ' has the larger rotation and the higher melting point), and as a result 301 was provisionally assigned the natural fortamine configuration. This was subsequently confirmed. After hydrogenolysis and acetate formation starting with 301' the triacetate ent-34e (93%, $[\alpha]_{D}^{20} = +63$) and after alkaline hydrolysis the nonnatural (+)-fortamine ent-1 ($[\alpha]_{D}^{20} = +82$) was isolated.

The fortamines 1/ent-1 and their *O*-demethyl derivatives 38a/ent-38a are characterized as sulfates by their ¹H-NMR spectra. As for the free base (-)-1, for the bis(ammonium) salts the 1a,2e,3e,4e,5a,6a-conformation ("B-type") is confirmed ⁶⁰.

Supplements

The 4-*N*-glycyl substituent in the aglycone part of fortimicin A can be introduced using standard procedures^{27,61)}. It would mean an improvement on methodology and a real asset for our approach if the carbamate entity, also protecting the methylamino group, could be transformed directly into the glycyl rest. Some observations in this direction are reported here. Carbanionic candidates with masked amino group were metallated methyl isocyanide (LiCH₂NC, **41**) and metallated *N*-methylbenzophenone imine [LiCH₂ – N = C(C₆H₅)₂, **43**]⁶²⁾.

Both were tested with N-methyloxazolidinon 63 (42) as substrate, since the reactivity of 41/43⁶⁴⁾ towards carbamates was to our knowledge not documented in the literature. Reaction of 41 with 42, under various conditions, yielded no oxazol 40⁶⁵⁾. In contrast 43⁶⁶⁾ provided (-50 to -10°C) ca. 50% of the adduct 44 or (after hydrolysis) of the glycine derivative 45. Under similar low-temperature conditions 43 reacts with the 4-MEM/3-R*-protected carbamate 32e': After quenching with methanol and workup by chromatography the desired adduct 46 (73% based on conversion, not optimized) could be separated from remaining educt. After quenching with benzyl chloride the C- (47) and not the exprected 5-Oalkylated derivative was the main product.

46 is sensitive under the strongly alkaline conditions of its preparation: When the reaction temperature was raised above 0°C, increasingly the formation of a pair of products (ca. 3:1) was observed, characterized as the aziridines **48/49**. They were formed in the same ratio in the reaction of LDA with **46** (0°C). This rather unusual acetal (ether) substitution by an N-nucleophile⁶⁷⁾ might have been accelerated by complexation with Li cations favouring the 1e,2a,3a,4a,5a,6e-chairs **46***/ **46****, Analogous acetal substitutions by carbanions occur frequently⁶⁸.

46, according to the ¹H-NMR analysis ($J_{1,2} = 6.0$, $J_{2,3} = 5.5$, $J_{3,4} = 4.5$, $J_{4,5} = 3.5$, $J_{5,6} = 1.5$, $J_{6,1} = 10.0$ Hz), prefers (in CDCl₃) a conformation somewhere between the boat with 2(3)-H *trans*-diaxial and the chair with these two hydrogens *trans*-diequatorial. The aziridine rings in **48**/**49** were recognized by their typical ¹H- and ¹³C-NMR shifts and coupling constants⁶⁹. For **48** (two rotamers) a half-chair conformation with quasi-e NCH₃R ($J_{3,4} = 10.0$ Hz) and with quasi-a 2-OH group ($J_{2,OH} = 10.5$ Hz, stabilized by a H-bridge of 2-OH to the aziridine nitrogen) is indicated.

For the glycylation $32e' \rightarrow 46$ an effective protection of the 3-amino group was an essential prerequisite. This was exemplified by the reaction between 43 and the amino acetal *ent*-36c. As a consequence of a fast intramolecular migration of the carbamoyl group, besides several minor uncharacterized components, the urea with bicyclo[3.2.2]nonane skeleton (*ent*-**50** a) was formed, presumably via an amide ion, whose conformation again might be fixed as a Li-complex. Lack of basicity, monoacetylation (**50** b), a slowly exchangeable proton (CD₃OD), a C=O absorption in the IR at 1635 cm⁻¹ (1730 cm⁻¹ for the carbamate **36** c) and the ³J values around the cyclohexane ring ($J_{1,2} = 7.5$, $J_{2,3} = 3.5$, $J_{2,4} = J_{3,4} = 1.0$, $J_{4,5} = 6.0$, $J_{5,6} = 3.5$, $J_{6,1} = 2.0$) are some of the criteria for assigning the structure **50**.

As a first resumee for the use of the Li-organyl 43 in the construction of a glycyl unit from carbamates: The specific reaction conditions invite competitive intramolecular reactions or prohibit the presence of a number of typical substituents. In addition, application to glycosides with a carbamate ring in the aglycone part and with unprotected NH₂ groups, glycyl migration as seen in the fortimicin – isofortimicin transposition⁷⁰ would become highly probable.

In this context, a transannular bond formation in the bicyclic diol **30f** deserves mentioning. In the presence of NaH (glyme) the 7-oxanorbornane **51a** very slowly at 20 °C but rapidly at 80 °C arises via substitution of the carbamoyl group⁷¹ as the main product. With such highly functionalized oxanorbornanes being of considerable preparative interest — in our group for the synthesis of the diazaoctabisvalene **52**⁷²⁾ — the scope of this approach with respect to variations of the substituents in positions 1, 3, and 4 of **30f** is being examined⁷³. In 2-OH-protected **30f** or in the 2-deoxyanalogue **53**, the stereoelectronically unfavourable 1,3-cyclization to give the 7-oxabicyclo[3.3.1]heptanes **54** could not be realized⁷⁴.

Remarks

The reaction sequence of Scheme 1 allows the expedient preparation of *rac*-de-O-methylfortamines, of the individual enantiomers, and of derivatives (type **30** or **31**) in which only one OH group, the one to become glycosidated, is unprotected. The drastic influence of the OR substituents at C-4/C-5 upon the regioselectivity in the epoxide opening reaction $H \rightarrow I$ extends the potential of this route to *neocis*-1,3-inosadiamines (**32**, **33**) and hence to enantiomerically pure 2,5-*diepi*-streptamine derivatives⁷⁵. There are several restrictions concerning the preparation of fortamines 1/*ent*-1; still the route via **32d/30h** could in principle be optimized at different stages. Rather broad manipulations, including epimerization (cf. lysinomycins^{20,21}) at the C-2 (C-3,C-1) positions of 1, appear possible at the 3-*N*/ 4-*O*-protected stage of the diol **34**. The step $G \rightarrow H$ offers the chance for an early optical induction though under the given steric circumstances the chances were not considered very promising. And, indeed, with the (few) chiral bases utilized so far, no significant induction was achieved.

The restrictions mentioned above for 1/ent-1 (derivatives), caused by the "trans." esterification" in 13a are not valid when the sequence of the Scheme 1 is applied to the synthesis of the 2-deoxyfortamine (sannamine) family (2/ent-2), starting from the well-available dianhydro-deoxy-inositol 55⁷⁴). Details of this study^{74,76} as well as of the glycosidation experiments⁷⁷ will be presented in forthcoming publications.

Financial support by the Deutsche Forschungsgemeinschaft, the Fonds der Chemischen Industrie, and the BASF AG is gratefully acknowledged.

Experimental

Melting points: Bock monoskope (uncorrected values). – IR: Perkin-Elmer PE 457. – ¹H NMR: Bruker WM 250, HX 400. – ¹³C NMR: Bruker HX 400 (values marked with an asterisk* are interchangeable). – Optical rotation: PE 141 polarimeter. Specific rotation values are given in (deg \cdot ml)/(dm \cdot g).

General Procedure for Acetylations: The alcohol or amine was dissolved in a 1:1 mixture of pyridine/acetanhydride (1 ml/mmol OH/NH), 4-(dimethylamino)pyridine (50 mg) was added, and the solution was allowed to stand at 20° C for 1 d. After concentrating i. vac. (0.01 Torr) at 50°C, the residue was purified on silica (10 g/mmol product).

(-)-(1R)- and (+)-(1S)- $(1\alpha,2\alpha,3\beta,4\alpha,5\beta,6\beta)$ -3-Ammonio-1-O-methyl-6-(methylammonio)-1,2,4,5-cyclohexanetetrol Sulfate (Fortamine Sulfate) [38c · H₂SO₄/ent-38c · H₂SO₄

(\equiv *ent*-1)]: A mixture of the triacetate **34e** (160 mg, 0.45 mmol) and of Ba(OH)₂ · 8 H₂O (630 mg, 2 mmol) in 10 ml of water was heated at reflux for 6 h. After acidification (pH \approx 3) with dilute sulfuric acid, BaSO₄ was separated by centrifugation. The solution was concentrated i. vac. to afford crude fortamine sulfate (1 · H₂SO₄, 130 mg, 96% yield) as a spectroscopically pure (¹H NMR) yellow oil; free base: $[\alpha]_{D}^{20} = -85$ (c = 1.0, H₂O).

1: ¹H NMR (D₂O): $\delta = 4.27$ (dd, 2-H), 4.22 (dd, 5-H), 4.04 (dd, 1-H), 3.95 (t, 4-H), 3.78 (t, 6-H), 3.55 (s, OCH₃), 3.50 (t, 3-H), 2.90 (s, NCH₃); $J_{1,2} = 3.5$, $J_{2,3} = J_{3,4} = 8.5$, $J_{4,5} = 8.0$, $J_{5,6} = 4.5$, $J_{6,1} = 5.5$ Hz.

$$C_8H_{18}N_2O_4 \cdot H_2SO_4$$
 (304.3)

ent-38c (ent-1): From 34e'; 94%, free base: $[\alpha]_D^{20} = +82$ (c = 1.0, H₂O).

1,2: 4,5-Dianhydro-3,6-bis-O-(methylcarbamoyl)epi-inositol (11): A suspension of the diol 10 (14.4 g, 100 mmol) in a mixture of methyl isocyanate (23.8 ml, 400 mmol) and dioxane (150 ml) was heated at reflux for 4 h. The product began to precipitate after about 2 h. After removing the excess of methyl isocyanate by distillation and on cooling (20°C) a first crop (60-65%) of 11 was isolated by filtration. The filtrate was concentrated i. vac. and the residue recrystallized from methanol; total yield of 11: 24.3 g (94%) as colorless crystals, m. p. 203-205°C. - IR (KBr): 3330, 3070, 2945, 2810, 1700, 1545, 1420, 1310, 1260, 1150, 1130, 1010, 940, 915, 830, 775, 470 cm⁻¹. - ¹H NMR (CDCl₃): $\delta = 5.56$ (t, 3-H), 5.48 (s, 1-H), 5.02 (br. s, NH), 4.83 (br. s, NH), 3.38 (m, 1-, 2-, 4-, 5-H), 2.86 (d, 2 NCH₃); $J_{2.3} = J_{3.4} = 2.5$, $J_{NH,CH_3} = 5.0$ Hz.

C10H14N2O6 (258.2) Calc. C 46.51 H 5.46 N 10.85 Gef. C 46.44 H 5.49 N 10.89

DL- $(1\alpha,2\beta,3\beta,4\beta,5\beta,6\alpha)$ -2,3-Anhydro-1-O,6-N-carbonyl-6-(methylamino)-4-O-(methylcarbamoyl)-1,2,3,4,5-cyclohexanepentol (rac-13a), DL- $(1\alpha,2\beta,3\beta,4\beta,5\beta,6\alpha)$ -2,3-Anhydro-1-O,6-N-carbonyl-6-(methylamino)-5-O-(methylcarbamoyl)-1,2,3,4,5-cyclohexanepentol (rac-13b), DL- $(1\alpha,2\beta,3\beta,4\beta,5\beta,6\alpha)$ -2,3-Anhydro-4,5-bis-O-(methylcarbamoyl)-1-O,6-N-carbonyl-6-(methylamino)-1,2,3,4,5-cyclohexanepentol (rac-13c), and DL- $(1\alpha,2\beta,3\beta,4\beta,5\beta,6\alpha)$ -2,3-Anhydro-1-O,6-N-carbonyl-6-(methylamino)-1,2,3,4,5-cyclohexanepentol (rac-13c), and DL- $(1\alpha,2\beta,3\beta,4\beta,5\beta,6\alpha)$ -2,3-Anhydro-1-O,6-N-carbonyl-6-(methylamino)-1,2,3,4,5-cyclohexanepentol (rac-13d): A suspension of the bis(carbamate) 11 (25.8 g, 100 mmol) and 12 (1.0 ml, 5 mmol) in absolute acetonitrile (100 ml) was heated under N₂ at 60°C for 4 h with vigorous stirring. The solution was cooled, then neutralized (acetic acid) and concentrated i. vac. to give a solid residue which was purified by column chromatography (50 g silica, CHCl₃/CH₃OH, 10:1). rac-13a-d (25.1 g, 97% yield) were obtained as a colorless powder. Column-chromatographic separation (silica, CHCl₃/CH₃OH, 25:1) of 2.58 g of the mixture rac-13a – d afforded successively rac-13c (590 mg, 19%), rac-13a (1.20 g, 46%), rac-13b (330 mg, 13%), and rac-13d (380 mg, 19%).

rac-13a: Colorless crystals, m.p. 175 – 176 °C (CHCl₃/ether, 1:1). – IR (KBr): 3470, 3350, 3320, 3000, 2935, 1775, 1745, 1690, 1530, 1420, 1385, 1295, 1260, 1140, 1025, 945, 860, 775, 760, 660, 555, 515, 460 cm ⁻¹. – ¹H NMR (CDCl₃): $\delta = 5.17$ (d, 4-H), 5.03 (d, 1-H), 5.00 (br. s, NH), 4.22 (dtd, 5-H), 4.10 (dd, 6-H), 3.62 (br. d, 3-H), 3.57 (td, 2-H), 3.20 (d, OH), 2.90 (s, NCH₃), 2.86 (d, NHCH₃); $J_{1,2} = 1.0$, $J_{2,3} = 3.0$, $J_{2,6} = J_{3,4} = 1.0$, $J_{3,5} = 1.5$, $J_{4,5} = J_{5,6} = 4.0$, $J_{5,OH} = 11.0$, $J_{6,1} = 8.0$, $J_{NH,CH_3} = 5.0$ Hz.

 $\begin{array}{cccc} C_{10}H_{14}N_2O_6 \ (258.2) & Calc. \ C \ 46.51 & H \ 5.46 & N \ 10.85 \\ rac-13a: & Found \ C \ 46.24 & H \ 5.49 & N \ 10.83 \\ rac-13b: & Found \ C \ 46.35 & H \ 5.43 & N \ 10.83 \end{array}$

rac-13b: Colorless crystals, m. p. 196–198 °C (CHCl₃/ether, 1:1). – IR (KBr): 3450, 3320, 3010, 2945, 1750, 1725, 1695, 1525, 1445, 1265, 1120, 1085, 1035, 975, 870, 760, 685 cm⁻¹. – ¹H NMR (CDCl₃/CD₃OD, 1:1): $\delta = 5.12$ (t, 5-H), 4.90 (d, 1-H), 4.24 (d, 4-H), 3.98 (dd,

6-H), 3.46 (m, 2-, 3-H), 2.93 (s, NCH₃), 2.77 (s, NCH₃); $J_{1,2} = 0.5$, $J_{3,4} = 1.0$, $J_{4,5} = 4.5$, $J_{5,6} = 3.5$, $J_{6,1} = 8.0$ Hz.

rac-13c: Colorless crystals, m.p. 185–187°C (CHCl₃/ether, 1:1). – IR (KBr): 3360, 3000, 2940, 2810, 1750, 1725, 1530, 1430, 1265, 1150, 1120, 1030, 870, 760, 450 cm⁻¹. – ¹H NMR (CDCl₃): δ = 5.32 (br. s, 4-, 5-H), 5.02 (br. q, NH), 4.92 (br. q, NH), 4.88 (br. d, 1-H), 3.94 (dd, 6-H), 3.44 (br. s, 2-, 3-H), 2.95 (s, NCH₃), 2.86 (d, NH*CH*₃), 2.81 (d, NH*CH*₃); $J_{1,6}$ = 8.0, $J_{5.6}$ = 2.5, J_{NH,CH_3}^{-1} = 4.5 Hz.

C12H17N3O7 (315.3) Calc. C 45.72 H 5.43 N 13.33 Found C 45.45 H 5.46 N 13.26

rac-13d: Colorless crystals, m. p. $152 - 155 \,^{\circ}$ C (CH₃OH). – IR (KBr): 3360, 3300, 2950, 2900, 1780, 1725, 1435, 1400, 1375, 1260, 1155, 1085, 1025, 895, 865, 800, 750, 655, 585, 525 cm⁻¹. – ¹H NMR (D₂O): $\delta = 5.14$ (td, 1-H), 4.23 (dd, 4-H), 4.15 (dd, 6-H), 4.10 (dt, 5-H), 3.65 (s, 2-, 3-H), 2.84 (s, NCH₃); $J_{1,2} = J_{1,3} = J_{3,4} = J_{3,5} = 1.0, J_{4,5} = 4.0, J_{5,6} = 3.5, J_{6,1} = 8.0$ Hz. – ¹³C NMR (D₂O): $\delta = 160.1$ (C=O), 69.4 (C-1), 66.5 (C-5), 64.5 (C-4), 61.0 (C-6), 65.3* (C-3), 53.9* (C-2), 30.0 (CH₃).

C₈H₁₁N₁O₅ (201.2) Calc. C 47.76 H 5.51 N 6.96 Found C 47.66 H 5.58 N 6.95

Preparation of the Diol rac-13d and DL-($1\alpha,2\alpha,3\beta,4\alpha,5\beta,6\beta$)-5-O,6-N-Carbonyl-3-O-ethyl-6-(methylamino)-1,2,3,4,5-cyclohexanepentol (rac-14a) from the Mixture rac-13a – d: A solution of the mixture rac-13a – d (25.8 g, 100 mmol) and NaOC₂H₅ (110 mmol) in ethanol (400 ml) was heated to 60 °C for 1 h. The solution was cooled, then neutralized with dilute sulfuric acid, and concentrated i. vac. The crude product was purified by column chromatography (100 g silica, CHCl₃/CH₃OH, 25:1). rac-13d (13.5 g, 67%) was crystallized from methanol. The mother liquor was subjected to column chromatography (silica, CHCl₃/ CH₃OH, 20:1) to afford rac-13d (800 mg, 4%) and the ethyl ether rac-14a (1.42 g, 5.5%).

rac-14a: Colorless crystals, m. p. 162 °C (CHCl₃/CH₃OH, 50:1). – IR (KBr): 3510, 3360, 2975, 2930, 2895, 1755, 1430, 1385, 1300, 1260, 1110, 1075, 1020, 980, 940, 895, 815, 770, 755, 730, 665, 565 cm⁻¹. – ¹H NMR (CDCl₃/CO₃OD, 10:1): δ = 4.58 (t, 5-H), 3.97 (dd, 1-H), 3.86 (dd, 6-H), 3.80–3.68 (m, 2-, 4-H, CH₂), 3.41 (dd, 3-H), 2.94 (s, NCH₃), 1.23 (t, CH₃); $J_{1,2}$ = 2.5, $J_{2,3}$ = 4.0, $J_{3,4}$ = 7.5, $J_{4,5}$ = 9.0, $J_{5,6}$ = 8.5, $J_{6,1}$ = 6.5, $J_{CH_2CH_3}$ = 7.0 Hz. C₁₀H₁₇N₁O₆ (247.3). Calc. C 48.58 H 6.93 N 5.66 Found C 48.36 H 6.79 N 5.66

 $DL-(1\alpha,2\beta,3\beta,4\beta,5\beta,6\alpha)-2,3-Anhydro-1-O,6-N-carbonyl-6-(methylamino)-1,2,3,4,5-cyclo$ hexanepentol 4,5-Diacetate (rac-13e): By acetylation of 13d (200 mg, 1.0 mmol): 270 mg(95%) of colorless crystals, m.p. 131-132 °C (CHCl₃/ether, 1:1). – IR (KBr): 3000, 2970,1775, 1760, 1745, 1435, 1405, 1395, 1370, 1295, 1250, 1225, 1155, 1120, 1060, 1040, 910, 865, $755, 600, 570, 440 cm⁻¹. – ¹H NMR (CDCl₃): <math>\delta = 5.42$ (dt, 5-H), 5.38 (dd, 4-H), 4.95 (d, 1-H), 3.88 (ddd, 6-H), 3.47 (td, 2-H), 3.43 (qd, 3-H), 2.95 (s, NCH₃), 2.13, 2.11 (s, 2 OAc); $J_{1,2} = J_{1,3} = 1.0, J_{2,3} = 4.0, J_{2,6} = 0.5, J_{3,4} = 1.5, J_{3,5} = 1.0, J_{4,5} = J_{5,6} = 4.0, J_{6,1} = 8.0$ Hz. $C_{12}H_{15}N_1O_7$ (285.3) Calc. C 50.53 H 5.30 N 4.91 Found C 50.21 H 5.17 N 4.99

 $DL-(1\alpha,2\beta,3\beta,4\beta,5\beta,6\alpha)-2,3$ -Anhydro-1-O,6-N-carbonyl-6-(methylamino)-1,2,3,4,5-cyclohexanepentol 5-Acetate and 4-Acetate (rac-13f/rac-13g): A suspension of rac-13d (400 mg, 2 mmol) and p-toluenesulfonic acid monohydrate (35 mg, 0.2 mmol) in trimethyl orthoacetate (4 ml) was heated at reflux for 1 h. The solution was concentrated and 80% aqueous acetic acid (5 ml) was added. After concentrating i. vac. the crude product was extracted with CHCl₃. The monoacetate rac-13f (305 mg, 63%) remains as a colorless powder. Column-chromatographic separation (silica, CHCl₃/CH₃OH, 25:1) of the extract afforded successively rac-13g (130 mg, 27%) and rac-13f (20 mg, 4%).

rac-13f: Colorless crystals, m. p. 118 – 122 °C (CHCl₃). – IR (KBr): 3480, 3025, 2990, 2930, 1760, 1435, 1405, 1375, 1225, 1155, 1075, 1045, 970, 865, 765, 740, 550 cm⁻¹. – ¹H NMR (CDCl₃): $\delta = 5.21$ (t, 5-H), 4.89 (d, 1-H), 4.33 (dd, 4-H), 3.92 (dd, 6-H), 3.49 (s, 2-, 3-H), 2.95 (s, NCH₃), 2.40 (br. s, OH), 2.18 (s, OAc); $J_{1,2} = J_{1,3} = 1.0$, $J_{3,4} = 1.5$, $J_{4,5} = J_{5,6} = 4.5$, $J_{6,1} = 8.0$ Hz. C₁₀H₁₃N₁O₆ (243.2) Calc. C 49.38 H 5.39 N 5.76 *rac*-13f: Found C 49.39 H 5.45 N 5.54

rac-13g: Found C 49.21 H 5.27 N 5.76

rac-13g: Colorless crystals, m.p. 148 – 150 °C (CHCl₃/ether, 1:1). – IR (KBr): 3500, 3030, 2950, 2920, 1750, 1730, 1405, 1370, 1295, 1240, 1155, 1120, 1030, 935, 910, 865, 840, 765, 730, 640, 565, 460 cm⁻¹. – ¹H NMR (CDCl₃): $\delta = 5.23$ (d, 4-H), 5.05 (d, 1-H), 4.21 (dt, 5-H), 4.09 (dd, 6-H), 3.59 (s, 2-, 3-H), 3.19 (d, OH), 2.89 (s, NCH₃), 2.23 (s, OAc); $J_{1,2} = J_{1,3} = J_{3,4} = J_{3,5} = 0.8, J_{4,5} = 4.0, J_{5,6} = 3.5, J_{5,OII} = 11.0, J_{6,1} = 8.0$ Hz.

 $DL-(1\alpha,2\beta,3\beta,4\beta,5\beta,6\alpha)-2,3$ -Anhydro-4-O-benzyl-1-O,6-N-carbonyl-6-(methylamino)-1,2,3,4,5-cyclohexanepentol 5-Acetate (rac-13h): To a suspension of rac-13f (4.86 g, 20 mmol) and benzyltrichloroacetimidate (9.4 g, 40 mmol) in CH₂Cl₂ (100 ml, freshly distilled over P₂O₃) was added trifluoromethanesulfonic acid (0.1 ml, 1 mmol) at 20°C. The alcohol was completely dissolved after stirring for 10 min. After 1 h, the clear solution was washed with dilute NaHCO₃ solution (50 ml) and water (50 ml), then dried (MgSO₄) and concentrated. Column-chromatographic separation of the residue (silica, cyclohexane/ethyl acetate, 3:2) afforded successively trichloroacetamide, the benzyl ether rac-13h (3.47 g, 52%), fractions which contained rac-13i, rac-13j besides decomposition products (¹H NMR), and finally a mixture of rac-13f/g (750 mg, 15%).

rac-13h: Colorless crystals, m. p. 116 – 118 °C (CHCl₃). – IR (KBr): 3030, 2950, 2890, 1755, 1740, 1425, 1390, 1375, 1235, 1090, 1050, 1035, 970, 775, 760, 740, 700 cm⁻¹. – ¹H NMR (CDCl₃): δ = 7.40 – 7.32 (m, 5H), 5.30 (t, 5-H), 4.90 (d, 1-H), 4.67 (m, CH₂), 4.00 (dd, 4-H), 3.85 (dd, 6-H), 3.41 (s, 2-, 3-H), 2.82 (s, NCH₃), 2.15 (s, OAc); $J_{3,4}$ = 1.5, $J_{4,5}$ = 4.5, $J_{5,6}$ = 4.0, $J_{6,1}$ = 8.0 Hz.

 $C_{17}H_{19}N_1O_6\ (333.3)$ Calc. C 61.25 H 5.75 N 4.20 Found C 61.01 H 5:65 N 4.02

DL-(1α,2β,3β,4β,5β,6α)-2,3-Anhydro-4,5-di-O-benzyl-1-O,6-N-carbonyl-6-(methylamino)-1,2,3,4,5-cyclohexanepentol (rac-13j): To a solution of rac-13d (2.0 g, 10 mmol) in DMF (20 ml) at 20 °C was added NaH (750 mg, 30 mmol). After stirring for 15 min benzyl chloride (2.5 ml, 22 mmol) was added by syringe, and stirring was continued for 4 h. The mixture was neutralized with dilute acetic acid, diluted with water (200 ml), and extracted with CH₂Cl₂(2 × 200 ml). The organic layer was washed with water (3 × 200 ml), dried (MgSO₄), and concentrated to give 3.35 g (88%) of colorless crystals, m. p. 60–62 °C (CH₃OH). – IR (KBr): 3115, 2870, 1745, 1435, 1380, 1255, 1025, 870, 735, 690 cm⁻¹. – ¹H NMR (CDCl₃): $\delta = 7.42 - 7.28$ (m, 10H), 4.88 (d, 1-H), 4.80, 4.71, 4.60, 4.49 (d, 2 CH₂), 4.00 (t, 4-H), 3.71 (dd, 6-H), 3.60 (dd, 5-H), 3.41 (t, 3-H), 3.39 (d, 2-H), 2.72 (s, NCH₃); $J_{1.2} = J_{1.3} = 1.0, J_{2.3} = J_{3.4} = J_{4.5} = 3.5, J_{5.6} = 6.5, J_{6.1} = 8.0, J_{CH_2} = 12.5$ Hz.

C22H23N1O5 (381.4) Calc. C 69.28 H 6.08 N 3.67 Found C 67.98 H 6.07 N 3.57

 $DL-(1\alpha,2\beta,3\beta,4\beta,5\beta,6\alpha)-2,3-Anhydro-4-O-benzyl-1-O,6-N-carbonyl-6-(methylamino)-1,2,3,4,5-cyclohexanepentol (rac-13k): Gaseous ammonia was passed through a solution of rac-13h (1.67 g, 5 mmol) in methanol (30 ml) at 20 °C for 30 min. After 1 h, ammonia was again passed through the solution for 15 min. After standing for about 12 h at 20 °C, the solution was concentrated and the product recrystallized from methanol to afford 1.35 g (93%) of colorless crystals, m.p. <math>134-136$ °C. – IR (KBr): 3540, 3480, 2930, 1760, 1750,

1640, 1425, 1385, 1295, 1265, 1150, 1110, 1070, 1030, 860, 770, 740, 700 cm⁻¹. - ¹H NMR (CDCl₃): $\delta = 7.42 - 7.30$ (m, 5H), 4.98 (dt, 1-H), 4.80, 4.73 (d, CH₂), 4.07 (dtd, 5-H), 4.03 (ddd, 6-H), 3.83 (dd, 4-H), 3.54 (m, 3-H), 3.48 (dt, 2-H), 3.14 (d, OH), 2.68 (s, NCH₃); $J_{1,2} = J_{1,3} = 1.0, J_{2,3} = 4.0, J_{2,6} = J_{3,4} = 1:0, J_{3,5} = 1.5, J_{4,5} = J_{5,6} = 4.0, J_{5,OH} = 10.0, J_{6,1} = 8.0, J_{CH_2} = 12.0$ Hz.

C15H17N1O5 (291.3) Calc. C 61.85 H 5.88 N 4.81 Found C 61.69 H 5.88 N 4.66

DL-(1 α ,2 β ,3 β ,4 β ,5 β ,6 α)-2,3-Anhydro-4-O-benzyl-1-O,6-N-carbonyl-5-O-methyl-6-(methylamino)-1,2,3,4,5-cyclohexanepentol (rac-13I): To a suspension of rac-13k (1.16 g, 4 mmol) in glyme (10 ml) was added NaH (170 mg, 7 mmol). After stirring for 15 min, CH₃I (0.44 ml, 7 mmol) was added by syringe, and the mixture was stirred at 20°C for 1 h. The reaction was quenched with ice and CH₂Cl₂ (100 ml) was added. The organic layer was washed with water (2 × 50 ml), dried (MgSO₄), and concentrated to give 1.17 g (96%) of a colorless oil. ¹H NMR (CDCl₃): δ = 7.44-7.32 (m, 5H), 4.87 (d, 1-H), 4.83, 4.65 (d, CH₂), 4.04 (t, 4-H), 3.81 (dd, 6-H), 3.57-3.33 (m, 2-, 3-, 5-H), 3.42 (s, OCH₃), 2.85 (s, NCH₃); $J_{3,4} = J_{4,5} = 3.5$, $J_{5,6} = 7.0, J_{6,1} = 8.0, J_{CH_2} = 12.0$ Hz.

 $DL-(1\alpha,2\alpha,3\beta,4\alpha,5\beta,6\beta)$ -5-0,6-N-Carbonyl-3-O-ethyl-6-(methylamino)-1,2,3,4,5-cyclohexanepentol 1,2,4-Triacetate (rac-14b): By acetylation of 14a (245 mg, 1.0 mmol): 350 mg (94%) colorless crystals, m.p. 149 °C (CHCl₃/ether, 1:2). – IR (KBr): 2970, 2910, 1765, 1740, 1430, 1375, 1225, 1100, 1040, 925, 885, 750 cm⁻¹. – ¹H NMR (CDCl₃): $\delta = 5.42$ (dd, 1-H), 5.27 (dd, 4-H), 5.19 (dd, 2-H), 4.65 (t, 5-H), 3.97 (dd, 6-H), 3.71, 3.53 (dq, CH₂), 3.58 (dd, 3-H), 2.87 (s, NCH₃), 2.13 (s, 2 OAc), 2.12 (s, OAc), 1.17 (t, CH₃); $J_{1,2} = 2.5$, $J_{2,3} = 5.0$, $J_{3,4} = 7.5$, $J_{4,5} = J_{5,6} = 8.5$, $J_{6,1} = 6.5$, $J_{CH_2CH_3} = 7.0$, $J_{CH_2} = 9.5$ Hz.

C16H23N1O9 (373.4) Calc. C 51.47 H 6.21 N 3.75 Found C 51.42 H 6.33 N 3.93

1,2:4,5-Dianhydro-3-O-benzoyl-epi-inositol (15), 1,2:4,5-Dianhydro-6-O-benzoyl-epi-inositol (16), and 1,2:4,5-Dianhydro-3,6-di-O-benzoyl-epi-inositol (17): A solution of the diol 10 (4.32 g, 30 mmol) in pyridine (15 ml) was cooled to 0°C and a solution of benzoyl chloride (4.22 g, 30 mmol) in pyridine (5 ml) was added over 15 min with vigorous stirring. After 15 min at 0°C the solution was concentrated i. vac. and CH₂Cl₂ (200 ml) was added. The organic layer was washed with water (100 ml), dilute sulfuric acid (100 ml), and again with water (100 ml) [from the first water extract 470 mg (11%) of educt 10 was recovered]. The solvent was dried (MgSO₄), filtered, and concentrated to give a solid residue (6.7 g). Column chromatography on silica (CHCl₃/CH₃OH, 10:1) afforded successively 17 (1.48 g, 14%), 16 (140 mg, 2%), and 15 (5.01 g, 67%). Alternatively, the benzoate 15 could be separated from the reaction mixture by fractional crystallization. About 90% of the dibenzoate 17 crystallized from CHCl₃/ether (3:1), then about 80% of the benzoate 15 from CHCl₃/ether (1:1).

15: Colorless crystals, m.p. 134 °C (CHCl₃/ether, 1:1). – IR (KBr): 3480, 3005, 1695, 1600, 1450, 1330, 1275, 1115, 1045, 980, 925, 890, 805, 755, 720, 475 cm⁻¹. – ¹H NMR (CDCl₃): $\delta = 8.17 - 7.49$ (m, 5-H), 5.90 (t, 3-H), 4.70 (td, 6-H), 3.49 (dd, 2-, 4-H), 3.47 (dd, 1-, 5-H), 2.93 (d, OH); $J_{1,2} = 4.0, J_{2,3} = J_{3,4} = 2.5, J_{4,5} = 4.0, J_{5,6} = J_{6,1} = 1.5, J_{6,OH} = 7.0$ Hz.

 $\begin{array}{cccc} C_{13}H_{12}O_5 \ (248.2) & Calc. \ C \ 62.90 \ H \ 4.87 \\ \textbf{15:} & Found \ C \ 62.91 \ H \ 4.80 \\ \textbf{16:} & Found \ C \ 62.88 \ H \ 4.60 \end{array}$

16: Colorless crystals, m.p. 154-158 °C (CHCl₃/ether, 1:1). – IR (KBr): 3450, 3070, 3005, 2930, 1725, 1600, 1460, 1415, 1325, 1275, 1180, 1110, 1060, 990, 900, 870, 745, 710 cm⁻¹. – ¹H NMR (CDCl₃): $\delta = 8.09-7.50$ (m, 5H), 5.77 (s, 6-H), 4.48 (td, 3-H), 3.51 (dd, 1-, 5-H), 3.47 (t, 2-, 4-H), 2.90 (d, OH); $J_{1,2} = 3.5$, $J_{2,3} = J_{3,4} = 3.0$, $J_{3,OH} = 11.5$, $J_{4,5} = 3.5$, $J_{5,6} = J_{6,1} = 1.5$ Hz.

17: Colorless crystals, m.p. 221 °C (subl. at about 195 °C) (CHCl₃/ether, 4:1). - ¹H NMR (CDCl₃): $\delta = 8.20 - 7.51$ (m, 10H), 6.00 (t, 3-H), 5.86 (s, 6-H), 3.57 (t, 1-, 5-H), 3.52 (dd, 2-, 4-H); $J_{1,2} = 4.0, J_{2,3} = J_{3,4} = 3.0, J_{4,5} = 4.0, J_{5,6} = J_{6,1} = 1.5$ Hz.

C20H16O6 (352.3) Calc. C 68.18 H 4.58 Found C 67.99 H 4.30

1,2: 4,5-Dianhydro-3-O-benzoyl-6-O-(methylcarbamoyl)-epi-inositol (18): A solution of the monobenzoate **15a** (1.0 g, 4 mmol) and methyl isocyanate (1.0 ml, 16 mmol) in dioxane (5 ml) was heated at 100 °C for 48 h. After distilling the excess methyl isocyanate and concentrating i. vac. the solid residue was extracted with CHCl₃/ether (1:5). The carbamate **18** (1.12 g, 92% yield) remains as a colorless powder, m.p. 207–210 °C (subl. at about 175 °C). – IR (KBr): 3360, 3025, 2990, 2930, 2820, 1720, 1695, 1600, 1540, 1455, 1425, 1330, 1260, 1175, 1155, 1065, 1005, 945, 920, 890, 810, 775, 755, 710, 640, 470, 380 cm⁻¹. – ¹H NMR (CDCl₃): $\delta = 8.19-7.47$ (m, 5H), 5.88 (t, 3-H), 5.51 (s, 6-H), 4.84 (br. s, NH), 3.50 (dd, 2-, 4-H), 3.43 (t, 1-, 5-H), 2.88 (d, NCH₃); $J_{1,2} = 4.0$, $J_{2,3} = J_{3,4} = 2.5$, $J_{4,5} = 4.0$, $J_{5,6} = J_{6,1} = 1.5$, $J_{NH,CH_3} = 5.5$ Hz.

C15H15N1O6 (305.3) Calc. C 59.02 H 4.95 N 4.59 Found C 58.93 H 4.77 N 4.57

1,2: 4,5-Dianhydro-6-O-(methylcarbamoyl)-epi-inositol (19): A solution of the carbamate 18 (915 mg, 3 mmol) and sodium methoxide (from 10 mg of Na, 0.4 mmol) in methanol (5 ml) was stirred at 20°C for 1 h. The mixture was neutralized with acetic acid, then concentrated, and purified by column chromatography (20 g silica, CHCl₃/CH₃OH, 20:1). The alcohol 19 (565 mg, 94% yield) was crystallized from CHCl₃ to give colorless crystals, m. p. 165-170°C. - IR (KBr): 3350, 2940, 1700, 1545, 1425, 1310, 1270, 1140, 1045, 1000, 940, 910, 825, 755, 465 cm⁻¹. - ¹H NMR (CDCl₃): $\delta = 5.40$ (s, 6-H), 4.73 (br. s, NH), 4.34 (br. td, 3-H), 3.40 (m, 1-, 2-, 4-, 5-H), 2.85 (d, NCH₃), 2.42 (br. d, OH); $J_{2,3} = J_{3,4} = 2.5$, $J_{3,OH} = 11.5$, $J_{NH,CH_3} = 5.0$ Hz.

C₈H₁₁N₁O₅ (201.2) Calc. C 47.76 H 5.51 N 6.96 Found C 47.48 H 5.51 N 6.88

 $DL-(1\alpha,2\alpha,3\alpha,4\beta)-2,3$ - Anhydro-1,4-bis-O- (methylcarbamoyl)-5-cyclohexene-1,2,3,4-tetrol (rac-**20**a): A solution of rac-**22**³⁷ (3.84 g, 30 mmol) and methyl isocyanate (7.15 ml, 120 mmol) in dioxane (20 ml) was heated at 100 °C for 10 h. After distilling the excess methyl isocyanate and on cooling (20 °C) a first crop of product rac-**20a** (4.4 g) was isolated by filtration. The filtrate was concentrated i. vac. and the residue recrystallized from methanol; total yield of rac-**20a**: 6.1 g (84%) of colorless crystals, m. p. 201–203 °C. – IR (KBr): 3320, 3060, 2940, 2920, 1690, 1550, 1420, 1400, 1320, 1265, 1140, 995, 935, 905, 835, 800, 775, 750, 680, 450 cm⁻¹. – ¹H NMR (CDCl₃) 25 °C: δ = 5.80 (br. m, 6-H), 5.67 (br. d, 5-H), 5.65 (br. s, 4-H), 5.46 (br. d, 1-H), 4.85, 4.75, 4.60 (br. s, 2 NH), 3.58 (br. s, 3-H), 3.44 (br. s, 2-H), 2.84, 2.82 (d, 2 NCH₃); 56 °C: δ = 5.78 (m, 6-H), 5.66 (m, 5-H), 5.63 (m, 4-H), 5.43 (d, 1-H), 4.75, 4.62 (br. s, 2 NH), 3.57 (m, 3-H), 3.42 (m, 2-H), 2.84, 2.82 (d, 2 NCH₃); $J_{1,2}$ = 2.0, $J_{2,3}$ = 3.5, $J_{2,6}$ = 2.0, $J_{4,6}$ = 3.0, $J_{5,6}$ = 10.5, $J_{6,1}$ = 4.5, J_{NH,CH_3} = 5.0 Hz.

 $C_{10}H_{14}N_2O_5 \ (242.2)$ Calc. C 49.59 H 5.83 N 11.56 Found C 49.55 H 6.03 N 11.64

By chromatography (silica, CHCl₃/methanol, 5:1) of the mother liquor ca. 100 mg (1%) of *rac*-20d, m.p. 214-217 (ether), 540 mg (6%) of a 1:1 mixture of *rac*-20b/c, and 150 mg (2%) of *rac*-20a are isolated.

20b, c:	$C_{12}H_{17}N_3O_6$ (299.3)	Calc.	C 48.16	H 5.73	N 14.04
		Found	C 47.67	H 5.76	N 13.90
20 d:	$C_{14}H_{20}N_4O_7$ (356.3)	Calc.	C 47.19	H 5.66	N 15.72
		Found	C 46.49	H 5.36	N 15.13

DL-(1α,2α,3β,4β)-3-N,4-O-Carbonyl-3-(methylamino)-5-cyclohexene-1,2,4-triol (rac-21 d): A solution of rac-20a (6.06 g, 25 mmol) and 12 (0.5 ml, 2.5 mmol) in acetonitrile (25 ml) was heated at 60 °C for 4 h. Methanol (10 ml) was added, the brown solution concentrated, and purified by column chromatography (20 g silica, CHCl₃/CH₃OH, 10:1). The mixture rac-21a – d was dissolved in ethanol (10 ml) and a solution of NaOC₂H₅ [prepared from sodium (600 mg, 26 mmol) in ethanol (30 ml)] was added. This solution was heated at 60 °C for 2 h and after cooling neutralized (acetic acid) and concentrated i. vac. The residue was purified by column chromatography (silica, CHCl₃/CH₃OH, 10:1) to give the diol rac-21d (3.85 g, 83% yield) as colorless crystals, m.p. 163 °C (CH₃OH). – IR (KBr): 3380–3320, 2935, 2890, 1735, 1435, 1400, 1385, 1350, 1325, 1240, 1145, 1105, 1090, 1070, 1045, 1025, 905, 890, 855, 785, 760 cm⁻¹. – ¹H NMR (CDCl₃/CD₃OD, 3:1): δ = 6.08 (dd, 6-H), 5.90 (dd, 5-H), 5.02 (m, 4-H), 4.18 (m, 1-H), 3.96 (m, 2-, 3-H), 2.99 (s, NCH₃); $J_{1,5} = 1.0$, $J_{4,5} = 3.5$, $J_{4,6} = 1.0$, $J_{5,6} = 10.0$, $J_{6,1} = 4.5$ Hz.

C₈H₁₁N₁O₄ (185.2) Calc. C 51.85 H 5.99 N 7.56 Found C 51.87 H 6.14 N 7.46

 $DL-(1\alpha,2\alpha,3\beta,4\beta)$ -3-N,4-O-Carbonyl-3-(methylamino)-5-cyclohexene-1,2,4-triol 1,2-Diacetate (rac-**21e**): By acetylation of rac-**21d** (185 mg, 1.40 mmol): 250 mg (93%) of colorless crystals, m.p. 125 °C (CHCl₃/ether, 1:5). – IR (KBr): 2935, 1770, 1745, 1735, 1435, 1400, 1370, 1240 1145, 1060, 1035, 940, 910, 780, 760, 660, 605 cm⁻¹. – ¹H NMR (CDCl₃): $\delta =$ 6.05 (m, 5-, 6-H), 5.54 (m, 1-H), 5.31 (dd, 2-H), 5.06 (m, 4-H), 4.06 (t, 3-H), 2.96 (s, NCH₃), 2.11, 2.08 (s, 2 OAc); $J_{1,2} = 3.0$, $J_{2,3} = 7.0$, $J_{3,4} = 8.0$, $J_{4,5} = 3.0$, $J_{6,1} = 3.5$ Hz.

C12H15N1O6 (269.2) Calc. C 53.53 H 5.62 N 5.20 Found C 53.18 H 5.60 N 5.05

DL-(1α,2α,3β,4β)-3-N,4-O-Carbonyl-1,2-O-isopropylidene-3-(methylamino)-5-cyclohexene-1,2,4-triol (rac-23): A suspension of rac-21d (930 mg, 5 mmol) and p-toluenesulfonic acid monohydrate (50 mg, 0.3 mmol) in 2,2-dimethoxypropane (10 ml) was heated at 60°C for 30 min. The solution was concentrated i. vac., and CH₂Cl₂ (100 ml) was added. The organic layer was washed with 0.5 M NaHCO₃ (50 ml) and with water (50 ml), dried (MgSO₄), and concentrated to give the acetal rac-23 (1.04 g, 92% yield) as colorless crystals, m.p. 115 °C (cyclohexane/ethyl acetate, 2: 1). – IR (KBr): 2980, 2930, 2865, 1750, 1430, 1395, 1380, 1240, 1220, 1165, 1115, 1060, 1035, 1015, 1000, 950, 880, 865, 800, 770, 650 cm⁻¹. – ¹H NMR (CDCl₃): δ = 5.94 (tdd, 6-H), 5.82 (ddd, 5-H), 4.94 (tdd, 4-H), 4.53 (m, 1-H), 4.46 (ddd, 2-H), 4.16 (dd, 3-H), 2.94 (s, NCH₃), 1.40 (s, 2 CH₃); $J_{1,2} = 5.0$, $J_{1,4} = J_{1,5} = 1.0$, $J_{2,3} = 3.0$, $J_{2,6} =$ 1.0, $J_{3,4} = 7.5$, $J_{4,5} = 3.0$, $J_{4,6} = 1.0$, $J_{5,6} = 10.5$, $J_{6,1} = 3.0$ Hz.

C11H15N1O4 (225.3) Calc. C 58.66 H 6.71 N 6.22 Found C 58.57 H 6.74 N 6.38

 $DL-(1\alpha,2\beta,3\beta,4\beta,5\beta,6\alpha)$ -2,3- Anhydro-1-O,6-N-carbonyl-4,5-O-isopropylidene-6-(methylamino)-1,2,3,4,5-cyclohexanepentol (rac-24): rac-13d (1.0 g, 5.0 mmol) and p-toluenesulfonic acid (35 mg, 0.2 mmol) were heated in 2,2-dimethoxypropane (5 ml) under reflux for 1 h. After concentration i. vac. the residue is dissolved in 30 ml of CH₂Cl₂. After workup 1.12 g (93%) of colorless crystals (CHCl₃/ether, 1:4) with m. p. 149 – 150 °C (subl. at ca. 120 °C) are obtained. – IR (KBr): 3020, 3010, 2980, 2965, 2940, 2895, 1775, 1755, 1425, 1395, 1380, 1370, 1340, 1310, 1290, 1255, 1240, 1220, 1175, 1140, 1100, 1060, 1035, 905, 885, 875, 835, 805, 780, 760, 660, 595, 520 cm⁻¹. – ¹H NMR (CDCl₃): δ = 5.00 (ddd, 1-H), 4.59 (dd, 4-H), 4.17 (ddd, 5-H), 4.02 (dd, 6-H), 3.57 (dd, 2-H), 3.43 (tdd, 3-H), 2.95 (s, NCH₃), 1.54, 1.40 (s, 2 CH₃); $J_{1,2} = 2.0, J_{1,3} = 0.5, J_{2,3} = 4.0, J_{3,4} = 2.5, J_{3,5} = 0.5, J_{4,5} = 6.5, J_{5,6} = 2.0, J_{6,1} = 8.5$ Hz. $C_{11}H_{15}N_1O_5$ (241.2) Calc. C 54.77 H 6.27 N 5.81 Found C 54.97 H 6.39 N 5.84

 $DL-(1\alpha,2\alpha,3\beta,4\alpha,5\beta,6\beta)$ -3-Azido-5-O,6-N-carbonyl-6-(methylamino)-1,2,4,5-cyclohexanetetrol (rac-**25a**): A suspension of rac-**13d** (400 mg, 2.0 mmol), NaN₃ (390 mg, 6.0 mmol), and MgSO₄ (1.2 g, 10 mmol) in methanol (10 ml) was heated at reflux for 6 h. After cooling the

reaction mixture was filtered, concentrated i. vac., and purified by column chromatography (10 g of silica, CHCl₃/CH₃OH, 5:1): 380 mg (85%) of colorless crystals, m.p. 183–184°C (ethyl acetate). – IR (KBr): 3510, 3380, 2980, 2135, 1775, 1435, 1400, 1355, 1320, 1285, 1260, 1200, 1090, 1015, 970, 890, 765, 550 cm⁻¹. – ¹H NMR (D₂O): $\delta = 4.66$ (m, 5-H), 4.28 (t, 1-H), 4.05 (dd, 6-H), 3.71 (m, 2-, 3-, 4-H), 2.83 (s, NCH₃); $J_{1,2} = 2.5$, $J_{4,5} = J_{5,6} = 7.5$, $J_{6,1} = 3.5$ Hz.

C₈H₁₂N₄O₅ (244.2) Calc. C 39.35 H 4.95 N 22.94 Found C 39.23 H 4.98 N 22.75

DL-(1α,2α,3β,4α,5β,6β)-3-Azido-5-O,6-N-carbonyl-6-(methylamino)-1,2,4,5-cyclohexanetetrol 1,2,4-Triacetate (rac-**25b**): Acetylation of **25a** (245 mg, 1.0 mmol) gave 350 mg (95%) of colorless crystals (methanol), m.p. 78-80 °C. – IR (KBr): 2940, 2100, 1745, 1420, 1370, 1210, 1025, 935, 895, 760, 600, 460, 440 cm⁻¹. – ¹H NMR (CDCl₃): $\delta = 5.58$ (t, 1-H), 5.15 (dd, 4-H), 5.01 (dd, 2-H), 4.63 (t, 5-H), 3.92 (t, 3-H), 3.88 (dd, 6-H), 2.91 (s, NCH₃), 2.19, 2.18, 2.12 (s, 3 OAc); $J_{1,2} = 3.0$, $J_{2,3} = J_{3,4} = 10.0$, $J_{4,5} = J_{5,6} = 7.5$, $J_{6,1} = 3.5$ Hz.

C14H18N4O8 (370.3) Calc. C 45.41 H 4.90 N 15.13 Found C 44.50 H 4.86 N 14.83

 $DL-(1\alpha,2\alpha,3\beta,4\alpha,5\beta,6\beta)$ -3-Azido-1,2-di-O-benzyl-5-O,6-N-carbonyl-6-(methylamino)-1,2,4,5-cyclohexanetetrol (rac-25c) and $DL-(1\alpha,2\alpha,3\alpha,4\beta,5\beta,6\beta)$ -4-Azido-1,2-di-O-benzyl-5-O,6-N-carbonyl-6-(methylamino)-1,2,3,5-cyclohexanetetrol (rac-26c): A suspension of dibenzyl ether rac-13j (3.81 g, 10 mmol), NaN₃ (1.3 g, 20 mmol), and MgSO₄ (2.4 g, 20 mmol) in methanol (20 ml) was heated at reflux for 2 d. The mixture was concentrated i. vac., diluted with water (100 ml), and extracted with CH₂Cl₂ (3 × 80 ml). The extracts were dried (MgSO₄) and concentrated to give a colorless oil (4.2 g) which was crystallized from cyclohexane/ethyl acetate (2:1) to afford the 3-azide rac-25c (about 85%). Recrystallization of the mother liquor from cyclohexane/ethyl acetate (4:1) afforded pure 4-azide rac-26c (170 mg, 4%). Additional rac-25c was obtained by further crystallization (total yield: 3.92 g, 92%).

rac-25c: Colorless crystals, m.p. 126°C. – IR (KBr): 3370, 3030, 2920, 2100, 1750, 1455, 1430, 1405, 1375, 1250, 1235, 1100, 1070, 1030, 755, 700 cm⁻¹. – ¹H NMR (CDCl₃): $\delta = 7.40 - 7.25$ (m, 10 H), 4.75, 4.62, 4.56, 4.45 (d, 2 CH₂), 4.55 (t, 5-H), 3.87 (dd, 6-H), 3.82 (dd, 3-H), 3.72 (t, 4-H), 3.65 (dd, 1-H), 3.57 (dd, 2-H), 2.66 (s, NCH₃); $J_{1,2} = 2.0$, $J_{2,3} = 5.0$, $J_{3,4} = J_{4,5} = J_{5,6} = 8.5$, $J_{6,1} = 5.5$, $J_{CH_2} = 12.0$ Hz.

 $\begin{array}{rrr} C_{22}H_{24}N_4O_5 \ (424.5) & Calc. \ C \ 62.25 \ H \ 5.70 \ N \ 13.20 \\ rac\text{-}25c: & Found \ C \ 62.10 \ H \ 5.66 \ N \ 13.19 \\ rac\text{-}26c: & Found \ C \ 61.94 \ H \ 5.62 \ N \ 13.16 \end{array}$

rac-26c: Colorless crystals, m.p. 194°C (dec.). – IR (KBr): 3340, 3025, 2860, 2100, 1755, 1455, 1440, 1405, 1340, 1265, 1215, 1150, 1100, 1070, 1025, 890, 760, 745, 700, 610 cm⁻¹. – ¹H NMR (CDCl₃): δ = 7.42–7.28 (m, 10H), 4.83, 4.73 (d, CH₂), 4.70 (m, 5-H), 4.63, 4.44 (d, CH₂), 4.16 (br. t, 2-H), 4.01 (m, 3-, 4-H), 3.82 (dd, 6-H), 3.65 (dd, 1-H), 3.31 (br. s, OH), 2.95 (s, NCH₃); $J_{1,2} = J_{2,3} = 2.0$, $J_{4,5} = 3.5$, $J_{5,6} = 6.5$, $J_{6,1} = 8.0$, $J_{CH_2} = 11.5$ Hz.

DL- $(1\alpha, 2\alpha, 3\beta, 4\alpha, 5\beta, 6\beta)$ -3-Azido-1,2-di-O-benzyl-5-O,6-N-carbonyl-6-(methylamino)-1,2,4,5-cyclohexanetetrol 4-Acetate (rac-**25d**): Acetylation of rac-**25c** (105 mg, 0.25 mmol) gave 105 mg (90%) of a colorless oil. - ¹H NMR (CDCl₃): δ = 7.42 - 7.25 (m, 10H), 5.06 (t, 4-H), 4.79, 4.69, 4.59, 4.51 (d, 2 CH₂), 4.58 (t, 5-H), 3.88 (dd, 6-H), 3.82 (dd, 3-H), 3.69 (dd, 2-H), 3.62 (dd, 1-H), 2.58 (s, NCH₃), 2.12 (s, OAc); $J_{1,2}$ = 2.0, $J_{2,3}$ = 5.0, $J_{3,4}$ = 8.0, $J_{4,5}$ = 8.5, $J_{5,6}$ = 9.0, $J_{6,1}$ = 6.0, J_{CH_2} = 12.0 Hz.

DL-(1α,2α,3α,4β,5β,6β)-4-Azido-1,2-di-O-benzyl-5-O,6-N-carbonyl-6-(methylamino)-1,2,3,5-cyclohexanetetrol 3-Acetate (rac-**26d**): Acetylation of rac-**26c** (85 mg, 0.20 mmol) yielded 85 mg (91%) of colorless crystals, m.p. 114°C (cyclohexane/ethyl acetate, 4:1). – IR (KBr): 3025, 2900, 2100, 1770, 1750, 1495, 1450, 1430, 1375, 1245, 1230, 1145, 1105, 1040, 915, 765, 745, 700, 650 cm⁻¹. – ¹H NMR (CDCl₃): δ = 7.42–7.26 (m, 10H), 5.05 (dd, 3-H), 4.73 (dd, 5-H), 4.73, 4.65, 4.63, 4.45 (d, 2 CH₂), 4.24 (t, 2-H), 4.21 (dd, 4-H), 3.83 (dd, 6-H), 3.65 (dd, 1-H), 2.96 (s, NCH₃), 2.11 (s, OAc); $J_{1,2} = J_{2,3} = 2.0$, $J_{3,4} = 11.0$, $J_{4,5} = 5.0$, $J_{5,6} = 6.5$, $J_{6,1} = 8.0$, $J_{CH_2} = 11.5$ Hz.

C24H26N4O6 (466.5) Calc. C 61.79 H 5.62 N 12.01 Found C 61.60 H 5.56 N 12.01

 $DL-(1\alpha,2\alpha,3\beta,4\alpha,5\beta,6\beta)$ -3-Azido-5-O,6-N-carbonyl-1,2-O-isopropylidene-6-(methylamino)-1,2,4,5-cyclohexanetetrol (rac-**27 a**) and $DL-(1\alpha,2\alpha,3\alpha,4\beta,5\beta,6\beta)$ -4-Azido-5-O,6-N-carbonyl-1,2-O-isopropylidene-6-(methylamino)-1,2,3,5-cyclohexanetetrol (rac-**28 a**): A suspension of rac-**24** (480 mg, 2.0 mmol), NaN₃ (390 mg, 6.0 mmol), and MgSO₄ (720 mg, 6.0 mmol) in methanol (10 ml) was heated at reflux for 3 d. After filtration and concentration i. vac. the solid residue was chromatographed (silica, cyclohexane/ethyl acetate 1:1) to give 335 mg (59%) of rac-**27 a**, then 180 mg (32%) of rac-**28 a**.

rac-27 a: Colorless crystals, m. p. 138 °C (CHCl₃/ether, 1:5). – IR (KBr): 3350, 2985, 2910, 2890, 2105, 1720, 1485, 1440, 1405, 1380, 1255, 1220, 1060, 1030, 950, 865, 765, 665, 580 cm⁻¹. – ¹H NMR (CDCl₃): δ = 4.60 (dd, 5-H), 4.23 (t, 1-H), 4.18 (t, 2-H), 3.97 (s, OH), 3.81 (dd, 6-H), 3.78 (dd, 4-H), 3.52 (dd, 3-H), 2.95 (s, NCH₃), 1.54, 1.36 (s, 2 CH₃); $J_{1,2}$ = 7.0, $J_{2,3}$ = 7.5, $J_{3,4}$ = 12.0, $J_{4,5}$ = 7.5, $J_{5,6}$ = 9.0, $J_{6,1}$ = 6.0 Hz.

 $\begin{array}{rrrr} C_{11}H_{16}N_4O_5 \ (284.3) & Calc. \ C \ 46.48 \ H \ 5.67 \ N \ 19.71 \\ rac\text{-}27 a: \ Found \ C \ 46.13 \ H \ 5.79 \ N \ 19.51 \\ rac\text{-}28 a: \ Found \ C \ 46.25 \ H \ 5.66 \ N \ 19.58 \end{array}$

rac-28a: Colorless crystals, m. p. 119 °C (methanol). – IR (KBr): 3360, 2975, 2920, 2115, 1745, 1445, 1410, 1380, 1375, 1250, 1205, 1160, 1040, 985, 920, 750, 670 cm⁻¹. – ¹H NMR (CDCl₃): δ = 4.99 (dd, 5-H), 4.48 (dd, 2-H), 4.38 (dd, 1-H), 4.22 (dt, 3-H), 4.11 (dd, 4-H), 3.92 (dd, 6-H), 2.97 (s, NCH₃), 2.70 (d, OH), 1.53, 1.40 (s, 2 CH₃); $J_{1,2}$ = 7.5, $J_{2,3}$ = 4.5, $J_{3,4}$ = 8.0, $J_{3,0H}$ = $J_{4,5}$ = 4.5, $J_{5,6}$ = 10.0, $J_{6,1}$ = 4.0 Hz.

DL-(1α,2α,3β,4α,5β,6β)-3-Azido-5-O,6-N-carbonyl-1,2-O-isopropylidene-6-(methylamino)-1,2,4,5-cyclohexanetetrol 4-Acetate (rac-**27 b**): Acetylation of rac-**27 a** (140 mg, 0.5 mmol) gave 150 mg (93%) of colorless crystals, m. p. 147 – 149 °C (cyclohexane/ethyl acetate, 4:1). – IR (KBr): 2980, 2940, 2095, 1750, 1440, 1385, 1265, 1210, 1165, 1025, 885, 865, 755, 665, 600 cm⁻¹. – ¹H NMR (CDCl₃): δ = 5.13 (dd, 4-H), 4.68 (dd, 5-H), 4.32–4.23 (m, 1-, 2-H), 3.83 (m, 6-H), 3.62 (m, 3-H), 2.97 (s, NCH₃), 2.19 (s, OAc), 1.54, 1.37 (s, 2 CH₃); J_{2,3} = 7.5, J_{3,4} = 12.0, J_{4,5} = 8.0, J_{5,6} = 9.5, J_{6,1} = 6.0 Hz.

C13H18N4O6 (326.3) Calc. C 47.85 H 5.56 N 17.17 Found C 47.70 H 5.69 N 16.47

DL-(1 α ,2 α ,3 α ,4 β ,5 β ,6 β)-4-Azido-5-O,6-N-carbonyl-1,2-O-isopropylidene-6-(methylamino)-1,2,3,5-cyclohexanetetrol 3-Acetate (rac-**28b**): Acetylation of rac-**28a** (140 mg, 0.5 mmol) gave 145 mg (89%) of colorless crystals, m. p. 139 – 140 °C (cyclohexane/ethyl acetate, 4:1). – IR (KBr): 2940, 2100, 1770, 1740, 1430, 1375, 1295, 1235, 1160, 1120, 1095, 1040, 910, 875, 780, 755, 515, 420 cm⁻¹. – ¹H NMR (CDCl₃): δ = 5.15 (dd, 3-H), 4.93 (dd, 5-H), 4.70 (dd, 2-H), 4.44 (dd, 1-H), 4.12 (dd, 4-H), 4.00 (dd, 6-H), 2.96 (s, NCH₃), 2.18 (s, OAc), 1.51, 1.35 (s, 2 CH₃); $J_{1,2}$ = 7.5, $J_{2,3}$ = 4.5, $J_{3,4}$ = 10.5, $J_{4,5}$ = 4.0, $J_{5,6}$ = 10.0, $J_{6,1}$ = 3.0 Hz.

 $C_{13}H_{18}N_4O_6\ (326.3)$ Calc. C 47.85 H 5.56 N 17.17 Found C 47.42 H 5.58 N 16.49

 $DL-(1\alpha,2\alpha,3\beta,4\alpha,5\beta,6\beta)$ -1,2:3,4-Di-O-isopropylidene-5-O,6-N-carbonyl-6-(methylamino)-1,2,3,4,5-cyclohexanepentol (rac-29): If in the preparation of rac-24 the p-toluenesulfonic acid contains much water, after crystallization of rac-24 the mother liquor contains up to 5% of rac-29, isolated by chromatography (cyclohexane/ethyl acetate, 2:1); colorless crystals, m. p. 240°C (ether, subl. at ca. 170°C). – IR (KBr): 2980, 2930, 1740, 1440, 1370, 1275, 1230, 1210, 1145, 1035, 845, 800, 755, 695, 660, 505 cm⁻¹. – ¹H NMR (CDCl₃): δ = 4.70 (dd, 5-H), 4.49 (t, 2-H), 4.30 (t, 1-H), 3.81 (dd, 4-H), 3.79 (dd, 6-H), 3.71 (dd, 3-H), 2.98 (s, NCH₃), 1.52, 1.35 (s, 2 CH₃), 1.46 (s, 2 CH₃); $J_{1,2} = J_{2,3} = 7.5$, $J_{3,4} = 11.0$, $J_{4,5} = 7.5$, $J_{5,6} = 9.5$, $J_{6,1} = 8.0$ Hz.

C14H21N1O6 (299.3) Calc. C 56.18 H 7.07 N 4.68 Found C 55.65 H 7.23 N 4.49

(+)-(1R)- and (+)-(1S)- $(1\alpha,2\alpha,3\beta,4\alpha,5\beta,6\beta)$ -5-O,6-N-Carbonyl-6-(methylamino)-3-[(R)-(1-phenylethyl)amino]-1,2,4,5-cyclohexanetetrol (**30d/30d'**): A solution of rac-13d (2.0 g, 10 mmol) and (R)-(+)-1-phenylethylamine (2.6 ml, 20 mmol) in 1-propanol (10 ml) was heated at reflux for 4 h. After concentrating i. vac. and adding of CHCl₃/CH₃OH (25:1, about 2 ml) the oily residue crystallized. The excess of (R)-(+)-1-phenylethylamine was removed i. vak. (0.01 Torr) at 60°C. Column-chromatographic separation [silica, CHCl₃/CH₃OH/N(C₁₂H₅)₃, 25:1:1] of the diastereomeric adducts afforded **30d'** (1.50 g, 46.5%) and **30d** (1.48 g, 46%).

30d: Colorless crystals, m. p. 76-78 °C (CH₃OH): $[\alpha]_{20}^{20} = +4$ (c = 1.0, CH₃OH). – IR (KBr): 3610, 3320, 3060, 3025, 2955, 2865, 1755, 1630, 1600, 1430, 1395, 1320, 1245, 1145, 1125, 1055, 760, 695 cm⁻¹. – ¹H NMR (CDCl₃/CD₃OD, 1:1): $\delta = 7.37-7.20$ (m, 5 H), 4.40 (t, 5-H), 4.05 (q, CHCH₃), 3.93 (dd, 1-H), 3.85 (dd, 6-H), 3.76 (t, 2-H), 3.53 (t, 4-H), 2.95 (s, NCH₃), 2.51 (dd, 3-H), 1.41 (d, CHCH₃); $J_{1,2} = 2.5$, $J_{2,3} = 3.0$, $J_{3,4} = 10.0$, $J_{4,5} = J_{5,6} = 9.0$, $J_{6,1} = J_{CH,CH_3} = 7.0$ Hz.

C₁₆H₂₂N₂O₅ (322.4) Calc. C 59.62 H 6.88 N 8.69 **30d**: Found C 59.14 H 6.90 N 8.64 **30d**': Found C 59.41 H 7.00 N 8.60

30d': Colorless crystals, m.p. 178 – 181 °C (CH₃OH); $\lceil \alpha \rceil_{10}^{20} = +55$ (c = 1.0, CH₃OH). – IR (KBr): 3550, 3400, 3320, 3020, 2970, 2930, 2890, 1775, 1430, 1400, 1285, 1260, 1200, 1105, 1065, 1010, 890, 760, 700, 645 cm⁻¹. – ¹H NMR (CDCl₃/CD₃OD, 1:1): $\delta = 7.40 - 7.20$ (m, 5H), 4.55 (t, 5-H), 4.09 (q, CHCH₃), 3.92 (dd, 1-H), 3.87 (dd, 6-H), 3.59 (t, 4-H), 3.55 (dd, 2-H), 2.93 (s; NCH₃), 2.80 (dd, 3-H), 1.42 (d, CHCH₃); $J_{1,2} = 2.5$, $J_{2,3} = 4.0$, $J_{3,4} = 9.0$, $J_{4,5} = 8.5$, $J_{5,6} = 8.0$, $J_{6,1} = J_{CH,CH_3} = 7.0$ Hz.

(+)-(1R)- and (-)-(1S)- $(1\alpha,2\alpha,3\beta,4\alpha,5\beta,6\beta)$ -5-O,6-N-Carbonyl-6-(methylamino)-3-[(R)-(1-phenylethyl)amino]-1,2,4,5-cyclohexanetetrol 1,2,4-Triacetate (**30e/30e'**): Acetylation of **30d** (**30d'**) (320 mg, 1.0 mmol) yielded 420-425 mg (94-95%) of product.

30e: Colorless crystals, m.p. 122 °C (ether); $[\alpha]_{D}^{20} = +10$ (c = 1.0, CHCl₃). – IR (KBr): 3320, 3030, 2970, 2930, 2880, 1750, 1430, 1370, 1225, 1115, 1040, 885, 755, 705, 605, 530, 480 cm⁻¹. – ¹H NMR (CDCl₃): $\delta = 7.34 - 7.13$ (m, 5H), 5.38 (dd, 1-H), 5.20 (t, 2-H), 4.93 (dd, 4-H), 4.61 (t, 5-H), 4.07 (dd, 6-H), 3.89 (q, CHCH₃), 2.83 (s, NCH₃), 2.60 (dd, 3-H), 2.13, 2.08, 1.99 (s, 3 OAc), 2.03 (br. s, NH), 1.35 (d, CHCH₃), $J_{1,2} = J_{2,3} = 2.0$, $J_{3,4} = 8.0$, $J_{4,5} = 10.0$, $J_{5,6} = 9.5$, $J_{6,1} = 7.5$, $J_{CHCH_3} = 6.5$ Hz.

30e': Colorless crystals, m.p. 179-181 °C (CHCl₃/ether, 1:5); $[\alpha]_{D}^{20} = +32$ (c = 1.0, CHCl₃). – IR (KBr): 2975, 2950, 2890, 1780, 1750, 1430, 1370, 1220, 1040, 945, 885, 765,

700, 660, 600, 585 cm⁻¹. $^{-1}$ H NMR (CDCl₃): $\delta = 7.33 - 7.19$ (m, 5H), 5.37 (dd, 1-H), 5.11 (t, 4-H), 4.95 (dd, 2-H), 4.67 (t, 5-H), 3.95 (dd, 6-H), 3.92 (q, CHCH₃), 2.93 (dd, 3-H), 2.85 (s, NCH₃), 2.14, 2.02, 2.01 (s, 3 OAc), 2.00 (br. s, NH), 1.30 (s, CHCH₃); $J_{1,2} = 2.0$, $J_{2,3} = 5.0$, $J_{3,4} = 7.5$, $J_{4,5} = J_{5,6} = 8.5$, $J_{6,1} = 6.0$, $J_{CHCH_3} = 6.5$ Hz.

 $(-)-(1R)-(1\alpha,2\alpha,3\beta,4\alpha,5\beta,6\beta)-4-O-Benzyl-5-O,6-N-carbonyl-6-(methylamino)-3-[(R)-(n-1)-(1\alpha,2\alpha,3\beta,4\alpha,5\beta,6\beta)-4-O-Benzyl-5-O,6-N-carbonyl-6-(methylamino)-3-[(R)-(n-1)-(1\alpha,2\alpha,3\beta,4\alpha,5\beta,6\beta)-4-O-Benzyl-5-O,6-N-carbonyl-6-(methylamino)-3-[(R)-(n-1)-(1\alpha,2\alpha,3\beta,4\alpha,5\beta,6\beta)-4-O-Benzyl-5-O,6-N-carbonyl-6-(methylamino)-3-[(R)-(1\alpha,2\alpha,3\beta,4\alpha,5\beta,6\beta)-4-O-Benzyl-5-O,6-N-carbonyl-6-(methylamino)-3-[(R)-(1\alpha,2\alpha,3\beta,4\alpha,5\beta,6\beta)-4-O-Benzyl-5-O,6-N-carbonyl-6-(methylamino)-3-[(R)-(1\alpha,2\alpha,3\beta,4\alpha,5\beta,6\beta)-4-O-Benzyl-5-O,6-N-carbonyl-6-(methylamino)-3-[(R)-(1\alpha,2\alpha,3\beta,4\alpha,5\beta,6\beta)-4-O-Benzyl-5-O,6-N-carbonyl-6-(methylamino)-3-[(R)-(1\alpha,2\alpha,3\beta,4\alpha,5\beta,6\beta)-4-O-Benzyl-5-O,6-N-carbonyl-6-(methylamino)-3-[(R)-(1\alpha,2\alpha,3\beta,4\alpha,5\beta,6\beta)-4-O-Benzyl-5-O,6-N-carbonyl-6-(methylamino)-3-[(R)-(1\alpha,2\alpha,3\beta,4\alpha,5\beta,6\beta)-4-O-Benzyl-5-O,6-N-carbonyl-6-(methylamino)-3-[(R)-(1\alpha,2\alpha,3\beta,4\alpha,5\beta,6\beta)-4-O-Benzyl-5-O,6-N-carbonyl-6-(methylamino)-3-[(R)-(1\alpha,2\alpha,3\beta,4\alpha,5\beta,6\beta)-4-O-Benzyl-5-O,6-N-carbonyl-6-(methylamino)-3-[(R)-(1\alpha,2\alpha,3\beta,4\alpha,5\beta,6\beta)-4-O-Benzyl-5-O,6-N-carbonyl-6-((methylamino)-3-[(methy$ (1-phenylethyl)amino]-1,2,4,5-cyclohexanetetrol (30f): A solution of the acetal 32d (1.81 g, 4 mmol) and 96-% sulfuric acid (500 mg, 5 mmol) in methanol (20 ml) was heated at reflux for 5 d. The solution was neutralized with NaOCH₃, concentrated i. vac., and the residue was purified by column chromatography (20 g of silica, ethyl acetate) to give 1.54 g (93%) of colorless crystals, m. p. $53 - 57^{\circ}$ C (cyclohexane/ethyl acetate, 1:1); $\lceil \alpha \rceil_D^{20} = -25$ (c = 1.0, CH₃OH). – IR (KBr): 3510, 3470, 3300, 3060, 3025, 2965, 2920, 2865, 1745, 1435, 1405, 1250, 1210, 1145, 1070, 1045, 1025, 975, 915, 840, 755, 695, 525 cm⁻¹. – ¹H NMR (CDCl₃): $\delta = 7.35 - 7.20$ (m, 10 H), 4.88, 4.58 (d, CH₂), 4.71 (dd, 5-H), 4.18 (t, 1-H), 4.07 (q, CH CH₃), 3.88 (dd, 6-H), 3.55 (br. s, OH), 3.53 (dd, 4-H), 3.38 (dd, 2-H), 2.93 (dd, 3-H), 2.90 (br. s, OH), 2.86 (s, NCH₃), 1.75 (br. s, NH), 1.29 (d, CHCH₃); $J_{1,2} = 3.0$, $J_{2,3} = 8.5$, $J_{3,4} = 9.5$, $J_{4,5} = 3.0$ 7.0, $J_{5,6} = 8.0$, $J_{6,1} = 3.5$, $J_{CH,CH_3} = 6.5$, $J_{CH_2} = 11.5$ Hz. $- {}^{1}$ H NMR (CDCl₃/CD₃OD, 1:1): $\delta = 7.40 - 7.18$ (m, 10 H), 4.89, 4.56 (d, CH₂), 4.63 (t, 5-H), 3.93 (q, CH CH₃), 3.93 (dd, 1-H), 3.87 (t, 6-H), 3.70 (t, 2-H), 3.47 (t, 4-H), 2.96 (s, NCH₃), 2.62 (dd, 3-H), 1.30 (d, CHCH₃); $J_{1,2} = J_{2,3} = 3.0, J_{3,4} = 10.0, J_{4,5} = 8.5, J_{5,6} = 9.0, J_{6,1} = 8.0, J_{CH,CH_3} = 6.5, J_{CH_2} = 2.0$ Hz. C23H28N2O5 (412.5) Calc. C 66.97 H 6.84 N 6.79 Found C 66.62 H 6.98 N 6.87

 $(+) - (1R) - (1\alpha, 2\alpha, 3\beta, 4\alpha, 5\beta, 6\beta) - 4 - O$ -Benzyl-5-O,6-N-carbonyl-6-(methylamino)-3-[(R)-(1-phenylethyl)amino]-1,2,4,5-cyclohexanetetrol 1,2-Diacetate (**30**g): Acetylation of **30**f (250 mg, 0.5 mmol) gave 230 mg (92%) of colorless crystals, m.p. 142 °C (cyclohexane/ethyl acetate, 3:1); $[\alpha]_D^{20} = +12$ (c = 1.0, CHCl₃). – IR (KBr): 3325, 3030, 2980, 1755, 1740, 1430, 1395, 1370, 1240, 1215, 1105, 1040, 770, 755, 740, 705, 695 cm⁻¹. – ¹H NMR (CDCl₃): $\delta = 7.43 - 7.10$ (m, 10H), 5.27 (dd, 1-H), 5.22 (t, 2-H), 4.98, 4.60 (d, CH₂), 4.65 (t, 5-H), 3.97 (dd, 6-H), 3.91 (q, CHCH₃), 3.54 (t, 4-H), 2.85 (s, NCH₃), 2.64 (dd, 3-H), 2.06, 2.01 (s, 2 OAc), 1.68 (br. s, NH), 1.28 (d, CHCH₃); $J_{1,2} = 2.5$, $J_{2,3} = 3.0$, $J_{3,4} = J_{4,5} = J_{5,6} = 9.0$, $J_{6,1} = 7.5$, $J_{CH,CH_3} = 6.5$, $J_{CH_2} = 11.5$ Hz.

C27H32N2O7 (496.6) Calc. C 65.31 H 6.50 N 5.64 Found C 65.07 H 6.40 N 5.63

 $(+) \cdot (1R) \cdot (1\alpha, 2\alpha, 3\beta, 4\alpha, 5\beta, 6\beta) - 4 - O$ -Benzyl-5-O,6-N-carbonyl-1,2-di-O-methyl-6-(methylamino) -3-[(R)-(1-phenylethyl) amino]-1,2,4,5-cyclohexanetetrol (**30k**), $(-) \cdot (1R) \cdot (1\alpha, 2\alpha, 3\beta, 4\alpha, 5\beta, 6\beta) - 4 - O$ -Benzyl-5-O,6-N-carbonyl-2-O-methyl-6-(methylamino)-3-[(R)-(1-phenylethyl) amino]-1,2,4,5-cyclohexanetetrol (**30j**), and $(+) \cdot (1R) \cdot (1\alpha, 2\alpha, 3\beta, 4\alpha, 5\beta, 6\beta) - 4 - O$ -Benzyl-5-O,6-N-carbonyl-1-O-methyl-6-(methylamino)-3-[(R)-(1-phenylethyl) amino]1,2,4,5cyclohexane-tetrol (**30h**): To a solution of **30f** (1.24 g, 3 mmol) in glyme (5 ml) was added NaH (140 mg, 6 mmol). The mixture was stirred at 20 °C for 10 min, then CH₃I (0.19 ml, 3 mmol) was added. After 10 min at 20 °C the solution was hydrolyzed with ice, diluted with water (50 ml), and extracted with CH₂Cl₂ (3 × 100 ml). The organic layer was washed with water (40 ml), dried (MgSO₄), and concentrated. The oily residue (1.3 g) was separated by column chromatography (silica, CHCl₃/CH₃OH, 25:1) to afford successively the bis(ether) **30k** (475 mg, 35%), 1-methyl ether **30h** (155 mg, 12%), 2-methyl ether **30j** (125 mg, 10%), and educt **30f** (435 mg, 35%).

30h: Colorless crystals, m.p. 108 °C (CHCl₃/ether, 1:5); $[\alpha]_D^{20} = +3$ (c = 1.0, CHCl₃). – IR (KBr): 3400, 3025, 2965, 2895, 1745, 1425, 1395, 1270, 1100, 1080, 1025, 755, 700 cm⁻¹. – ¹H NMR (CDCl₃): $\delta = 7.40 - 7.20$ (m, 10 H), 4.92, 4.56 (d, CH₂), 4.60 (t, 5-H), 3.92 (q, CHCH₃), 3.87 (t, 2-H), 3.82 (dd, 6-H), 3.57 (dd, 1-H), 3.50 (dd, 4-H), 3.48 (s, OCH₃), 2.90 (s,

NCH₃), 2.72 (dd, 3-H), 2.65 (br. s, OH), 1.87 (br. s, NH), 1.31 (d, CHCH₃); $J_{1,2} = 3.0, J_{2,3} = 4.0, J_{3,4} = 10.0, J_{4,5} = 8.0, J_{5,6} = 9.0, J_{6,1} = 7.5, J_{CH,CH_3} = 6.5, J_{CH_2} = 12.0$ Hz.

30 j: Colorless crystals, m. p. 138 °C (CHCl₃/ether, 1:3); $[\alpha]_{20}^{p} = -14$ (c = 1.0, CHCl₃). – IR (KBr): 3430, 3310, 3020, 2960, 2900, 2825, 1755, 1450, 1420, 1390, 1365, 1270, 1240, 1210, 1110, 1080, 1055, 1020, 790, 755 cm⁻¹. – ¹H NMR (CDCl₃): $\delta = 7.45 - 7.15$ (m, 10 H), 4.93, 4.58 (d, CH₂), 4.59 (t, 5-H), 3.98 (br. s, 1-H), 3.88 (q, CHCH₃), 3.78 (dd, 6-H), 3.44 (dd, 4-H), 3.35 (t, 2-H), 3.19 (s, OCH₃), 2.96 (s, NCH₃), 2.67 (dd, 3-H), 2.54 (br. d, OH), 1.73 (br. s, NH), 1.24 (d, CHCH₃); $J_{1,2} = 2.5$, $J_{1,OH} = 6.0$, $J_{2,3} = 2.0$, $J_{3,4} = 8.0$, $J_{4,5} = 9.5$, $J_{5,6} = 9.0$, $J_{6,1} = 7.0$, $J_{CH,CH_3} = 6.5$, $J_{CH_2} = 11.5$ Hz.

 $\begin{array}{ccccccc} C_{24}H_{30}N_2O_5 \ (426.5) & Calc. \ C \ 67.59 & H \ 7.09 & N \ 6.57 \\ \textbf{30j:} & Found \ C \ 67.26 & H \ 7.09 & N \ 6.52 \\ \textbf{30h:} & Found \ C \ 67.04 & H \ 7.05 & N \ 6.52 \end{array}$

30k: Colorless crystals, m. p. 165 °C (CHCl₃/ether, 1:3); $[\alpha]_{20}^{20} = +14$ (c = 1.0, CHCl₃). – IR (KBr): 3300, 3060, 3020, 2975, 2925, 2890, 2820, 1740, 1450, 1390, 1355, 1260, 1090, 1020, 795, 760, 755, 735, 695 cm⁻¹. – ¹H NMR (CDCl₃): $\delta = 7.45 - 7.15$ (m, 10 H), 4.96, 4.59 (d, CH₂), 4.62 (t, 5-H), 3.89 (dd, 6-H), 3.85 (q, CHCH₃), 3.51 (s, 2-H), 3.49 (dd, 1-H), 3.43 (s, OCH₃), 3.38 (dd, 4-H), 3.21 (s, OCH₃), 2.92 (s, NCH₃), 2.66 (d, 3-H), 1.9-1.3 (br. s, NH), 1.25 (d, CHCH₃); $J_{1,2} = 1.5$, $J_{3,4} = 8.0$, $J_{4,5} = J_{5,6} = 9.5$, $J_{6,1} = 8.0$, $J_{CH,CH_3} = 6.5$, $J_{CH_2} = 12.0$ Hz.

C25H32N2O5 (440.5) Calc. C 68.16 H 7.32 N 6.36 Found C 67.49 H 7.33 N 6.24

 $(+) - (1R) - (1\alpha, 2\alpha, 3\beta, 4\alpha, 5\beta, 6\beta) - 4 - O$ -Benzyl-5-O,6-N-carbonyl-1-O-methyl-6-(methylamino)-3-[(R)-(1-phenylethyl)amino]-1,2,4,5-cyclohexanetetrol 2-Acetate (**30**i): Acetylation of **30h** (40 mg, 0.1 mmol) gave 40 mg (88%) of colorless crystals, m. p. 204 – 206 °C (CHCl₃/ ether, 1:5); $[\alpha]_D^{20} = +30$ (c = 1.0, CHCl₃). – IR (KBr): 3310, 3060, 3025, 2975, 2925, 2870, 1740, 1450, 1430, 1395, 1355, 1230, 1095, 1050, 1020, 950, 740, 700 cm⁻¹. – ¹H NMR (CDCl₃): $\delta = 7.45 - 7.05$ (m, 10H), 5.34 (br. t, 2-H), 4.94, 4.56 (d, CH₂), 4.59 (t, 5-H), 3.94 (q, *CH*CH₃), 3.83 (dd, 6-H), 3.57 (dd, 1-H), 3.45 (t, 4-H), 3.39 (s, OCH₃), 2.92 (s, NCH₃), 2.51 (dd, 3-H), 1.98 (s, OAc), 1.64 (br. s, NH), 1.28 (d, CH*CH*₃); $J_{1,2} = 2.0$, $J_{2,3} = 1.5$, $J_{3,4} = J_{4,5} =$ 9.0, $J_{5,6} = 9.5$, $J_{6,1} = 8.5$, $J_{CH,CH_3} = 6.5$, $J_{CH_2} = 12.0$ Hz.

 $C_{26}H_{32}N_2O_6\ (468.6)$ Calc. C 66.65 H 6.88 N 5.98 Found C 66.47 H 6.93 N 6.02

(+)-(1R)-, (+)-(1S)- $(1\alpha,2\alpha,3\beta,4\alpha,5\beta,6\beta)$ -2-O-Benzyl-5-O,6-N-carbonyl-1-O-methyl-6-(methylamino)-3-[(R)-(1-phenylethyl)amino]-1,2,4,5-cyclohexanetetrol (**301/301'**), $(1R)^*$ and $(1S)^*$ - $(1\alpha,2\alpha,3\alpha,4\beta,5\beta,6\beta)$ -2-O-Benzyl-5-O,6-N-carbonyl-1-O-methyl-6-(methylamino)-4-[(R)-(1-phenylethyl)amino]-1,2,3,5-cyclohexanetetrol (**311/311'**): A solution of rac-**131** (915 mg, 3 mmol) and (R)-(+)-1-phenylethylamine (1.95 ml, 15 mmol) in 1-propanol (10 ml) was heated at reflux for 3 d (N₂). The yellow solution was concentrated i. vac. (0.01 Torr) at 60°C and the oily residue subjected to column chromatography [silica, cyclohexane/ ethyl acetate/N(C₂H₅)₃, 10:5:1] to afford successively a mixture of rac-**131** (165 mg, 18%) and **311/311'** (50 mg, 4%), **301'** (460 mg, 36%) and **301** (445 mg, 35%).

301: Colorless oil; $[\alpha]_{D}^{20} = +54$ (c = 1.0, CHCl₃). $-{}^{1}$ H NMR (CDCl₃): $\delta = 7.40 - 7.20$ (m, 10H), 4.47 (t, 5-H), 4.44, 4.39 (d, CH₂), 3.94 (dd, 6-H), 3.89 (q, CHCH₃), 3.74 (t, 2-H), 3.63 (dd, 4-H), 3.57 (dd, 1-H), 3.33 (s, OCH₃), 2.89 (s, NCH₃), 2.74 (dd, 3-H), 1.35 (d, CHCH₃); $J_{1,2} = 1.5$, $J_{2,3} = 1.0$, $J_{3,4} = 8.0$, $J_{4,5} = 9.5$, $J_{5,6} = 9.0$, $J_{6,1} = 7.5$, $J_{CH,CH_3} = 6.5$, $J_{CH_2} = 12.0$ Hz.

30*I*': Colorless crystals, m.p. $173 - 176 \,^{\circ}$ C (CHCl₃/ether, 1:4); $[\alpha]_{D}^{20} = +26$ (c = 1.0, CHCl₃). – IR (KBr): 3400, 3060, 3020, 2960, 2920, 2860, 1745, 1495, 1480, 1430, 1400, 1350,

1270, 1250, 1135, 1090, 1040, 790, 760, 730, 705, 510 cm⁻¹. $^{-1}$ H NMR (CDCl₃): $\delta = 7.35 - 7.15$ (m, 10H), 4.60 (t, 5-H), 4.32 (s, CH₂), 3.87 (t, 6-H), 3.85 (q, CHCH₃), 3.69 (t, 4-H), 3.45 (m, 1-, 2-H), 3.06 (s, OCH₃), 3.02 (dd, 3-H), 2.88 (s, NCH₃), 1.68 (br. s, OH, NH), 1.37 (d, CHCH₃); $J_{2,3} = 2.0$, $J_{3,4} = 6.5$, $J_{4,5} = J_{5,6} = 8.5$, $J_{6,1} = 7.5$, $J_{CH,CH_3} = 6.5$ Hz.

 $C_{24}H_{30}N_2O_5 \ (426.5) \qquad Calc. \ C \ 67.59 \ H \ 7.09 \ N \ 6.57$

301': Found C 67.27 H 7.09 N 6.88

311/311': Found C 65.73 H 6.90 N 6.50

The starting material *rac*-131 was separated from an acidic solution (H_2SO_4) of *rac*-131/311/311 with ether. The amines 311/311 could not be separated sufficiently (chromatography, crystallization).

311/311': Colorless crystals, m.p. 148–149°C (ether). – ¹H NMR (CDCl₃) **311**: $\delta = 7.45 - 7.05$ (m, 10 H), 4.72 (dd, 5-H), 4.63, 4.52 (d, CH₂), 4.13 (t, 2-H), 4.07 (q, CHCH₃), 3.58 (dd, 6-H), 3.47 (dd, 3-H), 3.27 (s, OCH₃), 3.17 (dd, 1-H), 3.05 (dd, 4-H), 2.96 (s, NCH₃), 1.90 (br. s, NH), 1.40 (d, CHCH₃); $J_{1,2} = 2.5$, $J_{2,3} = 1.5$, $J_{3,4} = 10.5$, $J_{4,5} = 4.5$, $J_{5,6} = 6.5$, $J_{6,1} = 8.0$, $J_{CH,CH_3} = 6.5$, $J_{CH_2} = 11.5$ Hz. – **311**': $\delta = 7.45 - 7.20$ (m, 10H), 4.90, 4.78 (d, CH₂), 4.22 (dd, 5-H), 4.21 (t, 2-H), 3.92 (q, CHCH₃), 3.60 (dd, 6-H), 3.44 (dd, 3-H), 3.28 (dd, 4-H), 3.25 (s, OCH₃), 3.15 (dd, 1-H), 2.91 (s, NCH₃), 1.90 (br. s, NH), 1.39 (d, CHCH₃); coupling constants as for **311**.

(+)-(1R)- and (-)-(1S)- $(1\alpha,2\alpha,3\beta,4\alpha,5\beta,6\beta)$ -5-0,6-N-Carbonyl-1,2-O-isopropylidene-6-(methylamino)-3-[(R)-(1-phenylethyl)amino]-1,2,4,5-cyclohexanetetrol (**32a**/**32a**'). – a): A solution of **30a**(**30a**') (1.61 g, 5 mmol), p-toluenesulfonic acid monohydrate (1.03 g, 6 mmol) and 2,2-dimethoxypropane (2.2 ml, 25 mmol) in DMF (10 ml) was heated at 80°C for 2 h. After distilling off excess of 2,2-dimethoxypropane, the solution was concentrated i. vac. (0.01 Torr) at 60°C. CH₂Cl₂ (50 ml) was added and the organic layer was washed with saturated NaHCO₃ solution (50 ml) and with water (50 ml), dried, and concentrated to give the acetal **32a** (**32a**') (1.72-1.78 g, 95-98%).

b): A suspension of the crude product 30a/30a' (obtained from *rac*-13d (20.1 g, 100 mmol)) and *p*-toluenesulfonic acid monohydrate (20.6 g, 120 mmol) in 2,2-dimethoxypropane (40 ml) was heated at reflux. When the triols had dissolved completely (5 min) the solution was cooled and worked up as described above. The mixture of acetals 32a/32a' was separated by fractional crystallization. The (1S)-acetal 32a' (80–90%) crystallized from CHCl₃/ether (1:5). The residue from the mother liquor was recrystallized from ethyl acetate to give the pure (1*R*)-acetal 32a. Alternatively, the mother liquor could be purified by column chromatography [silica, ethyl acetate/petroleum ether/N(C₂H₅)₃, 30:20:1]; total yield of 32a/32a': 90-95% (based on epoxide *rac*-13d).

32a: Colorless crystals, m.p. $142 \,^{\circ}$ C (ether); $[\alpha]_{D}^{20} = +114$ (c = 1.0, CHCl₃). – IR (KBr): 3400, 3055, 3020, 2920, 2830, 1730, 1600, 1440, 1380, 1265, 1240, 1205, 1130, 1025, 955, 865, 755, 695, 660, 550, 530, 380 cm⁻¹. – ¹H NMR (CDCl₃): $\delta = 7.37 - 7.21$ (m, 5H), 4.55 (br. s, OH), 4.29 (dd, 5-H), 4.25 (t, 2-H), 4.21 (q, CHCH₃), 4.15 (t, 1-H), 3.60 (dd, 4-H), 3.53 (dd, 6-H), 2.90 (s, NCH₃), 2.42 (dd, 3-H), 2.16 (br. s, NH), 1.46 (s, CH₃), 1.40 (d, CHCH₃), 1.38 (s, CH₃); $J_{1,2} = 7.5$, $J_{2,3} = 7.0$, $J_{3,4} = 12.0$, $J_{4,5} = 8.0$, $J_{5,6} = 10.0$, $J_{6,1} = 8.0$, $J_{CH,CH_3} = 6.5$ Hz. – ¹³C NMR (CDCl₃): $\delta = 157.4$ (C=O), 144.5 (C-s), 128.4 (C-m), 126.9 (C-p), 126.9 (C-o), 110.2 (OCO), 81.2* (C-1), 77.9 (C-5), 76.6* (C-2), 68.9 (C-4), 60.3 (C-6), 55.9 (C-3), 55.1 (CHCH₃), 29.9 (NCH₃), 27.5, 25.2 (2 CH₃), 25.1 (CHCH₃).

32a': Colorless crystals, m.p. 191 °C (CHCl₃/ether, 1:5); $[\alpha]_{20}^{20} = -13$ (c = 1.0, CHCl₃). – IR (KBr): 3400, 3025, 2990, 2970, 2930, 2810, 1740, 1600, 1440, 1410, 1370, 1350, 1265, 1240, 1215, 1140, 1045, 960, 865, 815, 760, 695, 660, 560, 520 cm⁻¹. – ¹H NMR (CDCl₃): $\delta = 7.40 - 7.21$ (m, 5H), 4.51 (dd, 5-H), 4.20 - 4.05 (br. s, OH), 4.13 (q, CHCH₃), 4.10 (t, 2-H), 4.05 (t, 1-H), 3.67 (dd, 6-H), 3.53 (dd, 4-H), 2.94 (s, NCH₃), 2.80 (dd, 3-H), 1.78 (br. s, NH), 1.45 (s, CH₃), 1.38 (d, CHCH₃), 1.18 (s, CH₃); $J_{1,2} = 7.0$, $J_{2,3} = 6.0$, $J_{3,4} = 12.0$, $J_{4,5} = 7.5$, $J_{5,6} = 9.5$, $J_{6,1} = 7.5$, $J_{CH,CH_3} = 6.5$ Hz. – ¹³C NMR (CDCl₃): $\delta = 157.4$ (C=O), 146.0 (C-s), 128.3 (C-m), 127.0 (C-p), 126.6 (C-o), 110.0 (OCO), 80.1* (C-1), 77.8 (C-5), 76.4* (C-2), 69.5 (C-4), 60.2 (C-6), 57.4 (C-3), 56.0 (CHCH₃), 30.0 (NCH₃), 27.6, 24.8 (2 CH₃), 23.4 (CHCH₃).

 $(+) - (1R) - and (-) - (1S) - (1x, 2x, 3\beta, 4x, 5\beta, 6\beta) - 5 - 0, 6 - N - Carbonyl - 1, 2 - O - isopropylidene - 6 (methylamino) - 3 - [(R) - (1 - phenylethyl) amino] - 1, 2, 4, 5 - cyclohexanetetrol 4 - Acetate ($ **32 b**/**32b**'): Acetylation of**32 a**(**32 a** $') (360 mg, 1.0 mmol) gave 380 - 385 mg (94 - 95%) of colorless crystals, m.p. 133 °C (ether); <math>[\alpha]_D^{20} + 39$ (c = 1.0, CHCl₃). - IR (KBr): 3360, 3030, 2980, 2965, 2925, 1755, 1440, 1370, 1265, 1235, 1205, 1040, 1020, 865, 755, 695 cm⁻¹. - ¹H NMR (CDCl₃): $\delta = 7.35 - 7.20$ (m, 5H), 5.02 (dd, 4-H), 4.47 (dd, 5-H), 4.28 (t, 2-H), 4.19 (t, 1-H), 4.17 (q, CHCH₃), 3.57 (dd, 6-H), 2.92 (s, NCH₃), 2.59 (dd, 3-H), 2.17 (s, OAc), 1.45, 1.36 (s, 2 CH₃), 1.33 (br. s, NH), 1.31 (d, CHCH₃); $J_{1,2} = J_{2,3} = 7.0$, $J_{3,4} = 12.5$, $J_{4,5} = 8.5$, $J_{5,6} = 9.5$, $J_{6,1} = 8.0$, $J_{CH,CH_3} = 6.5$ Hz.

 $\begin{array}{cccccccc} C_{21}H_{28}N_2O_6 \ (404.5) & Calc. \ C \ 62.36 & H \ 6.98 & N \ 6.93 \\ \hline & {\bf 32b}: & Found \ C \ 62.25 & H \ 6.89 & N \ 6.90 \\ \hline & {\bf 32b'}: & Found \ C \ 62.32 & H \ 6.86 & N \ 6.85 \end{array}$

32b': Colorless crystals m.p. 136 °C (CHCl₃/cther, 1:5); $[\alpha]_{20}^{20} = +45$ (c = 1.0, CHCl₃). – IR (KBr): 3355, 3030, 2980, 2935, 1750, 1435, 1370, 1210, 1135, 1045, 1025, 865, 755, 695, 665 cm ⁻¹. – ¹H NMR (CDCl₃): $\delta = 7.36 - 7.19$ (m, 5H), 5.06 (dd, 4-H), 4.58 (dd, 5-H), 4.19 (t, 1-H), 4.14 (t, 2-H), 4.03 (q, CHCH₃), 3.68 (dd, 6-H), 2.93 (s, CH₃), 2.77 (dd, 3-H), 2.20 (s, OAc), 1.47 (br. s, NH), 1.35 (s, CH₃), 1.30 (d, CHCH₃), 1.23 (s, CH₃); $J_{1,2} = J_{2,3} = 7.0$, $J_{3,4} = 12.0$, $J_{4,5} = 8.5$, $J_{5,6} = 9.5$, $J_{6,1} = 7.0$, $J_{CH,CH_3} = 6.5$ Hz.

(+) - (1R) - (1α, 2α, 3β, 4α, 5β, 6β) - 4-O-Benzyl-5-O, 6-N-carbonyl-1, 2-O-isopropylidene-6-(methylamino)-3-[(R)-(1-phenylethyl) amino]-1, 2, 4, 5-cyclohexanetetrol (**32d**): A suspensionof the alcohol**32a**(1.81 g, 5 mmol) and NaH (170 mg, 7 mmol) in glyme (15 ml) was stirredat 20°C for 15 min. Benzylchloride (1.26 g, 10 mmol) was added by syringe, and the mixturewas heated at 60°C for 2 h. On cooling the reaction was quenched with ice and extractedwith CH₂Cl₂ (100 ml). The organic layer was washed with water (2 × 50 ml), dried (MgSO₄),and concentrated to give a residue which was purified by column chromatography (silica,cyclohexane/ethyl acetate, 2:1) to give 1.84 g (81%) of colorless crystals, m. p. 171°C (ethyl $acetate); <math>[\alpha]_{D}^{20} = +56$. (c = 1.0, CHCl₃). – IR (KBr): 3345, 2990, 2960, 2935, 2890, 1765, 1430, 1400, 1380, 1235, 1215, 1135, 1120, 1065, 1040, 990, 875, 735, 705, 670 cm⁻¹. – ¹H NMR (CDCl₃): $\delta = 7.42 - 7.18$ (m, 10H), 4.94, 4.59 (d, CH₂), 4.45 (dd, 5-H), 4.26 (t, 2-H), 4.08 (dd, 1-H), 4.07 (q, CHCH₃), 3.59 (dd, 4-H), 3.53 (t, 6-H), 2.93 (s, NCH₃), 2.60 (br. s, NH), 2.57 (dd, 3-H), 1.44, 1.33 (s, 2 CH₃), 1.34 (d, CHCH₃); $J_{1,2} = 7.5$, $J_{2,3} = 6.5$, $J_{3,4} =$ 12.0, $J_{4,5} = 7.0$, $J_{5,6} = 9.5$, $J_{6,1} = 9.0$, $J_{CH,CH_3} = 6.5$, $J_{CH_7} = 12.0$ Hz.

C26H32N2O5 (452.6) Calc. C 69.01 H 7.13 N 6.19 Found C 68.74 H 6.96 N 6.21

(-)-(1S)- $(1\alpha,2\alpha,3\beta,4\alpha,5\beta,6\beta)$ -5-O,6-N-Carbonyl-1,2-O-isopropylidene-4-O-[(2-methoxyethoxy)methyl]-6-(methylamino)-3-[(R)-(1-phenylethyl)amino]-1,2,4,5-cyclohexanetetrol (**32e**'): To a suspension of **32a'** (725 mg, 2.0 mmol) in glyme (10 ml, NaH (75 mg, 3.0 mmol) was added. The suspension was stirred vigorously for 15 min at 20°C. Then (2-methoxyethoxy)methyl chloride (0.25 ml, 2.2 mmol) was added by syringe. After 1 h the mixture was

hydrolyzed with ice and concentrated i. vac. The residue was dissolved in CH₂Cl₂ (40 ml), washed twice with water (20 ml), dried, and concentrated i. vac.: 830 mg (92%) of colorless crystals, m. p. 58 °C (ether/*n*-hexane, 1:2); $[\alpha]_D^{20} = -28$ (c = 1.0, CHCl₃). – IR (KBr): 3340, 2900, 1745, 1440, 1385, 1265, 1215, 1040, 1015, 865, 760, 700, 520 cm⁻¹. – ¹H NMR (CDCl₃): $\delta = 7.40 - 7.18$ (m, 5 H), 4.99, 4.95 (d, CH₂), 4.51 (dd, 5-H), 4.07 (q, CHCH₃), 4.07 - 4.00 (m, 1-, 2-H), 3.86 - 3.75* (m, 2'-CH₂), 3.75 (dd, 4-H), 3.65 - 3.53* (m, 6-H, 1'-CH₂), 3.40 (s, OCH₃), 2.92 (s, NCH₃), 2.86 (ddd, 3-H), 1.98 (br. s, NH), 1.39, 1.05 (s, 2 CH₃), 1.37 (d, CHCH₃); $J_{2,3} = 5.0$, $J_{3,4} = 12.0$, $J_{4,5} = 8.0$, $J_{5,6} = 9.5$, $J_{CH_2} = J_{CH_2} = J_{CH,CH_3} = 6.5$ Hz.

 $C_{23}H_{34}N_2O_7\ (450.5)$ Calc. C 61.32 H 7.61 N 6.22 Found C 61.34 H 7.88 N 6.24

 $(-) - (1S) - (1\alpha, 2\alpha, 3\beta, 4\alpha, 5\beta, 6\beta) - 5 - O, 6 - N - Carbonyl - 1, 2 - O - isopropylidene - 4 - O - methyl - 6 - (methylamino) - 3 - [(R) - (1 - phenylethyl) amino] - 1, 2, 4, 5 - cyclohexanetetrol ($ **32f**): To a suspension of**32a'** $(1.81 g, 5.0 mmol) in glyme (15 ml) NaH (170 mg, 7.0 mmol) is added. After stirring for 15 min at 20 °C methyl iodide (0.44 ml, 7.0 mmol) was added by syringe. After 30 min the mixture was hydrolyzed with ice, concentrated i. vac., dissolved in water (30 ml), and extracted with CH₂Cl₂ (3 × 50 ml). The organic layer was washed with water (50 ml), dried, and evaporated i. vac. to give 1.67 g (89%) of colorless crystals, m. p. 138 °C (CHCl₃/ ether, 1:5); <math>[\alpha]_{10}^{20} = -36$ (c = 1.0, CHCl₃). - 1R (KBr): 3340, 2970, 2920, 2840, 1745, 1430, 1400, 1370, 1265, 1240, 1215, 1120, 1025, 970, 865, 810, 755, 695, 665, 520 cm⁻¹. - ¹H NMR (CDCl₃): $\delta = 7.40 - 7.17$ (m, 5H), 4.50 (dd, 5-H), 4.02 (m, 1-, 2-H, CHCH₃), 3.61 (m, 6-H), 3.58 (s, OCH₃), 3.33 (dd, 4-H), 2.95 (s, NCH₃), 2.89 (m, 3-H), 2.15 (br. s, NH), 1.40, 1.02 (s, 2 CH₃), 1.38 (d, CHCH₃); $J_{2,3} = 6.0$, $J_{3,4} = 12.0$, $J_{4,5} = 7.5$, $J_{5,6} = 10.0$, $J_{6,1} = 7.5$, $J_{CH,CH_3} = 6.5$ Hz.

C20H28N2O5 (376.5) Calc. C 63.81 H 7.55 N 7.44 Found C 63.65 H 7.66 N 7.49

(+)- $(1R^*)$ - and (-)- $(1S^*)$ - $(1\alpha,2\alpha,3\alpha,4\beta,5\beta,6\beta)$ -5-O,6-N-Carbonyl-1,2-O-isopropylidene-6-(methylamino)-4-[(R)-(1-phenylethyl)amino]-1,2,3,5-cyclohexanetetrol (33a/33a'): A solution of rac-24 (240 mg, 1 mmol) and (R)-(+)-1-phenylethylamine (1.3 ml, 10 mmol) in 3 ml of solvent [and Al₂O₃ (1.0 g) as in entries of Tab. 9] was heated at reflux (N₂) for 6 d. When TLC showed decomposition products, the reaction mixture was cooled, the Al₂O₃ filtered off, and the solution concentrated i. vac. (0.01 Torr) at 60°C. The oily residue consisted of two product pairs (TLC: CHCl₃/CH₃OH, 25:1) as well as starting material. The molar composition was determined by ¹H NMR (250 MHz). Column chromatography on silica (CHCl₃/CH₃OH, 100:1) afforded successively the educt rac-24, neo-amines 33a/33a', chiroamines 32a' and 32a (total yield ca. 90%).

Table 9. Reaction conditions and rel. composition of the product mixtures (33a/33a': 32a/32a' = X: Y)

Entry	Solvent	Temp.	Time	% Conversion	X: Y
1	Ethanol	78 °C	4 d	90	2:1
2	1-Propanol	100 °C	3 d	95	2:1
3	Acetonitrile	80 °C	8 d	65	4:1
4	Dioxane	101 °C	6 d	30	4:1
5	$Dioxane/Al_2O_3$ (basic)	101 °C	6 d	80	3:1
6	$Dioxane/Al_2O_3$ (neutral)	101 °C	6 d	80	3:1
7	$Dioxane/Al_2O_3$ (acidic)	101 °C	6 d	80	3:1

33a: Colorless crystals, m. p. 170 °C (CHCl₃/ether, 1:5); $[\alpha]_D^{20} = +195$ (c = 1.0, CHCl₃). – IR (KBr): 3430, 3290, 3025, 2930, 1760, 1740, 1430, 1400, 1380, 1250, 1205, 1120, 1100, 1065, 1040, 1000, 970, 885, 760, 700, 660, 510 cm⁻¹. – ¹H NMR (CDCl₃): $\delta = 7.37 - 7.21$ (m, 5H), 4.92 (dd, 5-H), 4.50 (dd, 2-H), 4.40 (dd, 1-H), 4.05 (q, CHCH₃), 3.97 (dd, 6-H), 3.65 (br. s, OH), 3.58 (dd, 3-H), 2.94 (dd, 4-H), 2.90 (s, NCH₃), 1.90 (br. s, NH), 1.41 (d, CHCH₃), 1.25, 0.95 (s, 2 CH₃); $J_{1,2} = 7.5$, $J_{2,3} = 3.5$, $J_{3,4} = 11.0$, $J_{4,5} = 4.0$, $J_{5,6} = 9.5$, $J_{6,1} = 2.0$, $J_{CH,CH_3} = 6.5$ Hz.

33a': Colorless crystals, m. p. 126 °C (ether); $[\alpha]_{D}^{20} = -92$ (c = 1.0, CHCl₃). – IR (KBr): 3370, 3305, 3060, 3025, 2980, 2930, 1760, 1730, 1430, 1405, 1380, 1270, 1250, 1160, 1125, 1110, 1060, 1035, 970, 920, 880, 760, 700, 675, 655, 545, 510 cm⁻¹. – ¹H NMR (CDCl₃): $\delta = 7.40 - 7.22$ (m, 5H), 4.60 (dd, 1-H), 4.41 (dd, 2-H), 4.38 (dd, 5-H), 3.87 (q, CHCH₃), 3.79 (dd, 3-H), 3.78 (br. s, 6-H), 3.52 (br. s, OH), 3.14 (dd, 4-H), 2.88 (s, NCH₃), 1.87 (br. s, NH), 1.45, 1.37 (s, 2 CH₃), 1.39 (d, CHCH₃); $J_{1,2} = 7.5$, $J_{2,3} = 3.0$, $J_{3,4} = 9.5$, $J_{4,5} = 4.5$, $J_{5,6} = 9.5$, $J_{6,1} = 4.0$, $J_{CHCH_3} = 6.5$ Hz.

(+)- $(1R^*)$ - and (-)- $(1S^*)$ - $1\alpha,2\alpha,3\alpha,4\beta,5\beta,6\beta)$ -5-O,6-N-Carbonyl-1,2-O-isopropylidene-6-(methylamino)-4-[(R)-(1-phenylethyl)amino]-1,2,3,5-cyclohexanetetrol 3-Acetate (33b/ 33b'): Acetylation of 33a(33a') (180 mg, 0.5 mmol) gave 175-180 mg (86-89%) of product.

33b: Colorless crystals, m. p. 157 °C (CHCl₃/ether 1:4); $[\alpha]_{D}^{20} = +84$ (c = 1.0, CHCl₃). – IR (KBr): 3440, 2970, 2930, 1755, 1430, 1380, 1240, 1145, 1065, 1040, 760, 700 cm⁻¹. – ¹H NMR (CDCl₃): $\delta = 7.36 - 7.20$ (m, 5H), 5.02 (dd, 3-H), 4.92 (dd, 5-H), 4.46 (dd, 2-H), 4.39 (dd, 1-H), 3.98 (q, CHCH₃), 3.90 (dd, 6-H), 3.20 (dd, 4-H), 2.92 (s, NCH₃), 2.20 (s, OAc), 1.70 (br. s, NH), 1.32 (d, CHCH₃), 1.25, 1.06 (s, 2 CH₃); $J_{1,2} = 7.5$, $J_{2,3} = 4.0$, $J_{3,4} = 10.5$, $J_{4,5} = 4.0$, $J_{5,6} = 9.5$, $J_{6,1} = 3.0$, $J_{CHCH_3} = 6.5$ Hz.

33b': Colorless crystals, m. p. 156 °C (CHCl₃/ether, 1:4); $[\alpha]_{20}^{20} = -41$ (c = 1.0, CHCl₃). – IR (KBr): 3330, 3030, 2980, 2930, 1770, 1430, 1410, 1385, 1365, 1250, 1215, 1145, 1040, 880, 760, 705 cm⁻¹. – ¹H NMR (CDCl₃): $\delta = 7.37 - 7.22$ (m, 5H), 5.35 (dd, 3-H), 4.62 (dd, 5-H), 4.61 (dd, 2-H), 4.41 (dd, 1-H), 3.94 (q, CHCH₃), 3.80 (dd, 6-H), 3.20 (dd, 4-H), 2.95 (s, NCH₃), 2.12 (s, OAc), 1.80 (s, NH), 1.33 (s, 2 CH₃), 1.32 (d, CHCH₃); $J_{1,2} = 8.0$, $J_{2,3} = 4.5$, $J_{3,4} = 8.5$, $J_{4,5} = 5.0$, $J_{5,6} = 10.0$, $J_{6,1} = 4.5$, $J_{CHCH_3} = 6.5$ Hz.

 $(-) \cdot (1R)$ - and $(+) \cdot (1S)$ -Bis $[(1\alpha, 2\alpha, 3\beta, 4\alpha, 5\beta, 6\beta)$ -3-ammonio-5-0,6-N-carbonyl-6-(methylamino)-1,2,4,5-cyclohexanetetrol] Sulfate Monohydrate [(34a)₂ · H₂SO₄ · H₂O/ent-(34a)₂ · H₂SO₄ · H₂O]: A solution of 32a (1.81 g, 5 mmol) in methanol (30 ml) containing 96-% sulfuric acid (300 mg, 3 mmol) was hydrogenated (1 at H₂) over 10-% Pd/C (200 mg) at 20 °C for 24 h. The catalyst was filtered off and the clear solution was concentrated and recrystallized from water/ethanol (1:3) to give the amine 34a as its sulfate (1.25-1.30 g, 90-94%).

 $(34a)_2 \cdot H_2SO_4 \cdot H_2O$: Colorless crystals, m.p. $262-265^{\circ}C$ (dec.); $[\alpha]_{20}^{D} = -92$ (c = 1.0, H_2O). – IR (KBr): 3500–2900, 1755, 1635, 1520, 1430, 1405, 1385, 1355, 1335, 1310, 1250, 1150–1030, 855, 770, 760, 620 cm⁻¹. – ¹H NMR (D₂O): $\delta = 4.68$ (t, 5-H), 4.34 (t, 1-H),

4.09 (dd, 6-H), 3.93 (dd, 2-H), 3.87 (dd, 4-H), 3.43 (t, 3-H), 2.85 (s, NCH₃); $J_{1,2} = 3.0$, $J_{2,3} = 10.0$, $J_{3,4} = 11.5$, $J_{4,5} = 7.5$, $J_{5,6} = 8.0$, $J_{6,1} = 3.0$ Hz.

 $\begin{array}{rl} C_{16}H_{30}N_4O_{14}S_1 \cdot H_2O~(552.5) & Calc. \ C \ 34.78 \ H \ 5.84 \ N \ 10.14 \\ Found \ C \ 34.67 \ H \ 6.05 \ N \ 10.17 \end{array}$

 $ent-(34a)_2 \cdot H_2SO_4 \cdot H_2O: [\alpha]_D^{20} = +93.$

 $(-) \cdot (1R)$ - and $(+) \cdot (1R) \cdot 1\alpha_2 \alpha_3 \beta_4 \alpha_5 \beta_6 \beta_6)$ -3-(Acetylamino)-5-O.6-N-carbonyl-6-(methylamino)-1,2,4,5-cyclohexanetetrol 1,2,4-Triacetate (**34b**/ent-**34b**): Acetylation of **34a** (ent-**34a**) gave 355 - 365 mg (92 - 94%) of colorless crystals, m. p. 193 °C (CHCl₃/ether, 1:5); **34b**: $[\alpha]_D^{20} = -82$ (c = 1.0, CHCl₃). - IR (KBr): 3380, 2990, 2940, 1750, 1670, 1535, 1420, 1375, 1300, 1210, 1025, 930, 890, 770, 590, 435 cm⁻¹. - ¹H NMR (CDCl₃): $\delta = 6.02$ (d, NH), 5.52 (dd, 1-H), 5.15 (dd, 5-H), 5.12 (dd, 2-H), 4.70 (t, 5-H), 4.53 (td, 3-H), 3.91 (dd, 6-H), 2.91 (s, NCH₃), 2.17, 2.11, 2.07 (s, 3 OAc), 1.94 (s, NAc); $J_{1,2} = 3.0$, $J_{2,3} = 9.0$, $J_{3,4} =$ 10.5, $J_{3,NH} = 9.0$, $J_{4,5} = J_{5,6} = 8.0$, $J_{6,1} = 4.0$ Hz.

 $C_{16}H_{22}N_2O_9 \ (386.4) \quad Calc. \ C \ 49.74 \ H \ 5.74 \ N \ 7.25 \quad Found \ C \ 49.54 \ H \ 5.73 \ N \ 7.24$

ent-34b: $[\alpha]_{D}^{20} = +83$ (c = 1.0, CHCl₃).

(+)-(1S)- $(1\alpha,2\alpha,3\beta,4\alpha,5\beta,6\beta)$ -3-[(Benzyloxycarbonyl)amino]-5-O,6-N-carbonyl-6-(methylamino)-1,2,4,5-cyclohexanetetrol (ent-**34c**). – a): A solution of ent-**36b** (1.96 g, 5 mmol) and 96-% sulfuric acid (100 mg, 1 mmol) in methanol (50 ml) was heated at reflux for 2 h. After cooling the mixture was neutralized with NaOCH₃ and concentrated. The residue was purified by column chromatography (silica, CHCl₃/CH₃OH, 3:1) to give 1.57 g (89%) of colorless crystals, m. p. 209–211 °C (CHCl₃/CH₃OH, 5:1).

b): A solution of ent-(34a)₂ · H₂SO₄ · H₂O (550 mg, 1 mmol) and Na₂CO₃ (330 mg, 4 mmol) in water/acetone (1:1, 10 ml) was cooled to 0°C. Benzyloxycarbonyl chloride (0.43 ml, 3 mmol) was added and the mixture was stirred for 30 min. After 30 min at 20°C the solution was concentrated and the residue was extracted with hot methanol (3 × 30 ml). The extracts were concentrated and the product was purified by column chromatography (silica, CHCl₃/ CH₃OH, 3:1) to give 610 mg (86%) of *ent*-34c; $[\alpha]_{D}^{20} = +55$ (c = 1.0, CH₃OH). – IR (KBr): 3350, 3070, 2930, 1720, 1690, 1530, 1430, 1400, 1290, 1245, 1025, 735, 690 cm⁻¹. – ¹H NMR (CDCl₃/CD₃OD, 1:1): $\delta = 7.40-7.30$ (m, 5H), 5.11 (s, CH₂), 4.59 (t, 5-H), 4.04 (dd, 1-H), 3.92 (dd, 6-H), 3.74-3.65 (m, 2-, 3-, 4-H), 2.90 (s, NCH₃); $J_{1,2} = 2.5$, $J_{4,5} = 8.0$, $J_{5,6} = 9.0$, $J_{6,1} = 5.5$ Hz.

C16H20N2O7 (352.3) Calc. C 54.54 H 5.72 N 7.95 Found C 54.22 H 5.42 N 7.53

(-)-(1R)- $(1\alpha,2\alpha,3\beta,4\alpha,5\beta,6\beta)$ -3-(Acetylamino)-5-O,6-N-carbonyl-1-O-methyl-6-(methyl-amino)-1,2,4,5-cyclohexanetetrol 2,4-Diacetate (**34e**): A solution of **30h** (or **30k**) (210 mg, 0.5 mmol) and 96-% sulfuric acid (25 mg, 0.25 mmol) in methanol (15 ml) was hydrogenated (1 at H₂) over 10-% Pd/C (100 mg) at 20°C for 24 h. The catalyst was filtered off, the clear solution was concentrated to give the pure (¹H NMR) sulfate **34d**. - ¹H NMR (D₂O): δ = 4.64 (t, 5-H), 4.21 (dd, 6-H), 4.02 (dd, 2-H), 3.95 (t, 1-H), 3.86 (dd, 4-H), 3.52 (s, OCH₃), 3.38 (dd, 3-H), 2.85 (s, NCH₃); $J_{1,2}$ = 3.0, $J_{2,3}$ = 9.0, $J_{3,4}$ = 11.0, $J_{4,5}$ = 8.0, $J_{5,6}$ = 7.5, $J_{6,1}$ = 3.5 Hz.

The crude product was acetylated and purified by column chromatography (silica, ethyl acetate) to give 165 mg (93%) of colorless crystals, m. p. 248 °C (CHCl₃/ether, 1:5); $[\alpha]_D^{20} = -65$ (c = 1.0, CHCl₃). – IR (KBr): 3330, 3060, 2935, 1750, 1735, 1685, 1550, 1450, 1405, 1375, 1260, 1225, 1145, 1095, 1040, 990, 955, 900, 755, 485 cm⁻¹. – ¹H NMR (CDCl₃): $\delta = 6.13$ (d, NH), 5.24 (dd, 2-H), 5.18 (dd, 4-H), 4.68 (t, 5-H), 4.18 (ddd, 3-H), 3.93 (dd, 6-H), 3.88

(dd, 1-H), 3.47 (s, OCH₃), 2.91 (s, NCH₃), 2.13, 2.10 (s, 2 OAc), 1.95 (s, NAc); $J_{1,2} = 2.5$, $J_{2,3} = 5.5$, $J_{3,4} = 10.0$, $J_{3,NH} = 8.5$, $J_{4,5} = 9.0$, $J_{5,6} = 8.0$, $J_{6,1} = 6.5$ Hz.

C₁₅H₂₂N₂O₈ (358.4) Calc. C 50.28 H 6.19 N 7.82 Found C 49.85 H 6.26 N 7.97

(+)-(1S)- $(1\alpha,2\alpha,3\beta,4\alpha,5\beta,6\beta)$ -3-(Acetylamino)-5-O,6-N-carbonyl-1-O-methyl-6-(methyl-amino)-1,2,4,5-cyclohexanetetrol 2,4-Diacetate (ent-**34e**): A solution of **301**' (210 mg, 0.5 mmol) was hydrogenated and acetylated to give 165 mg (93%) of colorless crystals, m.p. 243 °C (CHCl₃/ether, 1:5); $[\alpha]_{D}^{20} = +63$ (c = 1.0, CHCl₃).

(+)-(1S)- $(1\alpha,2\alpha,3\beta,4\alpha,5\beta,6\beta)$ -1.2-O-Benzylidene-3-f (benzyloxycarbonyl)amino]-6-methylamino)-1,2,4,5-cyclohexanetetrol (ent-**35**): A suspension of ent-**34c** (1.06 g, 3 mmol), α,α dimethoxytoluene (1.52 g, 10 mmol), and p-toluenesulfonic acid monohydrate (60 mg, 0.3 mmol) in CH₂Cl₂ (10 ml) was heated at reflux for 2 h. CH₂Cl₂ (50 ml) was added and the organic layer was washed with saturated NaHCO₃ solution (50 ml) and water (50 ml), dried (MgSO₄), and concentrated. The oily residue was purified by column chromatography (silica, cyclohexane/ethyl acetate, 1:2) to give 1.15 g (87%) of colorless crystals, m. p. 215-217°C (CHCl₃); $[\alpha]_{D}^{20} = +16$ (c = 1.0, CH₃OH). - IR (KBr): 3410, 3360, 2930, 1740, 1690, 1540, 1410, 1310, 1275, 1230, 1090-1020, 975, 915, 760, 700, 665 cm⁻¹. - ¹H NMR (CDCl₃): $\delta = 7.6-7.2$ (m, 5H), 6.13, 5.77 (s, CH), 5.64, 5.54 (d, NH), 5.1 (s, CH₂), 4.8-3.6 (m, 1-, 2-, 3-, 4-, 5-, 6-H, OH), 2.95-2.83 (m, NCH₃).

C23H24N2O7 (440.5) Calc. C 62.72 H 5.49 N 6.36 Found C 62.27 H 5.43 N 6.24

(-)-(1R)-Bis[$(1\alpha,2\alpha,3\beta,4\alpha,5\beta,6\beta)$ -3-ammonio-5-0,6-N-carbonyl-1,2-O-isopropylidene-6-(methylamino)-1,2,4,5-cyclohexanetetrol] Sulfate Dihydrate [(36a)₂ · H₂SO₄ · 2 H₂O]: A solution of 32a (3.62 g, 10 mmol) in methanol (100 ml) containing 96-% sulfuric acid (300 mg, 3 mmol) was hydrogenated (1 at H₂) over 10-% Pd/C (300 mg) at 20 °C for 24 h. Water was added to dissolve the precipitate and the catalyst was filtered off. The clear solution was concentrated i. vac. and the residue was treated with dilute sulfuric acid (1.8-1.9 mmol). Recrystallization from water/ethanol (1:5) afforded 36a as its sulfate (2.9-3.1 g, 89-95%).

 $(36a)_2 \cdot H_2SO_4 \cdot 2 H_2O$: Colorless crystals, m. p. 235 – 240 °C (dec.); $[\alpha]_{20}^{20} = -14$ (c = 1.0, H₂O). – IR (KBr): 3500 – 2850, 1760 – 1720, 1620, 1520, 1430, 1375, 1240, 1215, 1150 – 1020, 860, 755, 610, 400 cm⁻¹. – ¹H NMR (D₂O): $\delta = 4.75$ (t, 5-H), 4.64 (t, 1-H), 4.56 (t, 2-H), 4.20 (dd, 6-H), 3.99 (dd, 4-H), 3.41 (dd, 3-H), 2.92 (s, NCH₃), 1.56, 1.42 (s, 2 CH₃); $J_{1,2} = 7.5$, $J_{2,3} = 8.0$, $J_{3,4} = 12.5$, $J_{4,5} = 8.5$, $J_{5,6} = 9.5$, $J_{6,1} = 6.0$ Hz.

 $\begin{array}{c} C_{22}H_{38}N_4O_{14}S_1 & 2 \ H_2O \ (650.7) \\ Found \ C \ 41.00 \ H \ 6.51 \ N \ 8.61 \\ Found \ C \ 41.00 \ H \ 6.19 \ N \ 8.62 \end{array}$

 $(-) - (1R) - (1\alpha, 2\alpha, 3\beta, 4\alpha, 5\beta, 6\beta) - 3 - [(Benzyloxycarbonyl)amino] -5 - O, 6 - N-carbonyl-1, 2-O$ $isopropylidene-6 - (methylamino) -1, 2, 4, 5 - cyclohexanetetrol (36b): A solution of (36a)₂ · H₂SO₄ · 2 H₂O (6.5 g, 10 mmol) and Na₂CO₃ (3.3 g, 40 mmol) in water/acetone (1:1, 50 ml) was cooled to 0 °C. Benzyloxycarbonyl chloride (3.55 ml, 25 mmol) was added and the mixture was allowed to warm to room temperature over 1 h. Water (50 ml) was added and the suspension was extracted with CH₂Cl₂ (3 × 100 ml). The organic layer was dried (MgSO₄) and concentrated to give an oily residue which was purified by column chromatography (silica, cyclohexane/ethyl acetate, 2:1) to give 6.45 g (82%) of colorless crystals, m. p. 93 - 95 °C (cyclohexane/ethyl acetate, 1:1); <math>[\alpha]_{10}^{20} = -6 (c = 1.0, CH_3OH)$. – IR (KBr): 3400 - 3320, 2980, 2930, 1750 - 1700, 1530, 1435, 1405, 1380, 1235, 1165, 1110, 1030, 860, 755, 695, 665 cm⁻¹. – ¹H NMR (CDCl₃): $\delta = 7.39 - 7.30$ (m, 5H), 5.56 (d, NH), 5.11 (s, CH₂), 4.51 (dd, 5-H), 4.28 (br. t, 2-H), 4.13 (t, 1-H), 4.01 (br. s, OH), 3.80 (br. s, 4-H), 3.68 (dd, 6-H), 3.61 (td, 3-H), 2.91 (s, NCH₃), 1.51, 1.33 (s, 2 CH₃); $J_{1,2} = 7.0, J_{2,3} = 8.0, J_{3,4} = 12.0, J_{3,NH} = 8.5, J_{4,5} = 8.0, J_{5,6} = 9.5, J_{6,1} = 7.0$ Hz. – ¹³C NMR (CDCl₃): $\delta = 157.4$

(C=O), 157.0 (C=O-Cbz), 136.3, 128.5, 128.0, 127.9 (6 Phenyl-C), 110.3 (OCO), 77.6 (C-2, -5), 75.9 (C-1), 69.3 (C-4), 67.0 (CH₂), 60.1 (C-6), 54.1 (C-3), 29.9 (NCH₃), 27.5, 25.1 (2 CH₃).

C19H24N2O7 (392.4) Calc. C 58.16 H 6.16 N 7.14 Found C 57.66 H 6.13 N 7.00

 $(-) \cdot (1S) \cdot (1\alpha, 2\alpha, 3\beta, 4\alpha, 5\beta, 6\beta) \cdot 3$ - Amino-5-O,6-N-carbonyl-1,2-O-isopropylidene-4-O-methyl-6-(methylamino)-1,2,4,5-cyclohexanetetrol (ent-**36c**): A solution of **32f**' (1.88 g, 5.0 mmol) in methanol [20 ml/96-% sulfuric acid (150 mg, 1.5 mmol)] was hydrogenated (1 at H₂) over 10-% Pd/C (150 mg) at 20 °C for 24 h. After filtration and concentration CH₂Cl₂ (100 ml) was added. After washing with NaHCO₃ solution (50 ml) and H₂O, drying (MgSO₄), and concentration 1.17 g (86%) of colorless crystals were obtained; m. p. 153 °C (CHCl₃/ ether, 1:5); $[\alpha]_{10}^{20} = -57$ (c = 1.0, CHCl₃). – IR (KBr): 3380, 3320, 2980, 2935, 1730, 1575, 1430, 1380, 1295, 1240, 1210, 1145, 1030, 960, 865, 750, 665, 600, 510, 475 cm⁻¹. – ¹H NMR (CDCl₃): $\delta = 4.51$ (dd, 5-H), 4.14 (m, 1-, 2-H), 3.70 (m, 6-H), 3.56 (s, OCH₃), 3.20 (dd, 4-H), 2.98 (s, NCH₃), 2.93 (m, 3-H), 1.75 (s, NH₂), 1.51, 1.35 (s, 2 CH₃); $J_{2,3} = 7.5$, $J_{3,4} = 12.0$, $J_{4,5} = 7.0$, $J_{5,6} = 9.5$, $J_{6,1} = 7.5$ Hz.

C12H20N2O5 (272.3) Calc. C 52.93 H 7.40 N 10.29 Found C 52.76 H 7.60 N 10.08

 $(-)-(1R)-(1\alpha,2\alpha,3\beta,4\alpha,5\beta,6\beta)-3-Amino-3-N,4-O:5-O,6-N-dicarbonyl-1,2-O-isopropyli$ dene-6-(methylamino)-1,2,4,5-cyclohexanetetrol (37a): To a solution of $(36a)_2 + H_2SO_4 + H_2$ $2 \text{ H}_2\text{O}$ (650 mg, 1.0 mmol) and triethylamine (0.5 ml) in CH₂Cl₂ (5 ml) at 0 °C benzyloxycarbonyl chloride (0.35 ml, 2.5 mmol) was added. After 30 min of stirring at 0°C, then at 20° C, the solution was washed (H₂O) and concentrated i. vac. The solid residue was chromatographed (silica, cyclohexane/ethyl acetate, 1:2). After concentration the solid was extracted twice with boiling CHCl₃ (10 ml each). The extract contained 440 mg (56%) of 36b, the rest was practically pure 37a, 150 mg (25%) of colorless crystals, m.p. 325°C (CHCl₃/ methanol, 10:1, subl. at 280 °C); $[\alpha]_{D}^{20} = -92$ (c = 1.0, CH₃OH). - IR (KBr): 3420, 3370, 2990, 2930, 2900, 1775, 1750, 1440, 1410, 1380, 1260, 1240, 1215, 1160, 1050, 1015, 930, 920, 875, 765, 755, 750, 665, 550, 525 cm⁻¹. - ¹H NMR (CDCl₃/CD₃OD, 5:1): $\delta = 4.91$ (dd, 5-H), 4.45 (t, 2-H), 4.33 (t, 1-H), 4.24 (dd, 4-H), 3.91 (dd, 6-H), 3.58 (dd, 3-H), 2.98 (s, NCH₃), 1.52, 1.36 (s, 2 CH₃); $J_{1,2} = J_{2,3} = 8.0$, $J_{3,4} = 13.0$, $J_{4,5} = 8.5$, $J_{5,6} = 10.0$, $J_{6,1} = 7.5$ Hz. -¹H NMR ([D₆]DMSO): $\delta = 8.44$ (s, NH), 4.96 (t, 5-H), 4.41 (m, 1-, 2-H), 4.34 (dd, 4-H), 3.94 (m, 6-H), 3.65 (m, 3-H), 2.80 (s, NCH₃), 1.45, 1.30 (s, 2 CH₃); $J_{2,3} = 7.5$, $J_{3,4} = 12.5$, $J_{4,5} = 8.5, J_{5,6} = 9.0, J_{6,1} = 6.5$ Hz.

 $C_{12}H_{16}N_2O_6 \ (284.3)$ Calc. C 50.70 H 5.67 N 9.85 Found C 50.50 H 5.81 N 9.85

 $(+) - (1R) - (1\alpha, 2\alpha, 3\beta, 4\alpha, 5\beta, 6\beta) - 3 - [$ (Benzyloxycarbonyl)amino]-3-N,4-O: 5-O,6-N-dicarbonyl-1,2-O-isopropylidene-6-(methylamino)-1,2,4,5-cyclohexanetetrol (**37 b**): In the above reaction – especially with a greater excess of reagent – **37 b** can be formed and can be found as the first-eluted compound in the chromatographic separation; colorless crystals, m.p. 218-220°C (ether); $[\alpha]_{20}^{20} = +25$ (c = 1.0, CHCl₃). – IR (KBr): 3030, 2985, 2930, 1835, 1765, 1435, 1405, 1385, 1320, 1300, 1275, 1240, 1210, 1165, 1115, 1080, 1045, 1020, 870, 750, 695, 665 cm⁻¹. – ¹H NMR (CDCl₃): $\delta = 7.47 - 7.32$ (m, 5H), 5.37, 5.26 (d, CH₂), 4.80 (t, 5-H), 4.61 (t, 2-H), 4.31 (dd, 1-H), 4.23 (dd, 4-H), 3.98 (dd, 3-H), 3.80 (t, 6-H), 2.98 (s, NCH₃), 1.46, 1.23 (s, 2 CH₃); $J_{1,2} = 7.0$, $J_{2,3} = 7.5$, $J_{3,4} = 13.0$, $J_{4,5} = 8.5$, $J_{5,6} = 9.5$, $J_{6,1} = 9.0$, $J_{CH_2} = 12.0$ Hz.

 $C_{20}H_{22}N_2O_8$ (418.4) Calc. C 57.41 H 5.30 N 6.70 Found C 57.89 H 5.06 N 7.10

(-)-(1R)- and (+)-(1S)- $(1\alpha,2\alpha,3\beta,4\alpha,5\beta,6\beta)$ -3-Ammonio-6-(methylammonio)-1,2,4,5cyclohexanetetrol Sulfate Monohydrate (De-O-methylfortamine Sulfate) (**38a** + H₂SO₄ + H₂O) ent-**38a** + H₂SO₄ + H₂O): A suspension of (**34a**)₂ + H₂SO₄ + H₂O (550 mg, 1 mmol) and Ba(OH)₂ · 8 H₂O (1.26 g, 4 mmol) in water (50 ml) was heated at reflux for 2 h (N₂). The mixture was filtered and acidified (pH = 2) with 2 N H₂SO₄. Then BaSO₄ was separated by centrifugation, and the clear solution was concentrated i. vac. The diamine **38a** crystallized from water/ethanol (1:3) as sulfate monohydrate (565 – 590 mg, 92 – 96% yield); colorless crystals, dec. at 260 °C; $[\alpha]_{D}^{20} = -16$ (c = 1.0, H₂O). – IR (KBr): 3400 – 3280, 3160, 1750, 1610, 1520, 1460, 1375, 1240, 1100 – 1030, 600 cm⁻¹. – ¹ NMR (D₂O): $\delta = 4.40$ (t, 1-H), 4.21 (dd, 5-H), 4.12 (dd, 2-H), 3.87 (t, 4-H), 3.61 (t, 6-H), 3.45 (t, 3-H), 2.86 (s, NCH₃); $J_{1,2} = 3.0$, $J_{2,3} = J_{3,4} = 9.0$, $J_{4,5} = 8.5$, $J_{5,6} = 5.0$, $J_{6,1} = 4.5$ Hz. – ¹³C NMR (D₂O): $\delta = 69.4$ (C-4), 68.3 (C-5), 67.6 (C-2), 66.5 (C-1), 61.9 (C-6), 54.7 (C-3), 33.8 (CH₃); free base: 74.5 (C-4), 72.2 (C-5), 71.4 (C-2), 70.4 (C-1), 65.2 (C-6), 55.2 (C-3), 35.7 (CH₃).

 $C_{7}H_{18}N_{2}O_{8}S_{1} \cdot H_{2}O$ (308.3) Calc. C 27.27 H 6.54 N 9.09 Found C 27.13 H 6.63 N 9.05 ent-**38a** $\cdot H_{2}SO_{4} \cdot H_{2}O$: $[\alpha]_{D}^{20} = +16$ (c = 1.0, H₂O).

(+)-(1R)- and (-)-(1S)- $(1\alpha,2\alpha,3\beta,4\alpha,5\beta,6\beta)$ -3-[(Benzyloxycarboyl)amino]-6-[(benzyloxycarbonyl)(methyl)amino]-1,2,4,5-cyclohexanetetrol (**38b**/ent-**38b**): A solution of **38a**(ent-**38a**) · H₂SO₄ · H₂O (155 mg, 0.5 mmol) and Na₂CO₃ (250 mg, 3 mmol) in water/acetone (1:1, 6 ml) was cooled to 0°C. Benzyloxycarbonyl chloride (0.28 ml, 2 mmol) was added and the mixture was stirred at 0°C for 30 min. After 30 min at 20°C the solution was concenrated i. vac., diluted with water (20 ml, and extracted with ether (3 × 30 ml). The combined organic extracts were dried (MgSO₄), concentrated, and purified by column chromatography (silica, CHCl₃/CH₃OH, 10:1) to give 175 mg (76%) of colorless crystals, m. p. 143 °C (ether); $[\alpha]_{D}^{20} = +56$ (c = 1.0, CH₃OH). – IR (KBr): 3400, 3060, 3030, 2920, 1670, 1500, 1450, 1400, 1340, 1225, 1155, 1015, 750, 690 cm⁻¹. – ¹H NMR (CDCl₃): $\delta = 7.32$ (s, 10H), 6.42 (br. d, NH), 5.10, 5.02 (s, 2 CH₂), 4.62 (br. s, 2H), 4.43 (br. t, 1H), 4.24 (br. s, 1H), 4.18 (br. s, 2H), 4.05 (br. d, OH), 3.89 (br. s, 1H), 3.34 (br. d, OH), 3.09 (s, NCH₃), 2.20 (s, OH); $J_{3NH} = 7.5$.

 $C_{23}H_{28}N_2O_8$ (460.5) Calc. C 59.99 H 6.13 N 6.08 Found C 59.44 H 6.11 N 6.02 ent-**38b**: $[\alpha]_D^{20} = -52$ (c = 1.0, CH₃OH).

 $(1S)-(1\alpha,2\alpha,3\beta,4\alpha,5\beta,6\beta)-6-\langle [N-(Diphenylmethylen)glycyl](methyl)amino \rangle -1,2-O-isopro$ pylidene-4-O-[(2-methoxyethoxy)methyl]-3-[(R)-(1-phenylethyl)amino]-1,2,4,5-cyclohexanetetrol (46): To a solution of diisopropylamine (0.56 ml, 4.0 mmol) in tetrahydrofuran (freshly distilled over sodium, 3 ml) a solution of n-butyllithium in n-hexane (2 M, 2.0 ml, 4.0 mmol) was added at 0 °C by syringe. After 10 min the solution was cooled to -78 °C and N-methylbenzophenone imine (780 mg, 4.0 mmol, dissolved in 1 ml of THF) was added slowly. The color of the solution changed slowly from yellow to dark red. After 20 min 32e' (450 mg, 1.0 mmol, dissolved in 2 ml of THF) was added by syringe. After 10 min methanol (10 ml) was added, the solution diluted with CH₂Cl₂ (50 ml), the organic layer washed with water (30 ml), dried, and concentrated. The residue was separated by chromatography (silica, cyclohexane/ethyl acetate/triethylamine, 25:25:1) to yield in the following order reagent and products thereof (¹H NMR): 185 mg of **32e'** (41%) and 275 mg of **46** (43%, 73% based on conversion), colorless oil. $-{}^{1}$ H NMR (CDCl₃): $\delta = 7.70 - 7.15$ (m, 15H), 4.78, 4.75 (d, OCH₂O), 4.74 (dd, 1-H), 4.32, 4.27 (d, NCH₂), 4.28 (t, 2-H), 4.12 (m, 5-H), 4.12-4.05 (br. s, OH), 4.08 (q, CHCH₃), 3.95 (dd, 6-H), 3.85 (t, 4-H), 3.74, 3.65 (dt, 1'-CH₂), 3.51 (t, 2'-CH₂), 3.35 (s, OCH₃), 3.15 (s, NCH₃), 2.92 (t, 3-H), 1.36, 1.28 (s, 2 CH₃), 1.34 (d, CHCH₃); $J_{1,2} =$ 6.0, $J_{2,3} = 5.5$, $J_{3,4} = 4.5$, $J_{4,5} = 3.5$, $J_{5,6} = 1.5$, $J_{6,1} = 10.0$, $J_{1',2'} = 4.5$, $J_{1'-CH_2} = 11.5$, $J_{OCH_2O} = 7.0, J_{NCH_2} = 15.5, J_{CH,CH_3} = 6.5$ Hz.

 $(1S)-(1\alpha,2\alpha,3\beta,4\alpha,5\beta,6\beta)-6-\langle [2-(Diphenylmethylen)amino-3-phenylpropionyl](methyl)-amino\rangle-1,2-O-isopropylidene-4-O-[(2-methoxyethoxy)methyl]-3-[(R)-(1-phenylethyl)-$

amino J-1,2,4,5-cyclohexanetetrol (47): To the reaction mixture for the preparation of 46, before the addition of methanol, benzyl chloride (250 mg, 2.0 mmol) was added by syringe. After 1 h at 0°C 47 was isolated by chromatography (silica, cyclohexane/ethyl acetate/triethylamine, 25:25:1, R_f between 32e' and 46): colorless oil, not totally pure. – ¹H NMR (CDCl₃): $\delta = 7.70-6.85$ (m, 20H), 6.20 (br. s, OH), 4.77, 4.72 (d, OCH₂O), 4.75 (dd, 1-H), 4.47 (t, NCH), 4.27 (t, 2-H), 4.08 (q, CHCH₃), 4.02 (br. dd, 5-H), 3.83 (t, 4-H), 3.77 (br. s, 6-H), 3.73, 3.63 (dt, 1'-CH₂), 3.48 (t, 2'-CH₂), 3.34, 3.16 (dd, CH₂Ph), 3.32 (s, OCH₃), 2.87 (t, 3-H), 2.67 (s, NCH₃), 2.05 (br. s, NH), 1.35, 1.28 (s, 2 CH₃), 1.34 (d, CHCH₃); $J_{1.2} = 6.0, J_{2.3} = 5.5, J_{3.4} = 4.5, J_{4.5} = 3.5, J_{5.6} = 1.5, J_{6.1} = 9.5, J_{1'.2'} = 4.5, J_{1'-CH_2} = 11.5, J_{CH_2O} = J_{CH,CH_2} = 6.5, J_{CH_2Ph} = 13.0$ Hz.

 $(1S) - (1\alpha, 2\beta, 3\beta, 4\alpha, 5\beta, 6\beta) - 3 - \langle [N - (Diphenylmethylen)glycyl](methyl)amino \rangle - 1 - O - [(2-methoxyethoxy)methyl] - 5, 6 - [(R) - (1-phenylethyl)imino] - 1, 2, 4 - cyclohexanetriol (48) and <math>(1R) - (1\alpha, 2\alpha, 3\beta, 4\beta, 5\beta, 6\beta) - 3 - ([N - (Diphenylmethylen)glycyl](methyl)amino) - 1, 2 - O - isopro-pylidene - 5, 6 - [(R) - (1-phenylethyl)imino] - 1, 2, 4 - cyclohexanetriol (49): When the reaction mixture for the synthesis of 46 was kept at 0 °C for 1 - 2 h before the addition of methanol, two other main products were formed in a ratio of 3:1. Several by-products were isolated by chromatography (silica, cyclohexane/ethyl acetate/triethylamine, 50:25:2), sequence of products: 49, 32e', 48, 46). Both, 48 and 49, are colorless oils, not totally pure, characterized by NMR. In the solution of 48 two rotamers (I and II, ca. 3:1) are present.$

48: ¹H NMR (CDCl₃, 400 MHz) of I: $\delta = 7.70 - 7.15$ (m, 15H), 5.29 (d, 4-OH), 4.85 (s, OCH₂O), 4.39, 4.02 (d, NCH₂), 4.23 (t, 1-H), 4.21 (dd, 3-H), 4.16 (d, 4-H), 3.85 (m, 2-H), 3.75, 3.65 (m, 1'-CH₂), 3.55 (t, 2'-CH₂), 3.35 (s, OCH₃), 3.15 (s, NCH₃), 2.65 (q, CHCH₃), 2.30 (m, 6-H), 2.18 (d, 5-H), 1.42 (d, CHCH₃); $J_{1,2} = 3.0$, $J_{2,3} = J_{2,6} = 2.0$, $J_{2,OH} = 10.5$, $J_{3,4} = 10.0$, $J_{4,5} = 0$, $J_{5,6} = 5.0$, $J_{6,1} = 3.0$, $J_{1',2} = 4.5$, $J_{CH,CH_3} = 6.5$, $J_{NCH_2} = 14.0$ Hz. – Of II: $\delta = 7.70 - 7.15$ (m, 15H), 5.29 (d, OH), 4.85 (s, OCH₂O), 4.67 (dd, 3-H), 4.23 (t, 1-H), 4.20 (s, NCH₂), 4.16 (d, 4-H), 3.90 (m, 2-H), 3.70 (m, 1'-CH₂), 3.56 (t, 2'-CH₂), 3.35 (s, OCH₃), 3.20 (s, NCH₃), 2.65 (q, CHCH₃), 2.30 (m, 6-H), 2.14 (d, 5-H), 1.42 (d, CHCH₃); coupling constants as in I.

¹³C NMR (CDCl₃) of I: $\delta = 95.4$ (OCH₂O), 74.0 (C-2), 73.7 (C-1), 71.6 (CH₂-2'), 68.8 (CHCH₃), 67.3 (CH₂-1'), 64.5 (C-4), 59.3 (C-3), 57.6 (NCH₂), 54.0 (OCH₃), 45.1 (C-5), 41.3 (C-6), 29.8 (NCH₃), 23.2 (CHCH₃). – Of II: $\delta = 95.4$ (OCH₂O), 73.8 (C-1), 72.0 (C-2), 71.6 (CH₂-2'), 68.8 (CHCH₃), 67.4 (CH₂-1'), 67.2 (C-4), 59.0 (OCH₃), 56.7 (NCH₂), 56.0 (C-3), 44.4 (C-5), 41.6 (C-6), 32.0 (NCH₃), 23.0 (CHCH₃).

49: ¹H NMR (CDCl₃): $\delta = 7.70 - 7.10$ (m, 15 H), 4.50 - 4.10 (m, 1-, 2-, 3-, 4-H), 3.12 (s, NCH₃), 2.75 (q, CHCH₃), 2.48 (t, 5-H), 2.34 (d, 6-H), 1.42 (d, CHCH₃), 1.39, 1.28 (s, 2 CH₃); $J_{4.5} = 6.5, J_{5.6} = 5.5, J_{CH,CH_3} = 6.5$ Hz.

(+)-(1S)- 1α , 2α , 3β , 4α , 5β . 6β)-3-Amino-3,6-N-carbonyl-1,2-O-isopropylidene-4-O-methyl-6-(methylamino)-1,2,4,5-cyclohexanetetrol (ent-**50**a): To a solution of diisopropylamine (0.30 ml, 3.0 mmol) in glyme (5 ml) a solution of *n*-butyllithium in *n*-hexane (1.6 M, 2.0 ml, 3.2 mmol) was added at 0 °C by syringe. After 10 min ent-**36c** (270 mg, 1.0 mmol) was added in one portion as a fine powder. After stirring for 30 min at 0 °C and for 30 min at 20 °C, methanol (10 ml) was added, the reaction mixture was neutralized with acetic acid and concentrated i. vac. The crude product (250 mg) was separated from by-products by chromatography (silica, CHCl₃/methanol, 25:1), 195 mg (72%) of colorless crystals, m. p. 194 °C (CHCl₃/methanol, 20:1); $[\alpha]_{20}^{20} = +75$ (c = 1.0, methanol). – IR (KBr): 3350, 3300, 2980, 2910, 1635, 1580, 1505, 1405, 1370, 1260, 1210, 1155, 1090, 1055, 930, 880, 760 cm ¹. – ¹H NMR (CDCl₃/CD₃OD, 3:1): $\delta = 4.59$ (dd, 2-H), 4.54 (dd, 1-H), 4.25 (dd, 5-H), 3.62 (dt,

4-H), 3.58 (d, 3-H), 3.50 (s, OCH₃), 3.32 (dd, 6-H), 3.08 (s, NCH₃), 1.50, 1.32 (s, 2 CH₃); $J_{1,2} = 7.5, J_{2,3} = 3.5, J_{2,4} = J_{3,4} = 1.0, J_{4,5} = 6.0, J_{5,6} = 3.5, J_{6,1} = 2.0$ Hz.

C12H20N2O5 (272.3) Calc. C 52.93 H 7.40 N 10.29 Found C 52.55 H 7.73 N 10.03

 $(+) \cdot (1S) \cdot (1\alpha, 2\alpha, 3\beta, 4\alpha, 5\beta, 6\beta)$ -3-Amino-3,6-N-carbonyl-1,2-O-isopropylidene-4-O-methyl-6-(methylamino)-1,2,4,5-cyclohexanetetrol 5-Acetate (ent-**50**b): After acetylation of **50a** (135 mg, 0.5 mmol): 145 mg (92%) of colorless crystals, m.p. 239 °C (CHCl₃/ether, 1:3); $[\alpha]_{10}^{20} = +73$ (c = 1.0, CHCl₃). – 1R (KBr): 3300, 2980, 2930, 2910, 1735, 1660, 1610, 1495, 1455, 1410, 1375, 1260, 1230, 1125, 1110, 1055, 1035, 1000, 865, 810, 785, 760, 740, 610, 525, 510 cm⁻¹. – ¹H NMR (CDCl₃): $\delta = 5.75$ (d, NH), 5.43 (dd, 5-H), 4.63 (ddd, 2-H), 4.55 (dd, 1-H), 3.82 (dt, 4-H), 3.64 (ddd, 3-H), 3.50 (dd, 6-H), 3.39 (s, OCH₃), 3.10 (s, NCH₃), 2.14 (s, OAc), 1.57, 1.33 (s, 2 CH₃); $J_{1,2} = 7.0$, $J_{2,3} = 4.0$, $J_{2,4} = J_{3,4} = 1.0$, $J_{3,NH} = 8.0$, $J_{4,5} = 6.0$, $J_{5,6} = 3.0$, $J_{6,1} = 2.5$ Hz.

C14H22N2O6 (314.3) Calc. C 53.49 H 7.05 N 8.91 Found C 53.47 H 7.31 N 8.77

CAS Registry Numbers

1: 73610-92-1 / ent-1: 104641-37-4 / $1 \cdot H_2SO_4$: 79951-95-4 / 10: 50473-98-8 / 11: 88563-84-2 / 12: 49778-04-3 / rac-13a: 104641-38-5 / rac-13b: 88563-86-4 / rac-13c: 88563-87-5 / rac-13d: 88563-88-6 / rac-13e: 104600-51-3 / rac-13f: 104600-52-4 / rac-13g: 104600-53-5 / rac-13h: 104600-54-6 / rac-13i: 104600-55-7 / rac-13j: 104600-56-8 / rac-13k: 104600-57-9 / rac-13l: 104600-58-0 / rac-14a: 104600-50-2 / rac-14b: 104600-59-1 / 15: 104600-60-4 / 16: 104641-39-6 / 17: 104600-61-5 / 18: 104600-62-6 / 19: 104600-66-0 / rac-21a: 104600-68-2 / rac-22b: 104600-62-7 / rac-23: 104600-66-0 / rac-21a: 104600-68-2 / rac-22: 104641-40-9 / rac-23: 104600-66-0 / rac-21a: 104600-68-2 / rac-25b: 104600-71-7 / rac-25c: 104600-72-8 / rac-22a: 104600-74-0 / rac-25a: 104600-70-6 / rac-25b: 104600-71-7 / rac-25c: 104600-72-8 / rac-27b: 104600-78-4 / rac-26c: 104600-73-9 / rac-26d: 104600-71-7 / rac-27a: 104600-76-2 / rac-27b: 104600-78-4 / rac-28a: 104600-77-3 / rac-28b: 104600-79-5 / rac-27 b: 104600-80-8 / 30a: 104619-30-9 / 30a': 104713-72-6 / 30d: 88563-90-0 / 30d': 88642-98-2 / 30e: 88563-91-1 / 30e': 88642-99-3 / 30f: 104619-22-9 / 30g: 104619-23-0 / 30h: 104619-26-3 / 30i: 104619-27-4 / 30j: 104619-25-2 / 30e: 104600-73-1 / 32e': 104600-93-2 / 33a: 104619-37-3 / rac-28a: 104600-93-3 / 32b': 88643-09-1 / 32b': 88643-09-3 / 32b': 88643-93-3 / 32b': 88643-93-3 / 32b': 88643-02-1 / 32b': 104619-37-6 / ent-34a $\cdot 0.5 H_2SO_4$: 104713-74-8 / 34b: 104619-38-7 / ent-34b: 104712-75-6 / ent-34c: 104619-39-8 / 34d: 104712-76-7 / 34e: 104600-49-9 / 34e': 104619-33-2 / 33a: 104619-37-6 / ent-34a $\cdot 0.5 H_2SO_4$: 104713-74-8 / 34b: 104712-78-9 / ent-34b: 104712-75-6 / ent-34c: 104619-39-8 / 34d: 104712-76-7 / 34e: 104600-49-9 / 34e': 104619-36-3 / ent-34c: 104619-39-8 / 34d: 104712-76-7 / 34e: 104600-49-9 / 34e': 104619-36-3 / ent-35: 104619-40-1 / 36a: 104712-77-8 / 36b: 88643-02-1 / ent-36c: 104619-47-1 / 37a: 104619-42-3 / 37b: 104619-43-4 / 38a $\cdot H_2SO_4$: 104712-78-9 / ent-38a $\cdot H_2SO_4$: 104712-79-0 / 38b: 88563-95-

- ⁶⁾ J. Tadanier and R. Hallas, J. Antibiot. **35**, 688 (1982).
- ⁷⁾ S. Inouve, K. Ohba, T. Shomura, M. Kojima, T. Tsuruoka, J. Yoshida, N. Kato, M. Ito, S. Amano, S. Omoto, N. Ezaki, T. Ito, and T. Niida, J. Antibiot. **32**, 1354 (1979); T. Shomura, M. Kojima, J. Yoshida, M. Ito, S. Amano, K. Totsugawa, T. Niwa, S. Inouve, T. Ito, and

¹⁾ R. S. Egan, R. S. Stanaszek, M. Cirovic, S. L. Mueller, J. Tadanier, J. R. Martin, P. Collum, A. W. Goldstein, R. L. DeVault, A. C. Sinclair, E. E. Fager, and L. A. Mitscher, J. Antibiot. 30, 552 (1977).

²⁾ M. Sugimoto, S. Ishii, R. Okachi, and T. Nara, J. Antibiot. 32, 868 (1979).

³⁾ T. Iida, M. Sato, I. Matsubara, Y. Mori, and K. Shirahata, J. Antibiot. 32, 1273 (1979).

⁴⁾ J. R. Martin, P. Johnson, J. Tadanier, and A. Goldstein, Antimicrob. Agents Chemother. 18, 761 (1980).

⁵⁾ J. Tadanier, R. Hallas, J. Holms, L. A. Freiberg, and D. Bacino, J. Antibiot. **36**, 267 (1983).

T. Niida, ibid. 33, 924 (1980); K. Ohba, T. Tsuruoka, K. Mizutani, N. Kato, S. Omoto, N. Ezaki, S. Inouye, and T. Niida, ibid. 34, 1090 (1981).

- ⁸⁾ H. Paulsen and H. Schmidt-Lewerkuhne, Liebigs Ann. Chem. 1985, 959.
 ⁹⁾ S. Itoh, Y. Odakura, H. Kase, S. Satoh, K. Takahashi, T. Iida, K. Shirahata, and K. Nakayama, J. Antibiot. 37, 1664 (1984); Y. Odakura, H. Kase, S. Itoh, S. Satoh, S. Taksawa, K. Takahashi, K. Shirahata, and K. Nakayama, ibid. 37, 1670 (1984).
 ¹⁰⁾ V. Olawi, K. Hotta, M. Yoshida, D. Itoda, S. Kaudo, and H. Umazawa, I. Antibiot. 32
- ¹⁰⁾ Y. Okami, K. Hotta, M. Yoshida, D. Ikeda, S. Kondo, and H. Umezawa, J. Antibiot. 32, 1354 (1979).
- ¹¹⁾ T. Deushi, A. Iwasaki, K. Kamiya, T. Mizoguchi, M. Nakayama, H. Itoh, and T. Mori, J. Antibiot. 32, 1061 (1979); I. Watanabe, T. Deushi, T. Yamaguchi, K. Kamiya, M. Nakayama, and T. Mori, ibid. 32, 1066 (1979).
- ¹²⁾ Y. Horiuchi, D. Ikeda, S. Kondo, and H. Umezawa, J. Antibiot. 33, 1577 (1980).
 ¹³⁾ T. Deushi, T. Yamaguchi, K. Kamiya, A. Iwasaki, T. Mizoguchi, M. Nakayama, I. Watanabe, H. Itoh, and T. Mori, J. Antibot. 33, 1274 (1980).
- ¹⁴⁾ D. Ikeda, Y. Horiuchi, M. Yoshida, T. Miyasaka, S. Kondo, and H. Umezawa, Carbohydr. Res. 109, 33 (1982).
- ¹⁵⁾ World Pharmaceutical News, June 23, 1982, p. 15.
- ¹⁶⁾ Y. Horiuchi, D. Ikeda, S. Gomi, S. Kondo, and H. Umezawa, Carbohydr. Res. 109, 25 (1982).
- ¹⁷⁾ T. Deushi, A. Iwasaki, K. Kamiya, T. Kunieda, T. Mizoguchi, M. Nakayama, H. Itoh, T. Mori, and T. Oda, J. Antibiot. 32, 173 (1979); A. Iwasaki, H. Itoh, and T. Mori, ibid. 32, 180 (1979); T. Deushi, M. Nakayama, I. Watanabe, T. Mori, H. Naganawa, and H. Umezawa, ibid. 32, 187 (1979).
- ¹⁸⁾ T. Tsuchiya, T. Torii, S. Umezawa, and H. Umezawa, J. Antibiot. 35, 1245 (1982); T. Tsuchiya, T. Torii, Y. Suzuki, and S. Umezawa, Carbohydr. Res. 116, 277 (1983).
- ¹⁹⁾ T. Deushi, I. Watanabe, A. Iwasaki, K. Kamiya, K. Mizoguchi, M. Nakayama, M. Okuchi, H. Itoh, and T. Mori, J. Antibiot. 34, 811 (1981); A. Iwasaki, T. Deushi, I. Watanabe, M. Okuchi, H. Itoh, and T. Mori, ibid. 35, 517 (1982); N. Yasuda, K. Matsuda, H. Tsutsumi, and T. Takaya, ibid. 38, 1512 (1985).
- ²⁰⁾ P. Kurath, W. Rosenbrook, Jr., D. A. Dunnigan, J. B. McAlpine, R. S. Egan, R. S. Stanaszek, M. Cirovic, S. L. Mueller, and W. H. Washburn, J. Antibiot. 37, 1130 (1984).
- ²¹⁾ P. Kurath, R. S. Stanaszek, and M. Cirovic, J. Antibiot. 35, 1338 (1982).
- ²²⁾ T. Nara, M. Yamamoto, I. Kawamoto, K. Takayama, R. Okachi, S. Takasawa, T. Sato, and S. Sato, J. Antibiot. 30, 533 (1977); Y. Ohashi, H. Kawabe, K. Sato, N. Nakamura, S. Kurashige, and S. Mitsuhashi, Antimicrob. Agents Chemother. 17, 138 (1980); C. Thornsberry, A. L. Barry, R. N. Jones, C. N. Baker, R. E. Badal, and R. R. Packer, ibid. 19, 122 (1981).
- ²³⁾ K. Yamashita, H. Kawabe, and S. Mitsuhashi, Antimicrob. Agents Chemother. 20, 33 (1981).
- 24) J. Tadanier, R. Hallas, J. R. Martin, M. Cirovic, and R. S. Stanaszek, Carbohydr. Res. 92, 207 (1981); T. Suami, J.-I. Tadano, and K. Matsuzawa, J. Antibiot. 33, 1289 (1980); T. Torii, T. Tsuchiya, and S. Umezawa, Carbohydr. Res. 116, 289 (1983).
- ²⁵⁾ P. Kurath, J. Tadanier, P. Johnson, D. Grampovnik, R. S. Egan, R. S. Stanaszek, M. Cirovic, W. H. Washburn, and J. E. Leonard, J. Antibiot. 34, 691 (1981); D. Ikeda, Y. Horiuchi, S. Kondo, and H. Umezawa, ibid. 33, 1281 (1980).
- ²⁶⁾ T. Nara, M. Yamamoto, I. Kawamoto, K. Takayama, R. Okachi, S. Takasawa, T. Sato, and S. Sato, J. Antibiot. 30, 533 (1977).
- 27) J. Tadanier, J. R. Martin, P. Kurath, A. W. Goldstein, and P. Johnson, Carbohydr. Res. 79, 91 (1980); J. Tadanier und R. Hallas, J. Antibiot. 34, 403 (1981).
- ²⁸⁾ ^{28a} Preliminary communication: J. Schubert, R. Schwesinger, and H. Prinzbach, Angew. Chem. 96, 162 (1984), Angew. Chem., Int. Ed. Engl. 23, 167 (1984). – ^{28b)} H. Sano, T. Sakaguchi, and Y. Mori, Bull. Chem. Soc. Jpn. 52, 2727 (1979); W. Rosenbrook, Jr. and J. S. Fairgrieve, J. Antibiot. 34, 681 (1981).
- ²⁹⁾ M. Kiso, H. Hibino, M. Tanaka, and A. Hasegawa, Agric. Biol. Chem. 29, 938 (1951).
 ³⁰⁾ Y. Honda und T. Suami, Bull. Chem. Soc. Jpn. 55, 1156 (1982).
- ³¹⁾ S. Knapp, M. J. Sebastian, and H. Ramanathan, J. Org. Chem. 48, 4786 (1983).
 ³²⁾ C. H. Kuo and N. L. Wendler, Tetrahedron Lett. 25, 2291 (1984).
- ³³⁾ Similarly we had pursued an access to deoxyfortamines via i/iii, which were selectively obtained by [4+2] addition of N-phenyltriazolinedione to benzene hydrate (ii) or its acetate³⁴⁾. This route was, however, given up in favour of a more promising approach (see remarks)³⁵⁾.

- ³⁴⁾ J. Staroscik and B. Rickborn, J. Am. Chem. Soc. 93, 3046 (1971).
- 35) R. Kühlmeyer, Diplomarbeit, Univ. Freiburg 1981.
- ³⁶ B. Schwesinger, R. Schwesinger, and H. Prinzbach, Tetrahedron Lett. 25, 1979 (1984).
 ³⁷ R. Keller, R. Schwesinger, W. Fritsche, H.-W. Schneider, D. Hunkler, and H. Prinzbach, Chem. Ber. 112, 3347 (1979).
 ³⁸ S. Ogawa, S. Oki, and T. Suami, Bull. Chem. Soc. Jpn. 52, 1095 (1979).
 ³⁹ D. Ikeda, Y. Horiuchi, S. Kondo, and H. Umezawa, J. Antibiot. 33, 1281 (1980).
 ⁴⁰ D. Kuller, B. K. H. P. Schweiser, Th. Matcher, H. Fritz, and H. Dirinchesh, Chem.

- ⁴⁰⁾ R. Kühlmeyer, R. Keller, R. Schwesinger, Th. Netscher, H. Fritz, and H. Prinzbach, Chem. Ber. 117, 1765 (1984).
- ⁴¹⁾ R. Schwesinger, W. Fritsche, and H. Prinzbach, Chem. Ber. 115, 946 (1982).
- 42) W. Fritsche-Lang, P. Wilharm, E. Hädicke, H. Fritz, and H. Prinzbach, Chem. Ber. 118, 2044 (1985).
- 43) N. Minami, S. S. Ko, and Y. Kishi, J. Am. Chem. Soc. 104, 1109 (1982); W. R. Roush and R. J. Brown, J. Org. Chem. 47, 1371 (1982); W. R. Roush, R. J. Brown, and M. DiMare, ibid. 48, 5083 (1983); W. R. Roush and R. J. Brown, ibid. 48, 5093 (1983); E. J. Corey, P. B. Hopkins, J. E. Munroe, A. Marfat, and S. Hashimoto, J. Am. Chem. Soc. 102, 7986 (1980); M. Cerny, H. Vecerkova, I. Cerny, and J. Pacak, Collect. Czech. Chem. Commun. 45, 1837 (1980).
- 44) L. Goodman, Adv. Carbohydr. Chem. 22, 109 (1967).
- 45) J. E. Baldwin, J. Chem. Soc., Chem. Commun. 1976, 734; J. E. Baldwin, and L. I. Kruse, ibid. 1977, 233; J. E. Baldwin, R. C. Thomas, L. I. Kruse, and L. Silberman, J. Org. Chem. 42, 3846 (1977).
- 46) B. Bernet and A. Vasella, Tetrahedron Lett. 24, 5491 (1983); D. H. R. Barton, J. Chem. Soc. 1951, 2988; G. Stork, L. D. Cama, and D. R. Coulson, J. Am. Chem. Soc. 96, 5268 (1974); G. Stork and F. Cohen, ibid. 96, 5270 (1974).
- 47) W. J. Farrissey, Jr. and A. M. Nashu, J. Heterocycl. Chem. 1970, 331; Y. Iwakura and Y. Taneda, J. Org. Chem. 24, 1992 (1959).
- ⁴⁸⁾ R. Schwesinger, Chimia **39**, 269 (1985).
- 49) W. R. Benson and R. J. Gajan, J. Org. Chem. 31, 2498 (1966).
- ⁵⁰⁾ A. H. Haines, Adv. Carbohydr. Chem. Biochem. 33, 11 (1976).
- 51) P. L. Durette and D. Horton, Org. Magn. Reson. 3, 417 (1971); K. Tori, T. Kameno, and *T. Nakagawa*, J. Org. Chem. **29**, 1136 (1964). ⁵²⁾ *W. Littke* and *U. Drück*, Angew. Chem., **86**, 557 (1974), Angew. Chem. Int. Ed. Engl. **13**,
- 539 (1974); U. Drück and W. Littke, Acta Crystallogr., Sect. B, 35, 1905 (1979); R. Schwe-
- ⁵³ (1977), O. Diak and F. Littke, Acta Crystanogr., Sect. B, 55, 1905 (1979); K. Schwesinger, K. Piontek, W. Littke, and H. Prinzbach, Angew. Chem. 97, 344 (1985); Angew. Chem., Int. Ed. Engl. 24, 318 (1985).
 ⁵³ e.g. A. W. Frahm and G. Knupp, Tetrahedron Lett. 22, 2633 (1981).
 ⁵⁴ J. Tadanier, D. A. Dunnigan, J. R. Martin, L. Freiberg, and M. Cirovic, J. Antibiot.34, 193 (1981); T. Yamaguchi, Y. Kyotani, I. Watanabe, S. Sato, Y. Takahashi, M. Nagakura, and T. Mori, ibid. 32, 1137 (1979).
 ⁵⁵ The W. Greene Protecting Creating Creating
- 55) Th. W. Greene, Protective Groups in Organic Synthesis, Wiley-Interscience 1981.
- ⁵⁶ R. Eby and C. Schuerch, Carbohydr. Res. 100, C41 (1982); R. Toman, J. Rosik, and M. Zikmund, ibid. 103, 165 (1982); T. Ogawa, T. Nukada, and M. Matsui, ibid. 101, 263 (1982); J. Gelas, Adv. Carbohydr. Chem. Biochem. 39, 71 (1981); P. J. Garegg and H. Hultberg, Carbohydr. Res. 93, C10 (1981).
- 57) R. U. Lemieux and H. Driguez, J. Am. Chem. Soc. 97, 4069 (1975); H. Paulsen and D. Schnell, Chem. Ber. 114, 333 (1981); J. F. King and A. D. Allbutt, Can. J. Chem. 48, 1754 (1970); P. Deslongchamps, P. Atlani, D. Frehel, and A. Malaval, Can. J. Chem. 50, 3405 (1972).
- 58) M. A. Nashed and L. Anderson, Carbohydr. Res. 56, 419 (1977); C. Auge, S. David, and A. Veyrieres, J. Chem. Soc., Chem. Commun. 1976, 375; M. A. Nashed, Carbohydr. Res. **60**, 200 (1978).

- ⁵⁹ F. Cramer, K. Pawelzik, and H. J. Baldauf, Chem. Ber. 91, 1049 (1958); T. Iversen and D. R. Bundle, J. Chem. Soc., Chem. Commun. 1981, 1240.
- ⁶⁰⁾ P. Kurath, J. Tadanier, P. Johnson, D. Grampovnik, R. S. Egan, R. S. Stanaszek, M. Cirovic, W. H. Washburn, and J. E. Leonard, J. Antibiot. 34, 691 (1981); N. Hirayama, K. Shirahata, Y. Ohashi, and Y. Sasada, Bull. Chem. Soc. Jpn. 54, 2624 (1981); N. Hirayama, K. Shirahata, Y. Ohashi, and Y. Sasada, ibid. 53, 1514 (1980).
- 61) M. Sato and Y. Mori, J. Antibiot. 32, 371 (1979).
- ⁶²⁾ D. Seebach and D. Enders, Angew. Chem. 87, 1 (1975), Angew. Chem., Int. Ed. Engl. 14, 15 (1975).
- ⁶³⁾ M. S. Newman and A. Kutner, J. Am. Chem. Soc. 73, 4199 (1951).
- 64) D. Hoppe, Angew. Chem. 86, 878 (1974), Angew. Chem., Int. Ed. Engl. 13, 789 (1974); U. Schöllkopf, Angew. Chem. 89, 351 (1977), Angew. Chem., Int. Ed. Engl. 16, 339 (1977).
- Schöukopj, Angew. Chem. 37, 531 (1777), Angew. Chem., Int. Ed. Engl. 10, 557 (1777), 65 We thank cand. rer. nat. M. Janes for these experiments.
 ⁶⁶ I. Moretti and G. Torre, Synthesis 1970, 141; T. Kauffmann, E. Köppelmann, and H. Berg, Angew. Chem. 82, 138 (1970), Angew. Chem., Int. Ed. Engl. 9, 163 (1970); L. Hu, B. Mauze, and L. Miginiac, C. R. Acad. Sci., Ser. C, 284, 195 (1977).
 ⁶⁷⁾ M. Yamada, K. Tachibana, and T. Kuroda, Carbohydr. Res. 112, 189 (1983).
 ⁶⁸ D. d. Mathematical E. Posting and L. Schear I. Org. Chem. 32, 1417 (1967); cit.
- ⁶⁸⁾ R. A. Mallory, S. Rovinski, F. Kohen, and I. Scheer, J. Org. Chem. **32**, 1417 (1967); cit. lit.: G. Jung and A. Klemer, Chem. Ber. **114**, 740 (1981); A. Klemer and G. Jung, ibid. **114**, 1192 (1981); K. K. Weinhardt, Tetrahedron Lett. 25, 1761 (1984).
- 69) R. Schwesinger, M. Breuninger, B. Gallenkamp, K.-H. Müller, D. Hunkler, and H. Prinzbach, Chem. Ber. 113, 3127 (1980), and cit. lit.
- 70) J. Tadanier, J. R. Martin, P. Johnson, A. W. Goldstein, and R. Hallas, Carbohydr. Res. 85, 61 (1980).
- ⁷¹⁾ S. Karady, T. Y. Cheng, S. H. Pines, and M. Sletzinger, Tetrahedron Lett. 1974, 2625; L. Capuano, R. Zander, and A. Bolourtschi, Chem. Ber. 104, 3750 (1971).
- ⁷²⁾ Ch. Rücker, H. Prinzbach, H. Irngartinger, R. Jahn, and H. Rodewald, Tetrahedron Lett., in press.
- ⁷³⁾ G. Lutz, Diplomarbeit, Univ. Freiburg 1986.
- ⁷⁴⁾ R. Kühlmever, R. Schwesinger, and H. Prinzbach, Tetrahedron Lett. 25, 3429 (1984).
- ⁷⁵⁾ J. R. Martin, P. Johnson, J. Tadanier, M. Cirovic, and R. S. Stanaszek, J. Antibiot. 35, 46 (1982); N. Kurihara, K. Hayashi, and N. Nakajima, Agric. Biol. Chem. 33, 256 (1969).
- ⁷⁶ R. Kühlmeyer, R. Schwesinger, H. Fritz, D. Hunkler, and H. Prinzbach, publication in preparation.
- ⁷⁷ B. Schwesinger, R. Schwesinger, Th. Weller, B. Seitz, and H. Prinzbach, publication in preparation.

[132/86]