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Abstract: The LDA-induced rearrangements of epoxydisilane 1 (R = Ph), to give predominantly 13-trimethylsilyl 
acylsilane 6 (R = Ph), and of epoxydisilanes 1 (R = alkyl) remarkably to give silanols 7, are described. 
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We recently reported a method for the preparation of acylsilanes from epoxydisilanes 1 using H2SO4 in 

MeOH.1 As an extension of this work we communicate here our preliminary results concerning base-induced 

rearrangements of epoxydisilanes 1. The reaction of bases such as LDA with simple epoxides generally 

produces allylic alkoxides which give allylic alcohols on protic work-up. 2 Should an epoxydisilane 1 rearrange 

analogously there exists the possibility of a subsequent Brook rearrangement from the allylic alkoxide 2 to 

generate a lithium homoenolate 3 (Eq. 1). Direct protonation of the homoenolate 3 could lead to the disilyl enol 

ether 5. Alternatively, the homoenolate 3 could rearrange to the enolate 4, which would give a 13-trimethylsilyl 

acylsilane 6 on protic work-up. 

O. SiMe3 LDA 

R ' ~ I  SiMe 3 ~- 

SiMe 3 
OLi Li- - - - 0 

A ~ , ~  SiMe 3 " R / J ~ ' ~  SiMe 
2 SiMe 3 3 

~ Li 
Me3Si . . . .  O 

R ~ 4  SiMe3_ 

OSiMe 3 

R ~ A , ~  SiMe 3 
H ÷ 5 

and / or 

R" v SiMe 3 
6 

(1) 

Trimethylsilyl ethers derived from allylic primary alcohols undergo the reverse Brook (silyl-Wittig) 

rearrangement on treatment with ButLi to give on protic work-up 1-(trimethylsilyl)allylie alcohols) However, 

1-(trimethylsilyl)allylic alcohols which are further substituted by an alkyl group in the 1-position generally give 

silyl enol ethers on treatment with catalytic BuLi; [3-trimethylsilyl ketones can form when using stoichiometric 

quantities of BuLi. 4 These latter reactions were found to be facilitated by steric bulk in the alkyl group and an 

ability to stabilise an adjacent negative charge; 4 both factors would be present if the alkyl group were replaced 

by a trialkylsilyl substituent. 

In the event, epoxydisilane 1 (R -- Ph) 1 rearranged using LDA (3.5 equivs.) in Et20 at reflux (0.5 h) to 

give the E-disilyl enol ether 55 (R = Ph, 19%) 6 and the [~-trimethylsilyl acylsilane 67 (R = Ph, 71%). However, 

epoxydisilanes which lacked the activating effect provided by the aryl group underwent a remarkable and 

profoundly different transformation on treatment with LDA to give silanols 7 (Table 1); disiloxanes were not 

observed. 
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Table 1. LDA-mediated rearrangement of epoxydisilanes. 

Epoxydisilane Silanol 7 E- : Z- Yield, 6 % 

Me(CH2)7 O SiMe 3 
SiMe 3 

ButMe2SiO(CH2)5 ,,. 9 ' ~  SiMe3 
- SiMe 3 

~ SiMe 3 

SiMe 3 

SiMe 3 

Me(CH2)7 ~ SiMe20 H 7a 1 : 1 90 

SiMe 3 

ButMe2SiO(CH2)5 ~ SiMe2OH I : 1 74 

SiMe2OH 1 : 2.3 96 

The structures of the silanols 7 were rigorously established by extensive spectroscopic studies. For 

example, silanol Z-7a 8 gave a strong, broad absorbance in the IR (neat) at 3306 cm -1, the 1H NMR spectrum 

showed typical vinyl- and allyl-silane signals [SH 5.86 (1H, t, J 7.5, HC=) and 1.63 (2H, s, =CCH2Si) 

respectively] and integration in the SiMe region gave SiMe3 and SiMe2 assignments (~iH 0.14 and 0.12 

respectively), the 13C NMR DEPT spectra showed 8 CH 2 signals, and the 29Si NMR spectrum supported the 

presence of  R3SiOR' and =CSiR3 functionality (Ssi 14.5 and -7.2 respectively). 9 Long-range COSY 

experiments (1H-13C and 1H--29Si HMBC) were used to establish that the allylic silicon, rather than the vinylic 

silicon, bears the OH group. For example, correlations were observed between =CCH2Si and Si(CH3)2 [but 

not to Si(CH3)3], and between =CCH2Si and Si(CH3)3 [but not to Si(CH3)2]. 

In order to explain this unusual rearrangement to give a silanol 7, we tentatively suggest a mechanism 

which involves (reversible) deprotonation a to silicon followed by irreversible intramolecular epoxide opening 

at the proximal epoxide carbon 1 to generate a silirane $ which collapses by a Peterson-type reaction (Eq. 2). 10 
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